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Abstract: As the emerging field of machine learning, 

deep learning shows excellent ability in solving 

complex learning problems. However, the size of the 

networks becomes increasingly large scale due to the 

demands of the practical applications, which poses 

significant challenge to construct high performance 

implementations of deep learning neural networks. In 

order to improve the performance as well as to 

maintain the low power cost, in this paper we design 

deep learning accelerator unit (DLAU), which is a 

scalable accelerator architecture for large-scale deep 

learning networks using field-programmable gate 

array (FPGA) as the hardware prototype. The DLAU 

accelerator employs three pipelined processing units to 

improve the throughput and utilizes tile techniques to 

explore locality for deep learning applications. 

Experimental results on the state-of-the-art Xilinx 

FPGA board demonstrate that the DLAU accelerator is 

able to achieve up to 36.1× speedup comparing to the 

Intel Core2 processors, with the power consumption at 

234 mW. 

Keywords: Deep learning, field-programmable gate 

array (FPGA), hardware accelerator, neural network. 

I.INTRODUCTION 

In the past few years, machine learning has 

become pervasive in various research fields and 

commercial applications, and achieved satisfactory 

products. The emergence of deep learning speeded up 

the development of machine learning and artificial 

intelligence. Consequently, deep learning has become a 

research hot spot in research organizations [1]. In 

general, deep learning uses a multilayer neural network 

model to extract high-level features which are a 

combination of low-level abstractions to find the 

distributed data features, in order to solve complex 

problems in machine learning. Currently, the most 

widely used neural models of deep learning are deep 

neural networks (DNNs) [2] and convolution neural 

networks (CNNs) [3], which have been proved to have 

excellent capability in solving picture recognition, 

voice recognition, and other complex machine learning 

tasks.  

However, with the increasing accuracy 

requirements and complexity for the practical 

applications, the size of the neural networks becomes 

explosively large scale, such as the Baidu Brain with 

100 billion neuronal connections, and the Google cat-

recognizing system with one billion neuronal 

connections. The explosive volume of data makes the 

data centers quite power consuming. In particular, the 

electricity consumption of data centers in U.S. are 

projected to increase to roughly 140 billion kilowatt-

hours annually by 2020 [4]. Therefore, it poses 

significant challenges to implement high performance 

deep learning networks with low power cost, especially 

for large-scale deep learning neural network models. 

So far, the state-of-the-art means for accelerating deep 

learning algorithms are field-programmable gate array 

(FPGA), application specific integrated circuit (ASIC), 

and graphic processing unit (GPU). Compared with 

GPU acceleration, hardware accelerators like FPGA 

and ASIC can achieve at least moderate performance 

with lower power consumption.  

However, both FPGA and ASIC have 

relatively limited computing resources, memory, and 

I/O bandwidths, therefore it is challenging to develop 

complex and massive DNNs using hardware 

accelerators. For ASIC, it has a longer development 

cycle and the flexibility is not satisfying. Chen et al. [6] 

presented a ubiquitous machine-learning hardware 

accelerator called DianNao, which initiated the field of 

deep learning processor. It opens a new paradigm to 

machine learning hardware accelerators focusing on 

neural networks. But DianNao is not implemented 

using reconfigurable hardware like FPGA, therefore it 

cannot adapt to different application demands.  

Currently, around FPGA acceleration 

researches, Ly and Chow [5] designed FPGA-based 

solutions to accelerate the restricted Boltzmann 

machine (RBM). They created dedicated hardware 
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processing cores which are optimized for the RBM 

algorithm. Similarly, Kim et al. [7] also developed an 

FPGA-based accelerator for the RBM. They use 

multiple RBM processing modules in parallel, with 

each module responsible for a relatively small number 

of nodes. Other similar works also present FPGA-

based neural network accelerators [9]. Yu et al. [8] 

presented an FPGA-based accelerator, but it cannot 

accommodate changing network size and network 

topologies. To sum up, these studies focus on 

implementing a particular deep learning algorithm 

efficiently, but how to increase the size of the neural 

networks with scalable and flexible hardware 

architecture has not been properly solved.  

To tackle these problems, we present a 

scalable deep learning accelerator unit named DLAU to 

speed up the kernel computational parts of deep 

learning algorithms. In particular, we utilize the tile 

techniques, FIFO buffers, and pipelines to minimize 

memory transfer operations, and reuse the computing 

units to implement the large size neural networks. This 

approach distinguishes itself from previous literatures 

with following contributions.  

1) In order to explore the locality of the deep 

learning application, we employ tile techniques to 

partition the large scale input data. The DLAU 

architecture can be configured to operate different sizes 

of tile data to leverage the tradeoffs between speedup 

and hardware costs. Consequently, the FPGA-based 

accelerator is more scalable to accommodate different 

machine learning applications.  

2) The DLAU accelerator is composed of 

three fully pipelined processing units, including tiled 

matrix multiplication unit (TMMU), part sum 

accumulation unit (PSAU), and activation function 

acceleration unit (AFAU). Different network 

topologies such as CNN, DNN, or even emerging 

neural networks can be composed from these basic 

modules. Consequently, the scalability of FPGA-based 

accelerator is higher than ASIC-based accelerator.  

Deep learning: 

Deep learning (also known as deep structured learning 

or hierarchical learning) is part of a broader family of 

machine learning methods based on learning data 

representations, as opposed to task-specific algorithms. 

Learning can be supervised, semi-supervised or 

unsupervised. 

Deep learning is a class of machine learning 

algorithms that: 

¶ Use a cascade of multiple layers of nonlinear 

processing units for feature extraction and 

transformation. Each successive layer uses the 

output from the previous layer as input.  

¶ Learn in supervised (e.g., classification) 

and/or unsupervised (e.g., pattern analysis) 

manners.  

¶ Learn multiple levels of representations that 

correspond to different levels of abstraction; 

the levels form a hierarchy of concepts. 

Deep neural network (DNN): 

A deep neural network (DNN) is an artificial 

neural network (ANN) with multiple hidden layers 

between the input and output layers. DNNs can model 

complex non-linear relationships. DNN architectures 

generate compositional models where the object is 

expressed as a layered composition of primitives. The 

extra layers enable composition of features from lower 

layers, potentially modeling complex data with fewer 

units than a similarly performing shallow network. The 

fig.1 shows deep learning neural network. 

 
Fig. 1: Deep neural network (DNN) architecture 

II. TILE TECHNIQUES AND HOT SPOT 

PROFILING 

RBMs have been widely used to efficiently 

train each layer of a deep network. Normally, a DNN is 

composed of one input layer, several hidden layers and 
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one classifier layer. The units in adjacent layers are all-

to-all weighted connected. The prediction process 

contains feedforward computation from given input 

neurons to the output neurons with the current network 

configurations. Training process includes pretraining 

which locally tune the connection weights between the 

units in adjacent layers and global training which 

globally tune the connection weights with back 

propagation (BP) process.  

The large-scale DNNs include iterative 

computations which have few conditional branch 

operations, therefore, they are suitable for parallel 

optimization in hardware. In this paper, we first 

explore the hot spot using the profiler. Results in Fig.2 

illustrate the percentage of running time including 

matrix multiplication (MM), activation, and vector 

operations. For the representative three key operations: 

1) feed forward; 2) RBM; and 3) BP, MM play a 

significant role of the overall execution. In particular, it 

takes 98.6%, 98.2%, and 99.1% of the feed forward, 

RBM, and BP operations. In comparison, the activation 

function only takes 1.40%, 1.48%, and 0.42% of the 

three operations. Experimental results on profiling 

demonstrate that the design and implementation of MM 

accelerators is able to improve the overall speedup of 

the system significantly.  

However, considerable memory bandwidth 

and computing resources are needed to support the 

parallel processing, consequently it poses a significant 

challenge to FPGA implementations compared with 

GPU and CPU optimization measures. In order to 

tackle the problem, in this paper we employ tile 

techniques to partition the massive input data set into 

tiled subsets. Each designed hardware accelerator is 

able to buffer the tiled subset of data for processing. In 

order to support the large-scale neural networks, the 

accelerator architecture are reused. Moreover, the data 

access for each tiled subset can run in parallel to the 

computation of the hardware accelerators. In particular, 

for each iteration, output neurons are reused as the 

input neurons in next iteration. To generate the output 

neurons for each iteration, we need to multiply the 

input neurons by each column in weights matrix. As 

illustrated in Algorithm 1, the input data are partitioned 

into tiles and then multiplied by the corresponding 

weights. Thereafter the calculated part sum are 

accumulated to get the result. Besides the input/output 

neurons, we also divided the weight matrix into tiles 

corresponding to the tile size. As a consequence, the 

hardware cost of the accelerator only depends on the 

tile size, which saves significant number of hardware 

resources.  

TABLE I 

PROFILING OF HOT SPOTS OF DNN 

 

The tiled technique is able to solve the 

problem by implementing large networks with limited 

hardware. Moreover, the pipelined hardware 

implementation is another advantage of FPGA 

technology compared to GPU architecture, which uses 

massive parallel SIMD architectures to improve the 

overall performance and throughput. According to the 

profiling results depicted in Table I, during the 

prediction process and the training process in deep 

learning algorithms, the common but important 

computational parts are MM and activation functions, 

consequently in this paper we implement the 

specialized accelerator to speed up the MM and 

activation functions. 

 

III. DLAU ARCHITECTURE AND EXECUTION 

MODEL 
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Fig.2 describes the DLAU system architecture 

which contains an embedded processor, a DDR3 

memory controller, a DMA module, and the DLAU 

accelerator. The embedded processor is responsible for 

providing programming interface to the users and 

communicating with DLAU via JTAG-UART. In 

particular it transfers the input data and the weight 

matrix to internal BRAM blocks, activates the DLAU 

accelerator, and returns the results to the user after 

execution. The DLAU is integrated as a standalone unit 

which is flexible and adaptive to accommodate 

different applications with configurations. The DLAU 

consists of three processing units organized in a 

pipeline manner: 1) TMMU; 2) PSAU; and 3) AFAU. 

For execution, DLAU reads the tiled data from the 

memory by DMA, computes with all the three 

processing units in turn, and then writes the results 

back to the memory. In particular, the DLAU 

accelerator architecture has the following key features. 

 
Fig. 2: DLAU accelerator architecture. 

FIFO Buffer: Each processing unit in DLAU has an 

input buffer and an output buffer to receive or send the 

data in FIFO. These buffers are employed to prevent 

the data loss caused by the inconsistent throughput 

between each processing unit.  

Tiled Techniques: Different machine learning 

applications may require specific neural network sizes. 

The tile technique is employed to divide the large 

volume of data into small tiles that can be cached on 

chip, therefore the accelerator can be adopted to 

different neural network size. Consequently, the 

FPGA-based accelerator is more scalable to 

accommodate different machine learning applications. 

 Pipeline Accelerator: We use stream-like data 

passing mechanism (e.g., AXI-Stream for 

demonstration) to transfer data between the adjacent 

processing units, therefore, TMMU, PSAU, and AFAU 

can compute in streaming-like manner. Of these three 

computational modules, TMMU is the primary 

computational unit, which reads the total weights and 

tiled nodes data through DMA, performs the 

calculations, and then transfers the intermediate part 

sum results to PSAU. PSAU collects part sums and 

performs accumulation. When the accumulation is 

completed, results will be passed to AFAU. AFAU 

performs the activation function using piecewise linear 

interpolation methods. In the rest of this section, we 

will detail the implementation of these three processing 

units, respectively.  

A. TMMU Architecture  

TMMU is in charge of multiplication and 

accumulation operations. TMMU is specially designed 

to exploit the data locality of the weights and is 

responsible for calculating the part sums. TMMU 

employs an input FIFO buffer which receives the data 

transferred from DMA and an output FIFO buffer to 

send part sums to PSAU. Fig. 3 illustrates the TMMU 

schematic diagram, in which we set tile size = 32 as an 

example.  

 
Fig. 3: TMMU schematic. 

TMMU first reads the weight matrix data 

from input buffer into different BRAMs in 32 by the 

row number of the weight matrix (n = i%32 where n 

refers to the number of BRAM, and i is the row 

number of weight matrix). Then, TMMU begins to 

buffer the tiled node data. In the first time, TMMU 

reads the tiled 32 values to registers Reg_a and starts 
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execution. In parallel to the computation at every cycle, 

TMMU reads the next node from input buffer and 

saves to the registers Reg_b. Consequently, the 

registers Reg_a and Reg_b can be used alternately. For 

the calculation, we use pipelined binary adder tree 

structure to optimize the performance. As depicted in 

Fig. 3, the weight data and the node data are saved in 

BRAMs and registers. The pipeline takes advantage of 

time-sharing the coarse-grained accelerators. As a 

consequence, this implementation enables the TMMU 

unit to produce a part sum result every clock cycle. 

B. PSAU Architecture  

PSAU is responsible for the accumulation 

operation. Fig.4 presents the PSAU architecture, which 

accumulates the part sum produced by TMMU. If the 

part sum is the final result, PSAU will write the value 

to output buffer and send results to AFAU in a pipeline 

manner. PSAU can accumulate one part sum every 

clock cycle, therefore the throughput of PSAU 

accumulation matches the generation of the part sum in 

TMMU.  

 
Fig. 4: PSAU schematic. 

C. AFAU Architecture  

Finally, AFAU implements the activation 

function using piecewise linear interpolation (y = ai  zx 

+ bi, x  ɴ [x1, xi+1]). This method has been widely 

applied to implement activation functions with 

negligible accuracy loss when the interval between xi 

and xi+1 is insignificant. Equation (1) shows the 

implementation of sigmoid function. For x > 8 and x Ò 

ī8, the results are sufficiently close to the bounds of 1 

and 0, respectively. For the cases in ī8 < x Ò 0 and 0 < 

x Ò 8, different functions are configured. In total, we 

divide the sigmoid function into four segments 

 

Similar to PSAU, AFAU also has both input 

buffer and output buffer to maintain the throughput 

with other processing units. In particular, we use two 

separate BRAMs to store the values of a and b. The 

computation of AFAU is pipelined to operate sigmoid 

function every clock cycle. As a consequence, all the 

three processing units are fully pipelined to ensure the 

peak throughput of the DLAU accelerator architecture.  

IV. EXPERIMENTS AND DATA ANALYSIS 

In order to evaluate the performance and cost 

of the DLAU accelerator, we have implemented the 

hardware prototype on the Xilinx Zynq Zedboard 

development board, which equips ARM Cortex-A9 

processors clocked at 667 MHz and programmable 

fabrics. For benchmarks, we use the Mnist data set to 

train the 784×M×N×10 DNNs in MATLAB, and use 

MĬN layersô weights and nodes value for the input data 

of DLAU. For comparison, we use Intel Core2 

processor clocked at 2.3 GHz as the baseline. In the 

experiment we use tile size = 32 considering the 

hardware resources integrated in the Zedboard 

development board. The DLAU computes 32 hardware 

neurons with 32 weights every cycle. The clock of 

DLAU is 200 MHz (one cycle takes 5 ns). Three 

network sizesð64×64, 128×128, and 256×256 are 

tested. 

A. Speedup Analysis  

We present the speedup of DLAU and some 

other similar implementations of the deep learning 

algorithms in Table II.  

TABLE II  

COMPARISONS BETWEEN SIMILAR 

APPROACHES 
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Experimental results demonstrate that the 

DLAU is able to achieve up to 36.1× speedup at 

256×256 network size. In comparison, Ly and Chow 

[5] and Kim et al. [7] presented the work only on RBM 

algorithms, while the DLAU is much more scalable 

and flexible. DianNao [6] reaches up to 117.87× 

speedup due to its high working frequency at 0.98 

GHz. Moreover, as DianNao is hardwired instead of 

implemented on an FPGA platform, therefore it cannot 

efficiently adapt to different neural network sizes.  

Fig. 5 illustrates the speedup of DLAU at 

different network sizes- 64×64, 128×128, and 

256×256, respectively. Experimental results 

demonstrate a reasonable ascendant speedup with the 

growth of neural networks sizes. In particular, the 

speedup increases from 19.2× in 64×64 network size to 

36.1× at the 256×256 network size. The right part of 

Fig. 4 illustrates how the tile size has an impact on the 

performance of the DLAU. It can be acknowledged 

that bigger tile size means more number of neurons to 

be computed concurrently. At the network size of 

128×128, the speedup is 9.2× when the tile size is 8. 

When the tile size increases to 32, the speedup reaches 

30.5×. Experimental results demonstrate that the 

DLAU framework is configurable and scalable with 

different tile sizes. The speedup can be leveraged with 

hardware cost to achieve satisfying tradeoffs.  

 
Fig. 5: Speedup at different network sizes and tile 

sizes. 

B. Resource Utilization and Power  

Table III summarizes the resource utilization 

of DLAU in 32×32 tile size including the BRAM 

resources, DSPs, FFs, and LUTs. 

TABLE III 

RESOURCE UTILIZATION OF DLAU AT 32×32 

TILE SIZE 

 
TMMU is much more complex than the rest 

two hardware modules therefore it consumes most 

hardware resources. Taking the limited number of 

hardware logic resources provided by Xilinx XC7Z020 

FPGA chip, the overall utilization is reasonable. The 

DLAU utilizes 167 DSP blocks due to the use of the 

Floating-point addition and the Floating-point 

multiplication operations.  

Table IV compares the resource utilization of 

DLAU with other two FPGA-based literatures. 

Experimental results depict that our DLAU accelerator 

occupies similar number of FFs and LUTs to Ly and 

Chowôs work [5], while it only consumes 35/257 = 

13.6% on the BRAMs. Comparing to the Kim et al.ôs 

work [7], the BRAM utilization of DLAU is 

insignificant. This is due to the tile techniques so that 

large scale neural networks can be divided into small 

tiles, therefore, the scalability and flexibility of the 

architecture is significantly improved.  

In order to evaluate the power consumption of 

accelerator, we use Xilinx tool set to achieve power 

cost of each processing unit in DLAU and the DMA 

module. The results in Table V depict that the total 

power of DLAU is only 234 mW, which is much lower 

than that of DianNao (485 mW). The results 

demonstrate that the DLAU is quite energy efficient as 

well as highly scalable compared to other accelerating 

techniques.  

TABLE IV  

RESOURCE COMPARISONS BETWEEN SIMILAR 

APPROACHES 

 

TABLE V  

POWER CONSUMPTION OF THE UNITS 
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To compare the energy and power between 

FPGA-based accelerator and GPU-based accelerators, 

we also implement a prototype using the state-of-theart 

NVIDIA Tesla K40c as the baseline. K40c has 2880 

stream cores working at peak frequency 875 MHz, and 

the max memory bandwidth is 288 (GB/s). In 

comparison, we only employ one DLAU on the FPGA 

board working at 100 MHz. In order to evaluate the 

speedup of the accelerators in a real deep learning 

applications, we use DNN to model three benchmarks, 

including Caltech101, Cifar-10, and MNIST, 

respectively.  

 
Fig. 6: Power and energy comparison between 

FPGA and GPU. 

 

Fig.6 illustrates the comparison between 

FPGA-based GPU+cuBLAS implementations. It 

reveals that the power consumption of GPU-based 

accelerator is 364 times higher than FPGA-based 

accelerators. Regarding the total energy consumption, 

the FPGA-based accelerator is 10× more energy 

efficient than GPU, and 4.2× than GPU+cuBLAS 

optimizations.  

 
Fig. 7: Floorplan of the FPGA chip. 

Finally, Fig.7 illustrates the floorplan of the 

FPGA chip. The left corner depicts the ARM processor 

which is hardwired in the FPGA chip. Other modules, 

including different components of the DLAU 

accelerator, the DMA, and memory interconnect, are 

presented in different colors. Regarding the 

programming logic devices, TMMU takes most of the 

areas as it utilizes a significant number of LUTs and 

FFs. 

V. RESULTS 

The composed Verilog HDL Modules have effectively 

recreated and confirmed utilizing Isim Simulator and 

orchestrated utilizing Xilinxise13.2. 

Simulation results: 

 

RTL schematic: 
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Technology Schematic: 

 

Design summary: 

 

Timing Report: 

 

V. CONCLUSION 

In this paper, we have presented DLAU, 

which is a scalable and flexible deep learning 

accelerator based on FPGA. The DLAU includes three 

pipelined processing units, which can be reused for 

large scale neural networks. DLAU uses tile techniques 

to partition the input node data into smaller sets and 

compute repeatedly by time-sharing the arithmetic 

logic. Experimental results on Xilinx FPGA prototype 

show that DLAU can achieve 36.1× speedup with 

reasonable hardware cost and low power utilization.  
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