

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 899

Probability-Driven Multibit Flip-Flop Integration with

Clock Gating
B. Manasa Reddy, B. Jhansi Reddy

, R. Sindhu Reddy

1 Assistant Professor, Dept of ECE, TKR College Of Engineering And Technology, Meerpet, Ranga Reddy,

Telangana, India

Abstract: Data-Driven Clock-Gating (DDCG) and

Multi Bit Flip-Flops (MBFFs) in which several FFs

are grouped and share a common clock driver are two

effective low power design techniques. Though

commonly used by VLSI designers, those are usually

separately treated. Past works focused on MBFF usage

in RTL, gate-level and their layout. Though collectively

coving the common design stages, the study of each

aspect individually led to conflicts and contradiction

with the others. MBFF internal circuit design, its

multiplicity and its synergy to the FFs data toggling

probabilities have not been studied so far. This work

attempts to maximize the energy savings by proposing

a DDCG and MBFF combined algorithm, based on

Flip-Flops (FFs) data to-clock toggling ratio. It is

shown that to maximize the power savings, the FFs

should be grouped in MBFFs in increasing order of

their activities. A power savings model utilizing MBFF

multiplicities and FF toggling probabilities is

developed, which was then used by the algorithm in a

practical design flow. We achieved 17% to 23% power

savings compared to designs with ordinary FFs.

Keywords: Clock gating (CG), clock network synthesis,

low-power design, multibit flip-flop (MBFF).

I.INTRODUCTION

A recently published paper has emphasized

the usage of Multi-Bit Flip-Flops (MBFFs) as a design

technique delivering considerable power reduction of

digital systems [1]. The data of digital systems is

usually stored in Flip-Flops (FFs), each having its own

internal clock driver. Shown in Fig. 1a, an edge-

triggered 1-bit FF contains two cascaded master and

slave latches, driven by opposite clocks CLK and CLK.

It is shown in that most of the FF’s energy is

consumed by its internal clock drivers, which are

significant contributors to the total power consumption.

In an attempt to reduce the clock power, several FFs

can be grouped in a module such that common clock

drivers are shared for all the FFs. Two 1-bit FFs

grouped into 2-bit MBFF, called also dual-bit FF [1], is

shown in Fig. 1a. In a similar manner, grouping of FFs

in 4-bit and 8-bit MBFFs are possible too. We

subsequently denote a k -bit MBFF by k -MBFF.

MBFF is not only reducing the gate capacitance driven

by a clock tree. The wiring capacitive load is also

reduced because only a single clock wire is required for

multiple FFs. It also reduces the depth and the buffer

sizes of the clock tree and also the number of sub-trees.

Beyond clock power savings those features also reduce

the silicon area.

Most distributed deals with MBFF have

concentrated on physical execution, driven basically by

the postplacement format [4], [5], [7], [8], [13], [16]. In

these works, FF exercises have a tendency to be

overlooked. Each FF is related with time edges got

from the design including 1-bit FFs. The wires

associated with the information and yield of a FF are

secured on their contrary side to whatever is left of the

rationale, though the position of the FF is permitted to

move around without abusing timing. This

characterizes the district in the design where the FF can

be dislodged and converged into the MBFF. The 2-

MBFF combining is defined as an advancement issue

that goes for boosting the quantity of blended FFs.

Other works [9]–[11] have introduced clock-

tree layout considerations as well. To further save

power, [6] introduced CG, but the relationship among

the CG strategy, the FF activities, and their grouping

was not conclusive. Wang et al. [12] described another

postplacement algorithm that accounted implicitly for

switching data to estimate the expected power.

Although [6] and [12] used switching data as a

secondary criterion in postplacement FF grouping, our

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 900

strategy is to use it as a primary clustering criterion, and do so at the preplacement RTL level.

Fig. 1a: 1-bit FF and 2-MBFF.

The main contributions of this brief are as follows:

1) A design methodology that fuses MBFF and DDCG,

yielding considerable power savings;

2) A probability driven algorithm that minimizes the

expected DDCG MBFF power consumption.

Clock gating:

Several techniques to reduce the dynamic

power have been developed, of which clock gating is

predominant. Ordinarily, when a logic unit is clock, its

underlying sequential elements receive the clock signal

regardless of whether or not they will toggle in the next

cycle. Clock enabling signals are usually introduced by

designers during the system and clock design phases,

where the inter-dependencies of the various functions

are well understood.

In contrast, it is very difficult to define such

signals in the gate level, especially in control logic,

since the inter-dependencies among the states of

various flipflops depend on automatically synthesized

logic. There is a big gap between block disabling that is

driven from the HDL definitions, and what can be

achieved with data knowledge regarding the flip-flops

activities and how they are correlated with each other.

The research presents an approach to maximize clock

disabling at the gate level, where the clock signal

driving a flip-flop is disabled (gated) when the flip-flop

states is not subject to a change in the next clock cycle.

Figure.1b shows enabling of the clock signal.

On the other hand, such grouping may lower

the disabling effectiveness, since the clock will

disabled only when the inputs to all the flip-flops in a

group don’t change. It is, therefore beneficial to group

flip-flops whose switching activities are highly

correlated in derive a joined enabling signal.

Fig.1b: Enabling of the clock signal

II. INTEGRATING CLOCK GATING INTO

MBFF

Let p be the data-to-clock toggling probability. Denote

by E1 the expected energy consumed by 1-bit FF.

where λ1 is the energy of the FF’s internal clock driver

and μ1 is the energy of data toggling. In the general

case of k-MBFF, let λk is the energy of the MBFF’s

internal clock driver and μk its per-bit data toggling

energy. Assume that the FFs toggle with probability p

independently of each other. It has been shown in [14]

that the expected energy consumption E2 is

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 901

For the general case of k -MBFF, let λk be the energy

of the MBFF’s internal clock driver and µk be the per-

bit data toggling energy. It is important to note that

toggling independence is a pessimistic assumption. In

reality, the correlation between FF toggling yields

higher energy savings than the model in [2].

Fig. 2 illustrates a DDCG integrated into a k-MBFF.

The shaded circuits reside within a library cell.

Fig.2: DDCG integrated into a k-MBFF

Given an activity p, the group size k that maximizes the

energy savings solves the equation

where CFF and Clatch are the clock input loads of an

FF and a latch, respectively [2]. The solution to (3) for

various activities is shown in Table I for typical CFF

and clatch. The above optimization does not take into

account the clock driver sharing, which also affects the

optimal grouping as shown below.

To grasp the power savings of a k-MBFF

achievable by DDCG, Fig. 1 was simulated with

SPICE for various activities p and k = 2, 4, 8. Fig. 3(a)

shows the power consumption of a 2-MBFF. Line (a) is

the power consumed by two 1-bit FFs driven

independently of each other. The 3.8-μW power at zero

activity is due to the toggling of the clock driver at

each FF, and it is always consumed regardless of the

activity.

Fig. 3: Power consumption of k 1-bit FFs compared to k-MBFF: 2-MBFF (a), 4-MBFF (b) and 8-MBFF (c).

Line (a) is the power consumed by k 1-bit FFs driven independently of each other. Line (b) is the ideal case of

simultaneous (identical) toggling. Line (c) is the worst case of exclusive (disjoint) toggling. Line (d) is an

example of realistic toggling.

Line (b) corresponds to the ideal case where

the two FFs toggle simultaneously (identically). In this

case, the clock driver shared by the two FFs either

toggles for the sake of the two or is disabled by the

internal gate shown in Fig. 2. As expected, the power

consumed for zero activity is smaller than two 1-bit

FFs. As the activity increases, the power of line (b)

rises faster than that of line (a) since the gating circuit

overhead consumes power proportionally to the

activity. There is no point in using a 2-MBFF beyond

the 0.17 activity crossing point, the case where power

starts to be lost.

Line (c) shows the case where the FFs toggle

exclusively (disjoint). This is obviously the worst case:

although the clock driver works for the two FFs, only

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 902

one needs it. Similar to line (b), in exclusive toggling,

there is no point in using the 2-MBFF if the FF

activities are higher than 0.11.

For a given activity and toggling scenarios of

line (b) or (c), the power saving of the 2-MBFF is their

distance to line (a). Note that for zero activity, the per-

bit power saving is (3.8 − 1.8)/2 = 1.0 μW. The interim

line, line (d), shown between the extreme cases of lines

(b) and (c), represents a more realistic operation where

FFs within an MBFF toggle neither identically nor

exclusively.

Fig. 3(b) shows the power consumed by the 4-

MBFF, where line (a) corresponds to four 1-bit FFs

driven independently of each other, line (b) represents

the best case of simultaneous toggling of the four FFs,

and line (c) represents the worst case of exclusive

toggling. For zero activity, the per-bit power saving is

(7.4 − 2.2)/4 = 1.3μW, which is larger than the 1.0 μW

in the 2-MBFF. Note, however, that for the worst case

of exclusive toggling, the 4-MBFF stops saving at 0.08

activity, compared with 0.11 in the 2-MBFF. In the

best case of simultaneous toggling, the 4-MBFF is

always favored over the 2-MBFF. Similar conclusions

hold for the 8-MBFF shown in Fig. 3(c). Its per-bit

power saving for zero activity is (15.3 − 2.5)/ 8 = 1.6

μW. The saving of the 8-MBFF stops at 0.06 activity in

the worst case and at 0.40 in the best case.

III. WHAT FFS SHOULD BE GROUPED IN AN

MBFF

The k -MBFF expected energy savings Ek (p)

under the assumption of toggling independence and

free-running un-gated clock. Section 3 showed how

toggling correlation affects the breakeven probability

where a MBFF stops saving energy. Clearly, the best

grouping of FFs could be achieved for FFs whose

toggling is almost completely correlated. The problem

of FFs grouping yielding maximal toggling correlation,

and hence maximal power savings, has been shown as

NP-hard, and a practical solution yielding nearly

maximum power savings was presented in [10]. Its

drawback is the requirement of early knowledge of

Value Change Dump (VCD) vectors, derived from

many power simulations representing the typical

operation and applications of the design in hand. Such

data may not exist in the early design stage.

More common information is the average

toggling bulk probability of each FF in the design,

which the following discussion takes advantage of in

deriving an optimal toggling probability-driven FFs

grouping.

The analysis so far assumed that all the FFs

grouped in a MBFF have same data toggling

probability p. FFs’ toggling probabilities are usually

different of each other, and an important question is

therefore how the probability varieties affect the FFs

grouping. Past works considered either structural FFs

grouping (e.g., successive bits in registers), or post-

layout grouping driven by physical proximity. We

subsequently show that data toggling probabilities

matter and should be considered for maximizing

energy savings.

Given n FFs {FFi}
n

i=1, let us consider their

grouping in 2-MBFFs. We denote by FF(i,j) a 2-MBFF,

comprising FFi and FFj , toggling independently of

each other with probabilities pi and p j , respectively.

When neither is toggling, the clock of FF(i,j) is disabled

by the gate and the internal clock driver does not

consume dynamic energy. When both FFi and FFj are

toggling, the clock of FF(i,j) is enabled and the clock

driver energy is useful for both FFs so there is no

waste. Waste occurs when one FF is toggling, but its

counterpart is not, a case where the enabled clock

signal drives both FFs, but only one needs it. Waste

W(i, j) of half the internal clock driver energy λ2 thus

occurs [see (2) for k = 2]

Given FFi , FFj , FFk and FFl , their pairing in two 2-

MBFFs yields the energy waste

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 903

Whereas (pi + p j + pk + pl) in (6) is independent of the

pairing, (pipj + pkpl) is dependent on the pairing. W(i,j) +

W(k,l) is minimized when (pi pj + pk pl) is maximized. If

pi ≤ pj ≤ pk ≤ pl, the pairing {FF(i,j), FF(k,l)} is favored

over {FF(i,k), FF(j,l)} and {FF(i,l), FF(j,k)} [14]. The

generalization for pairing of n FFs is straightforward.

Let n be even and P : {FF(si ,ti)}n i=/21 be a pairing

of FF1, FF2, . . . , FFn in n/2 2-MBFFs. The energy

waste is

Since ∑n

j=1pj is independent of the pairing, (6) is

minimized when ∑n/2
i=1 psipti is maximized. Let the FFs

be ordered such that p1 ≤ p2 ≤ · · · ≤ pn. The pairing

{FF(2i−1,2i)}
n/2

i=1 of the FFs in successive order was

shown in [14] to minimize (6). A generalization for

n/kk-MBFFs proved that {FF(k(i−1)+1,...,ki)}
n/k

i=1, which

groups k successive FFs, minimizes the energy waste.

The case where n is not divisible by k has also been

addressed.

IV. CAPTURING EVERYTHING IN A DESIGN

FLOW

It was mentioned in Section 3 that the

knowledge of the toggling vectors (VCDs) of every FF,

derived from extensive simulations, may obtain the

best FF grouping [9, 10]. The relation between the

power savings to FF’s activity p and MBFF

multiplicity k has been showed that grouping in

monotonic order of p maximizes the power savings.

The activity p and the multiplicity k must therefore be

jointly considered in a design flow to maximize the

power savings.

Fig. 3(a)–(c) illustrates that the power savings

of the 2-MBFF, 4-MBFF, and 8-MBFF, respectively,

are used. Knowing the activity p of an FF, the decision

as to which MBFF size k it best fits follows the interim

lines, lines (d). To obtain the per-bit power

consumption, lines (d) in Fig. 3(a)–(c), representing an

MBFF realistic operation, were divided by their

respective multiplicity. The result is shown in Fig. 4.

Fig. 4: Division of the activity into ranges of

maximal savings.

To maximize the power savings, Fig. 4

divides the range of FF activity into regions. The black

line follows the power consumed by a 1-bit ungated

FF. The triangular areas bounded by the black line and

each of the green, blue, and red per-bit lines show the

amountof power savings per activity obtained by

grouping an FF in the 2-MBFF, 4-MBFF, and 8-

MBFF, respectively. It shows that for a very low

activity, it pays to group FFs into an 8-MBFF. As

activity increases, there will be some point where the

4-MBFF overtakes and pays off more than the 8-

MBFF. At some higher activity, the 2-MBFF overtakes

and pays off more than the 4-MBFF, up to an activity

where the power savings stops. The remaining FFs can

be grouped into ungated MBFFs, simply to reduce the

number of internal clock drivers. We take advantage of

this behavior and the optimal grouping by the

monotonic activity ordering shown in Section III.

The following MBFF grouping algorithm is proposed.

1) Sort the n FFs such that p1 ≤ p2 ≤ ··· ≤ pn.

2) i ← 1.

3) Decide on optimal k by pi , based on Fig. 4.

4) If i > n or k < 2 stop.

5) Group FFi, FFi+1. . . FFi+k−1 in a k-MBFF.

6) i ← i + k.

7) Go to 3.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 904

Few practical comments are in order. In

addition to toggling probabilities, MBFF grouping

should also consider logical relations and physical

place and route constraints. An example is the pipeline

registers of a microprocessor, which are natural

candidates for MBFF implementation. It makes no

sense to mix bits of different pipeline stages. It is

obvious and natural that the place and route tool will

put bits belonging to same register close to each other,

while FFs clusters of registers belonging to distinct

pipeline stages will be placed apart of each other. FFs

of different pipeline registers should therefore be not

mixed in a MBFF, although from toggling probability

standpoint their grouping may be preferred. Similar

arguments hold for other system’s busses and registers

such as those storing data, addresses, counters, and

alike. Another example is the FFs of Finite State

Machines (FSMs) in control units, whose MBFF

grouping should not cross control logic borders.

Though the proposed algorithm is aimed at RTL or

gate design levels, it can also be combined with the

grouping methods proposed by [3-7]. There, an initial

placement takes place as a “dry run” to obtain initial

FFs’ layout proximity directives. The toggling

probability-driven algorithm can then consider those to

guide the MBFFs grouping. The later real place and

route will use MBFF library cells, unlike [3-7] which

rip up the old FFs and insert MBFFs replacements, a

non-trivial and tedious layout task, which is saved by

our design flow.

Finally, the aforementioned postplacement

MBFF clustering must consider the timing constraints,

which are built into their algorithms. By contrast, the

MBFF grouping algorithm does not require explicit

timing constraints since it works at the RTL design

level. In order to bridge the gap between the RTL

grouping and the grouping driven by backend timing-

closure considerations, we suggested appropriate

DDCG design flow. The main idea involves providing

“natural” physical layout directives for FF grouping by

employing a prior placement. The main steps are

described below. More details can be found in [18]:

1) Estimation of the FFs toggling probabilities;

2) Running the placement to get preliminary preferred

locations of FFs in the layout (dry run);

3) Using the proximity data of FFs’ physical locations

to constraint probability-driven grouping;

4) Adding the DDCG logic to the Verilog HDL code

(done automatically by the software tool);

5) Ordinary backend flow execution.

V. EXPERIMENTAL RESULTS

The proposed DDCG MBFF design flow was

used for two designs: a 32-bit pipelined MIPS

processor, implemented in a TSMC 65-nm technology,

and an industrial network processor, implemented in a

TSMC 28-nm technology. For the MIPS, a workload of

sort and matrix multiplication programs was tested, as

shown in Table I. The data-to-clock toggling

probability for each FF was derived by simulating the

workload on the RTL design. For each test, the average

data-to-clock switching activity of an FF in the

pipelined register is shown under the stage name.

Observe the decrease in activity with the progress of

the pipeline stage from instruction fetch to write-back.

The MBFF bits of the pipeline registers were

grouped by monotonic activity. Table I shows the

power savings obtained for the combined benchmark.

Each pipeline stage shows the savings for

implementation with an ungated MBFF and for DDCG

integrated into MBFFs, as proposed here. The results

were measured with SpyGlass [15] simulations where

the MIPS processor was operated at 1.1 V and 200

MHz. whereas the ungated MBFF saved 18% of the

total power, the integration of DDCG with MBFF

yielded almost a double saving of 34.6%. The

pipelined registers consumed 65% of the entire MIPS

power (memory and IO excluded), so the total power

reduction in the entire core was 23%, including the

gating overheads.

To examine the advantages of front-end

grouping compared with postlayout grouping, we

employed ad hoc FF clustering based on their location

obtained by the Cadence Virtuoso tool. Both DDCG 2-

MBFF and DDCG 4-MBFF were used depending on

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 905

the FF layout proximity. The results are shown in the

postlayout rows of Table I. The front-end RTL

grouping outperformed the postlayout, yielding nearly

41% more savings. The second experiment was a

complete industrial network processor designed in the

TSMC 28-nm technology. The processor operates in

800 MHz. It is divided into seven units, labeled A–G in

Table II.

The original design already included extensive

clock enabling logic signals and ungated MBFFs,

inserted both by the RTL compiler and manually. Each

unit contains many clock domains derived by logic

conditions. The DDCG MBFF design flow worked on

each clock domain separately. The network processor

consumed a total of 6.2 W, of which 45% was charged

to the clock network, including its underlying FFs. The

original design comprised ungated MBFFs, so Table II

shows the net power savings obtained solely by the

DDCG addition shown in Fig. 2

TABLE I

POWER SAVINGS IN THE PIPELINE REGISTER

OF A 32-BIT 65-nm MIPS

TABLE II

POWER SAVINGS OF A 28-nm NETWORK

PROCESSOR

Table II shows an additional 8% net power

saving on top of the ungated MBFFs in reference. The

power measurements included both dynamic and static

components and all the gating overheads. The 8%

power savings comes on top of the 9% savings

achieved using MBFFs in the original design, thus

yielding 17% combined savings. Similar to the MIPS,

this is about double the power savings compared with

ungated MBFFs alone. Such savings are highly

appreciated by the industry. The area penalty due to the

introduction of CG circuitry was 2.3%.

VI.RESULTS

The composed Verilog HDL Modules have effectively

recreated and confirmed utilizing Isim Simulator and

orchestrated utilizing Xilinxise13.2.

Simulation results:

RTL schematic:

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 906

Technology Schematic:

Design summary:

Timing Report:

VII. CONCLUSION

This brief suggests combining MBFFs and

probability-driven CG to increase their power savings.

A model utilizing the relationship between the optimal

MBFF multiplicities to FF data-to-clock toggling

probabilities is used in a practical design flow,

achieving 17% and 23% power savings, compared with

designs with ordinary FFs. About half of these savings

can be attributed to the integration of DDCG into

MBFFs.

REFERENCES

[1] A. Kapoor et al., “Digital systems power

management for high performance mixed signal

platforms,” IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 61, no. 4, pp. 961–975, Apr. 2014.

[2] S. Wimer and I. Koren, “The optimal fan-out of

clock network for power minimization by adaptive

gating,” IEEE Trans. VLSI Syst., vol. 20, no. 10, pp.

1772–1780, Oct. 2012.

[3] C. Santos, R. Reis, G. Godoi, M. Barros, and F.

Duarte, “Multi-bit flipflop usage impact on physical

synthesis,” in Proc. 25th IEEE Symp. Integr. Circuits

Syst. Design (SBCCI), Sep. 2012, pp. 1–6.

[4] J.-T. Yan and Z.-W. Chen, “Construction of

constrained multi-bit flipflops for clock power

reduction,” in Proc. IEEE Int. Conf. Green Circuits

Syst. (ICGCS), 2010, pp. 675–678.

[5] IH-R. Jiang, C-L. Chang, and Y-M. Yang,

“INTEGRA: Fast multibit flip-flop clustering for clock

power saving,” IEEE Trans. CAD Integr. Circuits

Syst., vol. 31, no. 2, pp. 192–204, Feb. 2012.

[6] C. L. Chang and I. H. R. Jiang, “Pulsed-latch

replacement using concurrent time borrowing and

clock gating,” IEEE Trans. Comput.- Aided Design

Integr., vol. 32, no. 2, pp. 242–246, Feb. 2013.

[7] M. P.-H. Lin, C-C. Hsu, and Y-T. Chang, “Post-

placement power optimization with multi-bit flip-

flops,” IEEE Trans. CAD Integr. Circuits Syst., vol. 30,

no. 12, pp. 1870–1882, Dec. 2011.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 907

[8] Y.-T. Shyu, J.-M. Lin, C.-P. Huang, C.-W. Lin, Y.-

Z. Lin, and S.-J. Chang, “Effective and efficient

approach for power reduction by using multi-bit flip-

flops,” IEEE Trans. VLSI Syst., vol. 21, no. 4, pp.

624–635, Apr. 2013.

[9] S. Liu, W.-T. Lo, C.-J. Lee, and H.-M. Chen,

“Agglomerative-based flip-flop merging and relocation

for signal wirelength and clock tree optimization,”

ACM Trans. Design Autom. Electron. Syst., vol. 18,

no. 3, article no. 40, Jul. 2013.

[10] M. P. H. Lin, C. C. Hsu, and Y. C. Chen, “Clock-

tree aware multibit flip-flop generation during

placement for power optimization,” IEEE Trans.

Comput.-Aided Design Integr., vol. 34, no. 2, pp. 280–

292, Feb. 2015.

[11] C. Xu, P. Li, G. Luo, Y. Shi, and IH-R. Jiang,

“Analytical clustering score with application to post-

placement multi-bit flipflop merging,” in Proc. ACM

Int. Symp. Phys. Design, 2015, pp. 93–100.

[12] S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K.

Mak, “Power-driven flipflop merging and relocation,”

IEEE Trans. CAD Integr. Circuits Syst., vol. 31, no. 2,

pp. 180–191, Feb. 2012.

[13] S-C. Lo, C-C. Hsu, and MP-H. Lin, “Power

optimization for clock network with clock gate cloning

and flip-flop merging,” in Proc. ACM Int. Symp. Phys.

Design, 2014, pp. 77–84.

[14] S. Wimer, D. Gluzer, and U. Wimer, “Using well-

solvable minimum cost exact covering for VLSI clock

energy minimization,” Operations Res. Lett., vol. 42,

no. 5, pp. 332–336, Jul. 2014.

[15] SpyGlass Power, accessed on 2016. [Online].

Available: http://www.atrenta.com/solutions/spyglass-

family/spyglass-power.htm

[16] Y.-T. Chang, C.-C. Hsu, M. P.-H. Lin, Y.-W.

Tsai, and S.-F. Chen, “Postplacement power

optimization with multi-bit flip-flops,” in Proc. IEEE

Int. Conf. (CAD), Nov. 2010, pp. 218–223.

[17] Hsu, Chih-Cheng, Mark Po-Hung Lin, and Yao-

Tsung Chang, “Crosstalk-aware multi-bit flip-flop

generation for power optimization,” Integr. VLSI J.

vol. 48, pp. 146–157, 2015.

