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Abstract: Data-Driven Clock-Gating (DDCG) and 

Multi Bit Flip-Flops (MBFFs) in which several FFs 

are grouped and share a common clock driver are two 

effective low power design techniques. Though 

commonly used by VLSI designers, those are usually 

separately treated. Past works focused on MBFF usage 

in RTL, gate-level and their layout. Though collectively 

coving the common design stages, the study of each 

aspect individually led to conflicts and contradiction 

with the others. MBFF internal circuit design, its 

multiplicity and its synergy to the FFs data toggling 

probabilities have not been studied so far. This work 

attempts to maximize the energy savings by proposing 

a DDCG and MBFF combined algorithm, based on 

Flip-Flops (FFs) data to-clock toggling ratio. It is 

shown that to maximize the power savings, the FFs 

should be grouped in MBFFs in increasing order of 

their activities. A power savings model utilizing MBFF 

multiplicities and FF toggling probabilities is 

developed, which was then used by the algorithm in a 

practical design flow. We achieved 17% to 23% power 

savings compared to designs with ordinary FFs. 

Keywords: Clock gating (CG), clock network synthesis, 

low-power design, multibit flip-flop (MBFF). 

I.INTRODUCTION 

A recently published paper has emphasized 

the usage of Multi-Bit Flip-Flops (MBFFs) as a design 

technique delivering considerable power reduction of 

digital systems [1]. The data of digital systems is 

usually stored in Flip-Flops (FFs), each having its own 

internal clock driver. Shown in Fig. 1a, an edge-

triggered 1-bit FF contains two cascaded master and 

slave latches, driven by opposite clocks CLK and CLK. 

It is shown in that most of the FF’s energy is 

consumed by its internal clock drivers, which are 

significant contributors to the total power consumption. 

In an attempt to reduce the clock power, several FFs 

can be grouped in a module such that common clock 

drivers are shared for all the FFs. Two 1-bit FFs 

grouped into 2-bit MBFF, called also dual-bit FF [1], is 

shown in Fig. 1a. In a similar manner, grouping of FFs 

in 4-bit and 8-bit MBFFs are possible too. We 

subsequently denote a k -bit MBFF by k -MBFF. 

MBFF is not only reducing the gate capacitance driven 

by a clock tree. The wiring capacitive load is also 

reduced because only a single clock wire is required for 

multiple FFs. It also reduces the depth and the buffer 

sizes of the clock tree and also the number of sub-trees. 

Beyond clock power savings those features also reduce 

the silicon area. 

Most distributed deals with MBFF have 

concentrated on physical execution, driven basically by 

the postplacement format [4], [5], [7], [8], [13], [16]. In 

these works, FF exercises have a tendency to be 

overlooked. Each FF is related with time edges got 

from the design including 1-bit FFs. The wires 

associated with the information and yield of a FF are 

secured on their contrary side to whatever is left of the 

rationale, though the position of the FF is permitted to 

move around without abusing timing. This 

characterizes the district in the design where the FF can 

be dislodged and converged into the MBFF. The 2-

MBFF combining is defined as an advancement issue 

that goes for boosting the quantity of blended FFs. 

Other works [9]–[11] have introduced clock-

tree layout considerations as well. To further save 

power, [6] introduced CG, but the relationship among 

the CG strategy, the FF activities, and their grouping 

was not conclusive. Wang et al. [12] described another 

postplacement algorithm that accounted implicitly for 

switching data to estimate the expected power. 

Although [6] and [12] used switching data as a 

secondary criterion in postplacement FF grouping, our 
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strategy is to use it as a primary clustering criterion, and do so at the preplacement RTL level. 

 
Fig. 1a: 1-bit FF and 2-MBFF. 

The main contributions of this brief are as follows:  

1) A design methodology that fuses MBFF and DDCG, 

yielding considerable power savings;  

2) A probability driven algorithm that minimizes the 

expected DDCG MBFF power consumption. 

Clock gating: 

Several techniques to reduce the dynamic 

power have been developed, of which clock gating is 

predominant. Ordinarily, when a logic unit is clock, its 

underlying sequential elements receive the clock signal 

regardless of whether or not they will toggle in the next 

cycle. Clock enabling signals are usually introduced by 

designers during the system and clock design phases, 

where the inter-dependencies of the various functions 

are well understood.  

In contrast, it is very difficult to define such 

signals in the gate level, especially in control logic, 

since the inter-dependencies among the states of 

various flipflops depend on automatically synthesized 

logic. There is a big gap between block disabling that is 

driven from the HDL definitions, and what can be 

achieved with data knowledge regarding the flip-flops 

activities and how they are correlated with each other. 

The research presents an approach to maximize clock 

disabling at the gate level, where the clock signal 

driving a flip-flop is disabled (gated) when the flip-flop 

states is not subject to a change in the next clock cycle. 

Figure.1b shows enabling of the clock signal. 

On the other hand, such grouping may lower 

the disabling effectiveness, since the clock will 

disabled only when the inputs to all the flip-flops in a 

group don’t change. It is, therefore beneficial to group 

flip-flops whose switching activities are highly 

correlated in derive a joined enabling signal. 

 
Fig.1b: Enabling of the clock signal 

II. INTEGRATING CLOCK GATING INTO 

MBFF 

Let p be the data-to-clock toggling probability. Denote 

by E1 the expected energy consumed by 1-bit FF. 

 

where λ1 is the energy of the FF’s internal clock driver 

and μ1 is the energy of data toggling. In the general 

case of k-MBFF, let λk is the energy of the MBFF’s 

internal clock driver and μk its per-bit data toggling 

energy. Assume that the FFs toggle with probability p 

independently of each other. It has been shown in [14] 

that the expected energy consumption E2 is 
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For the general case of k -MBFF, let λk be the energy 

of the MBFF’s internal clock driver and µk be the per-

bit data toggling energy. It is important to note that 

toggling independence is a pessimistic assumption. In 

reality, the correlation between FF toggling yields 

higher energy savings than the model in [2]. 

Fig. 2 illustrates a DDCG integrated into a k-MBFF. 

The shaded circuits reside within a library cell.  

 
Fig.2: DDCG integrated into a k-MBFF 

Given an activity p, the group size k that maximizes the 

energy savings solves the equation 

 
where CFF and Clatch are the clock input loads of an 

FF and a latch, respectively [2]. The solution to (3) for 

various activities is shown in Table I for typical CFF 

and clatch. The above optimization does not take into 

account the clock driver sharing, which also affects the 

optimal grouping as shown below.  

To grasp the power savings of a k-MBFF 

achievable by DDCG, Fig. 1 was simulated with 

SPICE for various activities p and k = 2, 4, 8. Fig. 3(a) 

shows the power consumption of a 2-MBFF. Line (a) is 

the power consumed by two 1-bit FFs driven 

independently of each other. The 3.8-μW power at zero 

activity is due to the toggling of the clock driver at 

each FF, and it is always consumed regardless of the 

activity. 

 

Fig. 3: Power consumption of k 1-bit FFs compared to k-MBFF: 2-MBFF (a), 4-MBFF (b) and 8-MBFF (c). 

Line (a) is the power consumed by k 1-bit FFs driven independently of each other. Line (b) is the ideal case of 

simultaneous (identical) toggling. Line (c) is the worst case of exclusive (disjoint) toggling. Line (d) is an 

example of realistic toggling. 

Line (b) corresponds to the ideal case where 

the two FFs toggle simultaneously (identically). In this 

case, the clock driver shared by the two FFs either 

toggles for the sake of the two or is disabled by the 

internal gate shown in Fig. 2. As expected, the power 

consumed for zero activity is smaller than two 1-bit 

FFs. As the activity increases, the power of line (b) 

rises faster than that of line (a) since the gating circuit 

overhead consumes power proportionally to the 

activity. There is no point in using a 2-MBFF beyond 

the 0.17 activity crossing point, the case where power 

starts to be lost.  

Line (c) shows the case where the FFs toggle 

exclusively (disjoint). This is obviously the worst case: 

although the clock driver works for the two FFs, only 
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one needs it. Similar to line (b), in exclusive toggling, 

there is no point in using the 2-MBFF if the FF 

activities are higher than 0.11.  

For a given activity and toggling scenarios of 

line (b) or (c), the power saving of the 2-MBFF is their 

distance to line (a). Note that for zero activity, the per-

bit power saving is (3.8 − 1.8)/2 = 1.0 μW. The interim 

line, line (d), shown between the extreme cases of lines 

(b) and (c), represents a more realistic operation where 

FFs within an MBFF toggle neither identically nor 

exclusively.  

Fig. 3(b) shows the power consumed by the 4-

MBFF, where line (a) corresponds to four 1-bit FFs 

driven independently of each other, line (b) represents 

the best case of simultaneous toggling of the four FFs, 

and line (c) represents the worst case of exclusive 

toggling. For zero activity, the per-bit power saving is 

(7.4 − 2.2)/4 = 1.3μW, which is larger than the 1.0 μW 

in the 2-MBFF. Note, however, that for the worst case 

of exclusive toggling, the 4-MBFF stops saving at 0.08 

activity, compared with 0.11 in the 2-MBFF. In the 

best case of simultaneous toggling, the 4-MBFF is 

always favored over the 2-MBFF. Similar conclusions 

hold for the 8-MBFF shown in Fig. 3(c). Its per-bit 

power saving for zero activity is (15.3 − 2.5)/ 8 = 1.6 

μW. The saving of the 8-MBFF stops at 0.06 activity in 

the worst case and at 0.40 in the best case. 

III. WHAT FFS SHOULD BE GROUPED IN AN 

MBFF 

The k -MBFF expected energy savings Ek (p) 

under the assumption of toggling independence and 

free-running un-gated clock. Section 3 showed how 

toggling correlation affects the breakeven probability 

where a MBFF stops saving energy. Clearly, the best 

grouping of FFs could be achieved for FFs whose 

toggling is almost completely correlated. The problem 

of FFs grouping yielding maximal toggling correlation, 

and hence maximal power savings, has been shown as 

NP-hard, and a practical solution yielding nearly 

maximum power savings was presented in [10]. Its 

drawback is the requirement of early knowledge of 

Value Change Dump (VCD) vectors, derived from 

many power simulations representing the typical 

operation and applications of the design in hand. Such 

data may not exist in the early design stage.  

More common information is the average 

toggling bulk probability of each FF in the design, 

which the following discussion takes advantage of in 

deriving an optimal toggling probability-driven FFs 

grouping.  

The analysis so far assumed that all the FFs 

grouped in a MBFF have same data toggling 

probability p. FFs’ toggling probabilities are usually 

different of each other, and an important question is 

therefore how the probability varieties affect the FFs 

grouping. Past works considered either structural FFs 

grouping (e.g., successive bits in registers), or post-

layout grouping driven by physical proximity. We 

subsequently show that data toggling probabilities 

matter and should be considered for maximizing 

energy savings. 

Given n FFs {FFi}
n

i=1, let us consider their 

grouping in 2-MBFFs. We denote by FF(i,j) a 2-MBFF, 

comprising FFi and FFj , toggling independently of 

each other with probabilities pi and p j , respectively. 

When neither is toggling, the clock of FF(i,j) is disabled 

by the gate and the internal clock driver does not 

consume dynamic energy. When both FFi and FFj are 

toggling, the clock of FF(i,j) is enabled and the clock 

driver energy is useful for both FFs so there is no 

waste. Waste occurs when one FF is toggling, but its 

counterpart is not, a case where the enabled clock 

signal drives both FFs, but only one needs it. Waste 

W(i, j) of half the internal clock driver energy λ2 thus 

occurs [see (2) for k = 2] 

 

Given FFi , FFj , FFk and FFl , their pairing in two 2-

MBFFs yields the energy waste 
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Whereas (pi + p j + pk + pl) in (6) is independent of the 

pairing, (pipj + pkpl) is dependent on the pairing. W(i,j) + 

W(k,l) is minimized when (pi pj + pk pl) is maximized. If 

pi ≤ pj ≤ pk ≤ pl, the pairing {FF(i,j), FF(k,l)} is favored 

over {FF(i,k), FF( j,l)} and {FF(i,l), FF( j,k)} [14]. The 

generalization for pairing of n FFs is straightforward. 

Let n be even and P : {FF(si ,ti )}n i=/21 be a pairing 

of FF1, FF2, . . . , FFn in n/2 2-MBFFs. The energy 

waste is 

 
Since ∑n

j=1pj is independent of the pairing, (6) is 

minimized when ∑n/2
i=1 psipti is maximized. Let the FFs 

be ordered such that p1 ≤ p2 ≤ · · · ≤ pn. The pairing 

{FF(2i−1,2i)}
n/2

i=1 of the FFs in successive order was 

shown in [14] to minimize (6). A generalization for 

n/kk-MBFFs proved that {FF(k(i−1)+1,...,ki)}
n/k

i=1, which 

groups k successive FFs, minimizes the energy waste. 

The case where n is not divisible by k has also been 

addressed. 

IV. CAPTURING EVERYTHING IN A DESIGN 

FLOW 

It was mentioned in Section 3 that the 

knowledge of the toggling vectors (VCDs) of every FF, 

derived from extensive simulations, may obtain the 

best FF grouping [9, 10]. The relation between the 

power savings to FF’s activity p and MBFF 

multiplicity k has been showed that grouping in 

monotonic order of p maximizes the power savings. 

The activity p and the multiplicity k must therefore be 

jointly considered in a design flow to maximize the 

power savings. 

Fig. 3(a)–(c) illustrates that the power savings 

of the 2-MBFF, 4-MBFF, and 8-MBFF, respectively, 

are used. Knowing the activity p of an FF, the decision 

as to which MBFF size k it best fits follows the interim 

lines, lines (d). To obtain the per-bit power 

consumption, lines (d) in Fig. 3(a)–(c), representing an 

MBFF realistic operation, were divided by their 

respective multiplicity. The result is shown in Fig. 4. 

 

Fig. 4: Division of the activity into ranges of 

maximal savings. 

To maximize the power savings, Fig. 4 

divides the range of FF activity into regions. The black 

line follows the power consumed by a 1-bit ungated 

FF. The triangular areas bounded by the black line and 

each of the green, blue, and red per-bit lines show the 

amountof power savings per activity obtained by 

grouping an FF in the 2-MBFF, 4-MBFF, and 8-

MBFF, respectively. It shows that for a very low 

activity, it pays to group FFs into an 8-MBFF. As 

activity increases, there will be some point where the 

4-MBFF overtakes and pays off more than the 8-

MBFF. At some higher activity, the 2-MBFF overtakes 

and pays off more than the 4-MBFF, up to an activity 

where the power savings stops. The remaining FFs can 

be grouped into ungated MBFFs, simply to reduce the 

number of internal clock drivers. We take advantage of 

this behavior and the optimal grouping by the 

monotonic activity ordering shown in Section III.  

The following MBFF grouping algorithm is proposed. 

1) Sort the n FFs such that p1 ≤ p2 ≤ ··· ≤ pn.  

2) i ← 1.  

3) Decide on optimal k by pi , based on Fig. 4.  

4) If i > n or k < 2 stop.  

5) Group FFi, FFi+1. . . FFi+k−1 in a k-MBFF.  

6) i ← i + k.  

7) Go to 3. 
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Few practical comments are in order. In 

addition to toggling probabilities, MBFF grouping 

should also consider logical relations and physical 

place and route constraints. An example is the pipeline 

registers of a microprocessor, which are natural 

candidates for MBFF implementation. It makes no 

sense to mix bits of different pipeline stages. It is 

obvious and natural that the place and route tool will 

put bits belonging to same register close to each other, 

while FFs clusters of registers belonging to distinct 

pipeline stages will be placed apart of each other. FFs 

of different pipeline registers should therefore be not 

mixed in a MBFF, although from toggling probability 

standpoint their grouping may be preferred. Similar 

arguments hold for other system’s busses and registers 

such as those storing data, addresses, counters, and 

alike. Another example is the FFs of Finite State 

Machines (FSMs) in control units, whose MBFF 

grouping should not cross control logic borders. 

Though the proposed algorithm is aimed at RTL or 

gate design levels, it can also be combined with the 

grouping methods proposed by [3-7]. There, an initial 

placement takes place as a “dry run” to obtain initial 

FFs’ layout proximity directives. The toggling 

probability-driven algorithm can then consider those to 

guide the MBFFs grouping. The later real place and 

route will use MBFF library cells, unlike [3-7] which 

rip up the old FFs and insert MBFFs replacements, a 

non-trivial and tedious layout task, which is saved by 

our design flow. 

Finally, the aforementioned postplacement 

MBFF clustering must consider the timing constraints, 

which are built into their algorithms. By contrast, the 

MBFF grouping algorithm does not require explicit 

timing constraints since it works at the RTL design 

level. In order to bridge the gap between the RTL 

grouping and the grouping driven by backend timing-

closure considerations, we suggested appropriate 

DDCG design flow. The main idea involves providing 

“natural” physical layout directives for FF grouping by 

employing a prior placement. The main steps are 

described below. More details can be found in [18]:  

1) Estimation of the FFs toggling probabilities;  

2) Running the placement to get preliminary preferred 

locations of FFs in the layout (dry run); 

3) Using the proximity data of FFs’ physical locations 

to constraint probability-driven grouping;  

4) Adding the DDCG logic to the Verilog HDL code 

(done automatically by the software tool);  

5) Ordinary backend flow execution. 

V. EXPERIMENTAL RESULTS 

The proposed DDCG MBFF design flow was 

used for two designs: a 32-bit pipelined MIPS 

processor, implemented in a TSMC 65-nm technology, 

and an industrial network processor, implemented in a 

TSMC 28-nm technology. For the MIPS, a workload of 

sort and matrix multiplication programs was tested, as 

shown in Table I. The data-to-clock toggling 

probability for each FF was derived by simulating the 

workload on the RTL design. For each test, the average 

data-to-clock switching activity of an FF in the 

pipelined register is shown under the stage name. 

Observe the decrease in activity with the progress of 

the pipeline stage from instruction fetch to write-back.  

The MBFF bits of the pipeline registers were 

grouped by monotonic activity. Table I shows the 

power savings obtained for the combined benchmark. 

Each pipeline stage shows the savings for 

implementation with an ungated MBFF and for DDCG 

integrated into MBFFs, as proposed here. The results 

were measured with SpyGlass [15] simulations where 

the MIPS processor was operated at 1.1 V and 200 

MHz. whereas the ungated MBFF saved 18% of the 

total power, the integration of DDCG with MBFF 

yielded almost a double saving of 34.6%. The 

pipelined registers consumed 65% of the entire MIPS 

power (memory and IO excluded), so the total power 

reduction in the entire core was 23%, including the 

gating overheads.  

To examine the advantages of front-end 

grouping compared with postlayout grouping, we 

employed ad hoc FF clustering based on their location 

obtained by the Cadence Virtuoso tool. Both DDCG 2-

MBFF and DDCG 4-MBFF were used depending on 
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the FF layout proximity. The results are shown in the 

postlayout rows of Table I. The front-end RTL 

grouping outperformed the postlayout, yielding nearly 

41% more savings. The second experiment was a 

complete industrial network processor designed in the 

TSMC 28-nm technology. The processor operates in 

800 MHz. It is divided into seven units, labeled A–G in 

Table II.  

The original design already included extensive 

clock enabling logic signals and ungated MBFFs, 

inserted both by the RTL compiler and manually. Each 

unit contains many clock domains derived by logic 

conditions. The DDCG MBFF design flow worked on 

each clock domain separately. The network processor 

consumed a total of 6.2 W, of which 45% was charged 

to the clock network, including its underlying FFs. The 

original design comprised ungated MBFFs, so Table II 

shows the net power savings obtained solely by the 

DDCG addition shown in Fig. 2 

 

 

TABLE I 

POWER SAVINGS IN THE PIPELINE REGISTER 

OF A 32-BIT 65-nm MIPS 

 

TABLE II  

POWER SAVINGS OF A 28-nm NETWORK 

PROCESSOR 

 

Table II shows an additional 8% net power 

saving on top of the ungated MBFFs in reference. The 

power measurements included both dynamic and static 

components and all the gating overheads. The 8% 

power savings comes on top of the 9% savings 

achieved using MBFFs in the original design, thus 

yielding 17% combined savings. Similar to the MIPS, 

this is about double the power savings compared with 

ungated MBFFs alone. Such savings are highly 

appreciated by the industry. The area penalty due to the 

introduction of CG circuitry was 2.3%. 

VI.RESULTS 

The composed Verilog HDL Modules have effectively 

recreated and confirmed utilizing Isim Simulator and 

orchestrated utilizing Xilinxise13.2. 

Simulation results: 

 

RTL schematic: 
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Technology Schematic: 

 

Design summary: 

 

Timing Report: 

 

VII. CONCLUSION 

This brief suggests combining MBFFs and 

probability-driven CG to increase their power savings. 

A model utilizing the relationship between the optimal 

MBFF multiplicities to FF data-to-clock toggling 

probabilities is used in a practical design flow, 

achieving 17% and 23% power savings, compared with 

designs with ordinary FFs. About half of these savings 

can be attributed to the integration of DDCG into 

MBFFs. 
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