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Abstract:- The selective use of carry-save 

arithmetic, where appropriate, can 

accelerate a variety of arithmetic-dominated 

circuits. Carry-save arithmetic occurs 

naturally in a variety of DSP applications, 

and further opportunities to exploit it can be 

exposed through systematic data flow 

transformations that can be applied by a 

hardware compiler. Field-programmable 

gate arrays (FPGAs), however, are not 

particularly well suited to carry-save 

arithmetic. To address this concern, we 

introduce the “field programmable counter 

array” (FPCA), an accelerator for carry-

save arithmetic intended for integration into 

an FPGA as an alternative to DSP blocks. 

In addition to multiplication and multiply 

accumulation, the FPCA can accelerate 

more general carry-save operations, such as 

multi-input addition (e.g., add integers) and 

multipliers that have been fused with other 

adders. Our experiments show that the 

FPCA accelerates a wider variety of 

applications than DSP blocks and improves 

performance, area utilization, and energy 

consumption compared with soft FPGA 

logic. 

Index Terms—Carry-save arithmetic, field-

programmable gate array (FPGA), 

 

 

I. INTRODUCTION 

 Modern embedded systems target 

high-end application domains requiring 

efficient implementations of 

computationally intensive digital signal 

processing (DSP) functions. The 

incorporation of heterogeneity through 

specialized hardware accelerators improves 

performance and reduces energy 

consumption [1]. Although application-

specific integrated circuits (ASICs) form the 

ideal acceleration solution in terms of 

performance and power, their inflexibility 

leads to increased silicon complexity, as 

multiple instantiated ASICs are needed to 

accelerate various kernels. Many 

researchers have proposed the use of 

domain-specific coarse-grained 

reconfigurable accelerators in order to 

increase ASICs’ flexibility without 

significantly compromising their 

performance.  

 High-performance flexible data 

paths have been proposed to efficiently map 

primitive or chained operations found in the 

initial data-flow graph (DFG) of a kernel. 

The templates of complex chained 

operations are either extracted directly from 

the kernel’s DFG or specified in a 

predefined behavioral template library. 

Design decisions on the accelerator’s 

datapath highly impact its efficiency. 
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Existing works on coarse-grained 

reconfigurable datapaths mainly exploit 

architecture-level optimizations, e.g., 

increased instruction-level parallelism (ILP) 

. The domain-specific architecture 

generation algorithms of [5] and [9] vary the 

type and number of computation units 

achieving a customized design structure. 

The flexible architectures were proposed 

exploiting ILP and operation chaining. 

Recently aggressive operation chaining is 

adopted to enable the computation of entire 

sub expressions using multiple ALUs with 

heterogeneous arithmetic features. 

 The aforementioned reconfigurable  

architectures exclude arithmetic  

optimizations during the architectural 

synthesis and consider them only at the 

internal circuit structure of primitive 

components, e.g., adders, during the logic 

synthesis . However, research activities  

have shown that the arithmetic 

optimizations at higher abstraction levels 

than the structural circuit one significantly 

impact on the datapath performance. In [10], 

timing-driven optimizations based on carry-

save (CS) arithmetic were performed at the 

post-Register Transfer Level (RTL) design 

stage. In [11], common sub expression 

elimination in CS computations is used to 

optimize linear DSP circuits. Verma et al. 

[12] developed transformation techniques 

on the application’s DFG to maximize the 

use of CS arithmetic prior the actual 

datapath synthesis. The aforementioned CS 

optimization approaches target inflexible 

datapath, i.e., ASIC, implementations. 

Recently, a flexible architecture combining 

the ILP and pipelining techniques with the 

CS-aware operation chaining has been 

proposed. However, all the aforementioned 

solutions feature an inherent limitation, i.e., 

CS optimization is bounded to merging only 

additions/subtractions. A CS to binary 

conversion is inserted before each operation 

that differs from addition/subtraction, 

e.g.,multiplication, thus, allocating multiple 

CS to binary conversions that heavily 

degrades performance due to time-

consuming carry propagations. 

 In this brief, we propose a high-

performance architectural scheme for the 

synthesis of flexible hardware DSP 

accelerators by combining optimization 

techniques from both the architecture and 

arithmetic levels of abstraction. We 

introduce a flexible datapath architecture 

that exploits CS optimized templates of 

chained operations. The proposed 

architecture comprises flexible 

computational units (FCUs), which enable 

the execution of a large set of operation 

templates found in DSP kernels. The 

proposed accelerator architecture delivers 

average gains in area-delay product and in 

energy consumption compared to state-of-

art flexible datapaths , sustaining efficiency 

toward scaled technologies. 

II. Carry-Save Arithmetic: Motivational 

Observations and Limitations 

 CS representation  has been widely 

used to design fast arithmetic circuits due to 

its inherent advantage of eliminating the 

large carry-propagation chains. CS 

arithmetic optimizations rearrange the 

application’s DFG and reveal multiple input 

additive operations (i.e., chained additions 

in the initial DFG), which can be mapped 

onto CS compressors. The goal is to 

maximize the range that a CS computation 

is performed within the DFG. However, 
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whenever a multiplication node is 

interleaved in the DFG, either a CS to 

binary conversion is invoked  or the DFG is 

transformed using the distributive property . 

Thus, the aforementioned CS optimization 

approaches have limited impact on DFGs 

dominated by multiplications, e.g., filtering 

DSP applications. 

  In this brief, we tackle the 

aforementioned limitation by exploiting the 

CS to modified Booth (MB) recoding each 

time a multiplication needs to be performed 

within a CS-optimized data path. Thus, the 

computations throughout the multiplications 

are processed using CS arithmetic and the 

operations in the targeted datapath are 

carried out without using any intermediate 

carry-propagate adder for CS to binary 

conversion, thus improving performance. 

III. Proposed Flexible Accelerator 

 The proposed flexible accelerator 

architecture is shown in Fig. 1. Each FCU 

operates directly on CS operands and 

produces data in the same form1 for direct 

reuse of intermediate results. Each FCU 

operates on 16-bit operands. Such a bit-

length is adequate for the most DSP 

datapaths , but the architectural concept of 

the FCU can be straightforwardly adapted 

for smaller or larger bit-lengths. The 

number of FCUs is determined at design 

time based on the ILP and area constraints 

imposed by the designer. The CStoBin 

module is a ripple-carry adder and converts 

the CS form to the two’s complement one. 

  The register bank consists of scratch 

registers and is used for storing intermediate 

results and sharing operands among the 

FCUs. Different DSP kernels (i.e., different 

register allocation and data communication 

patterns per kernel) can be mapped onto the 

proposed architecture using post-RTL 

datapath interconnection sharing techniques. 

  The control unit drives the overall 

architecture (i.e., communication between 

the data port and the register bank, 

configuration words of the FCUs and 

selection signals for the multiplexers) in 

each clock cycle. 

 

Fig 1 : Abstract form of the Flexible 

Datapath  

A. Structure of the Proposed Flexible 

Computational Unit 

 The structure of the FCU (Fig. 2) has 

been designed to enable high-performance 

flexible operation chaining based on a 

library of operation templates. Each FCU 

can be configured to any of the T1–T5 

operation templates shown in Fig. 3. The 

proposed FCU enables intratemplate 

operation chaining by fusing the additions 

performed before/after the multiplication 

&performs any partial operation template of 

the following complex operations: 

W
*
 = A × (X* + Y*) + K*  (1) 

W* = A × K* + (X* + Y*)  (2) 

The following relation holds for all 

CS data: X
*
 = { X

C
, X

S
} =  X

C 
+ X

S
. The 

operand A is a two’s complement number. 
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Fig 2: Flexible Computational Unit 

 The alternative execution paths in 

each FCU are specified after properly 

setting the control signals of the 

multiplexers MUX1 and MUX2 (Fig. 2). 

The multiplexer MUX0 outputs Y* when 

CL0 = 0 (i.e., X* + Y* is carried out) or Y* 

when X* − Y* is required and CL0 = 1. The 

two’s complement 4:2 CS adder produces 

the N* = X* + Y* when the input carry 

equals 0 or the N* = X* − Y* when the 

input carry equals 1. The MUX1 determines 

if N* (1) or K* (2) is multiplied with A. The 

MUX2 specifies if K* (1) or N* (2) is added 

with the multiplication product. The 

multiplexer MUX3 accepts the output of 

MUX2 and its 1’s complement and outputs 

the former one when an addition with the 

multiplication product is required (i.e., CL3 

= 0) or the later one when a subtraction is 

carried out (i.e., CL3 = 1). The 1-bit ace for 

the subtraction is added in the CS adder 

tree. 

  The multiplier comprises a CS-to-

MB module, which adopts a recently 

proposed technique to recode the 17-bit P* 

in its respective MB digits with minimal 

carry propagation. The multiplier’s product 

consists of 17 bits. The multiplier includes a 

compensation method for reducing the error 

imposed at the product’s accuracy by the 

truncation technique. However, since all the 

FCU inputs consist of 16 bits and provided 

that there are no overflows, the 16 most 

significant bits of the 17-bit W* (i.e., the 

output of the Carry-Save Adder (CSA) tree, 

and thus, of the FCU) are inserted in the 

appropriate FCU when requested. 

B. DFG Mapping Onto the Proposed 

FCU-Based Architecture 

 In order to efficiently map DSP 

kernels onto the proposed FCU-based 

accelerator, the semiautomatic synthesis 

methodology  has been adapted. At first, a 

CS-aware transformation is performed onto 

the original DFG, merging nodes of 

multiple chained additions/subtractions to 

4:2 compressors. A pattern generation on 

the transformed DFG clusters the CS nodes 

with the multiplication operations to form 

FCU template operations (Fig. 3). The 

designer selects the FCU operations 

covering the DFG for minimized latency. 

Given that the number of FCUs is fixed, a 

resource-constrained scheduling is 

considered with the available FCUs and 

CStoBin modules determining the resource 

constraint set. The clustered DFG is 

scheduled, so that each FCU operation is 

assigned to a specific control step. A list-

based scheduler has been adopted 

considering the mobility2 of FCU 

operations. The FCU operations are 

scheduled according to descending mobility. 

The scheduled FCU operations are bound 

onto FCU instances and proper 

configuration bits are generated. After 

completing register allocation, a FSM is 

generated in order to implement the control 

unit of the overall architecture. 
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(A)    (B)                      

Fig.3. Typical chaining of addition–

multiplication–addition operations   

reflecting T1 template of Fig. 3. Its design is 

based on (A) CS optimizations with 

multiplication distribution (B) incorporating 

the CS-to-MB recoding concept. 

IV. SIMULATION RESULTS 

 

FIG.4 RTL SCHEMATIC 

 

FIG.5 OUTPUT WAVEFORM 

V. CONCLUSION 

 In this brief, we introduced a flexible 

accelerator architecture that exploits the 

incorporation of CS arithmetic 

optimizations to enable fast chaining of 

additive and multiplicative operations. The 

proposed flexible accelerator architecture is 

able to operate on both conventional two’s 

complement and CS-formatted data 

operands, thus enabling high degrees of 

computational density to be achieved. 

Theoretical and experimental analyses have 

shown that the proposed solution forms an 

efficient design tradeoff point delivering 

optimized latency/area and energy 

implementations. 

EXTENSION WORK:- 

As an extension we are implementing the 

DADDA Multiplier Using instead of 

Modified Booth Multiplier. 
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