

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1068

Design And Implementation of High Speed Accelerator

using CSA Adder

V.Deva Naik & S.Seshagiri Rao

PG Scholar,Email Id: deva2837@gmail.com

M.Tech,Asst.Professor,Email Id: seshagirirao.sugguna@gmail.com

NRI Institute Of Technology, Perecherla(V), Medikonduru(M), Guntur(Dt), AP.

Abstract:- The selective use of carry-save

arithmetic, where appropriate, can

accelerate a variety of arithmetic-dominated

circuits. Carry-save arithmetic occurs

naturally in a variety of DSP applications,

and further opportunities to exploit it can be

exposed through systematic data flow

transformations that can be applied by a

hardware compiler. Field-programmable

gate arrays (FPGAs), however, are not

particularly well suited to carry-save

arithmetic. To address this concern, we

introduce the “field programmable counter

array” (FPCA), an accelerator for carry-

save arithmetic intended for integration into

an FPGA as an alternative to DSP blocks.

In addition to multiplication and multiply

accumulation, the FPCA can accelerate

more general carry-save operations, such as

multi-input addition (e.g., add integers) and

multipliers that have been fused with other

adders. Our experiments show that the

FPCA accelerates a wider variety of

applications than DSP blocks and improves

performance, area utilization, and energy

consumption compared with soft FPGA

logic.

Index Terms—Carry-save arithmetic, field-

programmable gate array (FPGA),

I. INTRODUCTION

 Modern embedded systems target

high-end application domains requiring

efficient implementations of

computationally intensive digital signal

processing (DSP) functions. The

incorporation of heterogeneity through

specialized hardware accelerators improves

performance and reduces energy

consumption [1]. Although application-

specific integrated circuits (ASICs) form the

ideal acceleration solution in terms of

performance and power, their inflexibility

leads to increased silicon complexity, as

multiple instantiated ASICs are needed to

accelerate various kernels. Many

researchers have proposed the use of

domain-specific coarse-grained

reconfigurable accelerators in order to

increase ASICs’ flexibility without

significantly compromising their

performance.

 High-performance flexible data

paths have been proposed to efficiently map

primitive or chained operations found in the

initial data-flow graph (DFG) of a kernel.

The templates of complex chained

operations are either extracted directly from

the kernel’s DFG or specified in a

predefined behavioral template library.

Design decisions on the accelerator’s

datapath highly impact its efficiency.

mailto:deva2837@gmail.com
mailto:seshagirirao.sugguna@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1069

Existing works on coarse-grained

reconfigurable datapaths mainly exploit

architecture-level optimizations, e.g.,

increased instruction-level parallelism (ILP)

. The domain-specific architecture

generation algorithms of [5] and [9] vary the

type and number of computation units

achieving a customized design structure.

The flexible architectures were proposed

exploiting ILP and operation chaining.

Recently aggressive operation chaining is

adopted to enable the computation of entire

sub expressions using multiple ALUs with

heterogeneous arithmetic features.

 The aforementioned reconfigurable

architectures exclude arithmetic

optimizations during the architectural

synthesis and consider them only at the

internal circuit structure of primitive

components, e.g., adders, during the logic

synthesis . However, research activities

have shown that the arithmetic

optimizations at higher abstraction levels

than the structural circuit one significantly

impact on the datapath performance. In [10],

timing-driven optimizations based on carry-

save (CS) arithmetic were performed at the

post-Register Transfer Level (RTL) design

stage. In [11], common sub expression

elimination in CS computations is used to

optimize linear DSP circuits. Verma et al.

[12] developed transformation techniques

on the application’s DFG to maximize the

use of CS arithmetic prior the actual

datapath synthesis. The aforementioned CS

optimization approaches target inflexible

datapath, i.e., ASIC, implementations.

Recently, a flexible architecture combining

the ILP and pipelining techniques with the

CS-aware operation chaining has been

proposed. However, all the aforementioned

solutions feature an inherent limitation, i.e.,

CS optimization is bounded to merging only

additions/subtractions. A CS to binary

conversion is inserted before each operation

that differs from addition/subtraction,

e.g.,multiplication, thus, allocating multiple

CS to binary conversions that heavily

degrades performance due to time-

consuming carry propagations.

 In this brief, we propose a high-

performance architectural scheme for the

synthesis of flexible hardware DSP

accelerators by combining optimization

techniques from both the architecture and

arithmetic levels of abstraction. We

introduce a flexible datapath architecture

that exploits CS optimized templates of

chained operations. The proposed

architecture comprises flexible

computational units (FCUs), which enable

the execution of a large set of operation

templates found in DSP kernels. The

proposed accelerator architecture delivers

average gains in area-delay product and in

energy consumption compared to state-of-

art flexible datapaths , sustaining efficiency

toward scaled technologies.

II. Carry-Save Arithmetic: Motivational

Observations and Limitations

 CS representation has been widely

used to design fast arithmetic circuits due to

its inherent advantage of eliminating the

large carry-propagation chains. CS

arithmetic optimizations rearrange the

application’s DFG and reveal multiple input

additive operations (i.e., chained additions

in the initial DFG), which can be mapped

onto CS compressors. The goal is to

maximize the range that a CS computation

is performed within the DFG. However,

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1070

whenever a multiplication node is

interleaved in the DFG, either a CS to

binary conversion is invoked or the DFG is

transformed using the distributive property .

Thus, the aforementioned CS optimization

approaches have limited impact on DFGs

dominated by multiplications, e.g., filtering

DSP applications.

 In this brief, we tackle the

aforementioned limitation by exploiting the

CS to modified Booth (MB) recoding each

time a multiplication needs to be performed

within a CS-optimized data path. Thus, the

computations throughout the multiplications

are processed using CS arithmetic and the

operations in the targeted datapath are

carried out without using any intermediate

carry-propagate adder for CS to binary

conversion, thus improving performance.

III. Proposed Flexible Accelerator

 The proposed flexible accelerator

architecture is shown in Fig. 1. Each FCU

operates directly on CS operands and

produces data in the same form1 for direct

reuse of intermediate results. Each FCU

operates on 16-bit operands. Such a bit-

length is adequate for the most DSP

datapaths , but the architectural concept of

the FCU can be straightforwardly adapted

for smaller or larger bit-lengths. The

number of FCUs is determined at design

time based on the ILP and area constraints

imposed by the designer. The CStoBin

module is a ripple-carry adder and converts

the CS form to the two’s complement one.

 The register bank consists of scratch

registers and is used for storing intermediate

results and sharing operands among the

FCUs. Different DSP kernels (i.e., different

register allocation and data communication

patterns per kernel) can be mapped onto the

proposed architecture using post-RTL

datapath interconnection sharing techniques.

 The control unit drives the overall

architecture (i.e., communication between

the data port and the register bank,

configuration words of the FCUs and

selection signals for the multiplexers) in

each clock cycle.

Fig 1 : Abstract form of the Flexible

Datapath

A. Structure of the Proposed Flexible

Computational Unit

 The structure of the FCU (Fig. 2) has

been designed to enable high-performance

flexible operation chaining based on a

library of operation templates. Each FCU

can be configured to any of the T1–T5

operation templates shown in Fig. 3. The

proposed FCU enables intratemplate

operation chaining by fusing the additions

performed before/after the multiplication

&performs any partial operation template of

the following complex operations:

W
*
 = A × (X* + Y*) + K* (1)

W* = A × K* + (X* + Y*) (2)

The following relation holds for all

CS data: X
*
 = { X

C
, X

S
} = X

C
+ X

S
. The

operand A is a two’s complement number.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1071

Fig 2: Flexible Computational Unit

 The alternative execution paths in

each FCU are specified after properly

setting the control signals of the

multiplexers MUX1 and MUX2 (Fig. 2).

The multiplexer MUX0 outputs Y* when

CL0 = 0 (i.e., X* + Y* is carried out) or Y*

when X* − Y* is required and CL0 = 1. The

two’s complement 4:2 CS adder produces

the N* = X* + Y* when the input carry

equals 0 or the N* = X* − Y* when the

input carry equals 1. The MUX1 determines

if N* (1) or K* (2) is multiplied with A. The

MUX2 specifies if K* (1) or N* (2) is added

with the multiplication product. The

multiplexer MUX3 accepts the output of

MUX2 and its 1’s complement and outputs

the former one when an addition with the

multiplication product is required (i.e., CL3

= 0) or the later one when a subtraction is

carried out (i.e., CL3 = 1). The 1-bit ace for

the subtraction is added in the CS adder

tree.

 The multiplier comprises a CS-to-

MB module, which adopts a recently

proposed technique to recode the 17-bit P*

in its respective MB digits with minimal

carry propagation. The multiplier’s product

consists of 17 bits. The multiplier includes a

compensation method for reducing the error

imposed at the product’s accuracy by the

truncation technique. However, since all the

FCU inputs consist of 16 bits and provided

that there are no overflows, the 16 most

significant bits of the 17-bit W* (i.e., the

output of the Carry-Save Adder (CSA) tree,

and thus, of the FCU) are inserted in the

appropriate FCU when requested.

B. DFG Mapping Onto the Proposed

FCU-Based Architecture

 In order to efficiently map DSP

kernels onto the proposed FCU-based

accelerator, the semiautomatic synthesis

methodology has been adapted. At first, a

CS-aware transformation is performed onto

the original DFG, merging nodes of

multiple chained additions/subtractions to

4:2 compressors. A pattern generation on

the transformed DFG clusters the CS nodes

with the multiplication operations to form

FCU template operations (Fig. 3). The

designer selects the FCU operations

covering the DFG for minimized latency.

Given that the number of FCUs is fixed, a

resource-constrained scheduling is

considered with the available FCUs and

CStoBin modules determining the resource

constraint set. The clustered DFG is

scheduled, so that each FCU operation is

assigned to a specific control step. A list-

based scheduler has been adopted

considering the mobility2 of FCU

operations. The FCU operations are

scheduled according to descending mobility.

The scheduled FCU operations are bound

onto FCU instances and proper

configuration bits are generated. After

completing register allocation, a FSM is

generated in order to implement the control

unit of the overall architecture.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1072

(A) (B)

Fig.3. Typical chaining of addition–

multiplication–addition operations

reflecting T1 template of Fig. 3. Its design is

based on (A) CS optimizations with

multiplication distribution (B) incorporating

the CS-to-MB recoding concept.

IV. SIMULATION RESULTS

FIG.4 RTL SCHEMATIC

FIG.5 OUTPUT WAVEFORM

V. CONCLUSION

 In this brief, we introduced a flexible

accelerator architecture that exploits the

incorporation of CS arithmetic

optimizations to enable fast chaining of

additive and multiplicative operations. The

proposed flexible accelerator architecture is

able to operate on both conventional two’s

complement and CS-formatted data

operands, thus enabling high degrees of

computational density to be achieved.

Theoretical and experimental analyses have

shown that the proposed solution forms an

efficient design tradeoff point delivering

optimized latency/area and energy

implementations.

EXTENSION WORK:-

As an extension we are implementing the

DADDA Multiplier Using instead of

Modified Booth Multiplier.

REFERENCES

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1073

[1] P. Ienne and R. Leupers, Customizable

Embedded Processors: Design Technologies

and Applications. San Francisco, CA, USA:

Morgan Kaufmann, 2007.

[2] P. M. Heysters, G. J. M. Smit, and E.

Molenkamp, ―A flexible and energy-

efficient coarse-grained reconfigurable

architecture for mobile systems,‖ J.

Supercomput., vol. 26, no. 3, pp. 283–308,

2003.

[3] B. Mei, S. Vernalde, D. Verkest, H. D.

Man, and R. Lauwereins, ―ADRES: An

architecture with tightly coupled VLIW

processor and coarse-grained reconfigurable

matrix,‖ in Proc. 13th Int. Conf. Field

Program. Logic Appl., vol. 2778. 2003, pp.

61–70.

[4] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis,

―A high-performance data path for

synthesizing DSP kernels,‖ IEEE

Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 25, no. 6, pp. 1154–

1162, Jun. 2006.

[5] K. Compton and S. Hauck, ―Automatic

design of reconfigurable domainspecific

flexible cores,‖ IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 5,

pp. 493–503, May 2008.

[6] S. Xydis, G. Economakos, and K.

Pekmestzi, ―Designing coarse-grain

reconfigurable architectures by inlining

flexibility into custom arithmetic data-

paths,―Integr., VLSI J., vol. 42, no. 4, pp.

486–503, Sep. 2009.

[7] S. Xydis, G. Economakos, D. Soudris,

and K. Pekmestzi, ―High performance and

area efficient flexible DSP datapath

synthesis,‖ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 19, no. 3, pp. 429–

442, Mar. 2011.

[8] G. Ansaloni, P. Bonzini, and L. Pozzi,

―EGRA: A coarse grained reconfigurable

architectural template,‖ IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 19, no.

6, pp. 1062–1074, Jun. 2011.

[9] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, ―Selective

flexibility: Creating domain-specific

reconfigurable arrays,‖ IEEE Trans.

Comput.-Aided Design Integr. Circuits

Syst., vol. 32, no. 5, pp. 681–694,

May 2013.

[10] T. Kim and J. Um, ―A practical

approach to the synthesis of arithmetic

circuits using carry-save-adders,‖ IEEE

Trans. Comput.- Aided Design Integr.

Circuits Syst., vol. 19, no. 5, pp. 615–624,

May 2000.

