

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Implementation of Linear Network on OpenGL Devesh Kasturia ; Akshat Sharma ; Govind Rajput ;
Kartik Singh

P a g e 1230

Implementation of Linear Network on
OpenGL-enabled Cards

Devesh Kasturia ; Akshat Sharma ; Govind Rajput ; Kartik Singh

Students-Dronacharya College of Engineering, India

Abstract—

 This paper describes the implementation of
network writing on OpenGL-enabled graphics
cards. Network writing is a stimulating
approach to extend the capability and strength
in multi-hop networks. Thisdownside is to
implement random linear network writing on
mobile devices thatarea unitrestricted in
machine power, energy, and memory. Some
mobile devices area unit equipped with a 3D
graphics accelerator, thatmay well bewont to
do most of the RLNC connected calculations.
Such a cross-over have already been utilized in
computationally hard to pleaseanalysis tasks as
in physics or drugs. As a first step the paper
focuses on the implementation of RLNC
victimization the OpenGL library and NVidia's Cg
toolkit on desktop PCs and
laptops,manymeasuring results show that the
implementation on the graphics accelerator is
outperforming the mainframe by a significant
margin. The OpenGL implementation performs
comparativelyhigher with larger generation
sizes because of the parallel nature of GPUs.
thus the paper shows AN appealing answer for
the longer term to perform network writing on
mobile devices.

I. INTRODUCTION AND

MOTIVATION

Network committal to writing is
obtainingadditional and additional attention of
late. once the introduction of the idea by
Ahlswede in 2002 [1], an outsizedrange of
analysis works has been allottedwanting into
the various aspects of network committal to
writing. [2] the bulk of analysis papers within
the field deals with the development of
network codes [13], [9] and therefore the

application of network committal to writing to
completely different communication situations
[7], [11], specifically fixe d networks, meshed
wireless network, underwater communica- tion,
and plenty ofadditional concept behind network
committal to writing is to requiremany original
packets and mix them into one coded packet,
that has the length of 1 of the initial packets. If
a sender is combining N packets, the receiver
has to receive a minimum of N coded packets
with success to rewritethe initial packets. every
coded packet is holding the allegedcoding
vector to present the receiver the datathat
packets are combined. Thus, as the
othercommittal to writingtheme, network
committal to writingwill bewont toalter
erasures. additionallythereto, network
committal to writing offers the chance to
rearrange packets within the network. In
distinction to differentcommittal to writing
schemes that solely work finishto finish, every
node has the chance to recombine coded
packets into a brand new coded packet. This
feature is of nicefacilitate whenever packet
flows square measureintersectant as in fixed or
meshed wireless networks.In order to know this
feature we tend toprovidethe subsequent
example. think about the communication
topology of a wireless meshed network with
five nodes given in Figure 1(a): MD1 is causing
packets to MD2 mistreatment MD R as a relay
as a result ofthe actual fact that an on the spot
communication between MD1 and MD2
isn'tpotential. The communication of MD1
associated MD2 is a component of an in
progress stream A, whereas the sender and
supplydon't seem to bepictured here. an
equivalent holds for MD3 and MD4 engaged on
stream B. while not network committal to
writing the relay would simplybecome the

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Implementation of Linear Network on OpenGL Devesh Kasturia ; Akshat Sharma ; Govind Rajput ;
Kartik Singh

P a g e 1231

bottleneck forwarding packets of stream A and
B. just in caseeach streams square
measureperforming at the capability limit, the
info rate once the relay would be halfthe initial
one. mistreatment network committal to
writing, we might apply some type oflay flow
committal to writingfor every stream. which
means packets of stream A square measure
coded largelymost likely already at the sender
and decoded at the receiver. an equivalent
applies for stream B. The interflow committal to
writing assures the strength for the given
stream. On prime of the lay flow committal to
writing, we'll apply associate intra flow
committal to writing. as a result of the given
situation, MD2 willhear packets of MD3 and
MD4 is doing an equivalent with MD1.
Whenever MD1 and MD3 square
measuretransmission packets of their given
stream A and B, the relay MD R canmost likely
receive each packets. additionally MD a pair of
and MD threecan receive packets even if those
packets don't belong to their stream. The relay
MD R can take each packets and code these
along into a brand new coded packet remarked
as packet C. The committal to writingcan bea
straightforward XOR of each packets. Packet C
are going to be broadcast to MD2 and MD4. At
every receiver the packet C are going to
beXORedonce more with the packet A or B. E.g.
MD4 has packet A before (which failed to
belong to stream B), which is able to become
packet B once the XORing with packet C . At
MD2 the coded packet permits to retrieve
packet A. Thus, with one packet transmission,
the relay satisfied 2 nodes at an equivalent
time.

II. CONCEPT OF RANDOM LINEAR

NETWORK CODING

The process of Network writingis divided into 2
separate components, the encoder is
accountableto make a coded message from the
initial one and therefore the decoder
transforms these messages back to the
initialformat.The data to be sent is divided into

packets and a particularquantityof those
packets forms a generation. the
fullknowledgemay be divided into additional
generations. The generation could be a series of
packets that area unit encoded and decoded
along. throughout the coding, linear combosof
information packets area unitshapedsupported
random coefficients. Let N be the quantity of
packets in a very generation, and let P be the
dimensions of oneknowledge packet. The
header acts because the random coefficient
matrix, and every encoded packet has the
dimensions of N+P bytes.
The encoded packets from a similar generation
area unit ag- gregatedalong, containing each
the header knowledge, and therefore the
encoded payload. once N encoded packets area
unit received the encoded knowledgemay be
decoded. there'sa smalllikelihood that the
generated random coefficients don't seem to be
linearly independent,thus the
deciphermentdesiresextra encoded knowledge
packets to be completed. The decipherment
itself is done employing acustomaryGaussian
elimination.

III. IMPLEMENTATION

We have enforceda similarruleeach on the
processorand also the GPU. Our main goal was
to prove that the GPU is capable of secret
writing and
cryptographyinformationvictimization Random
Linear Network committal to writing. Moreover,
we tend toneededto check the performance of
those implementations. Note that the Evariste
GaloisField(28) is employed in each
implementations.

A. Reference implementation on the CPU

The C programming language is used to

implement the following algorithms on the

CPU. The field arithmetic on the Galois

Field(28) is realized with two static byte

arrays, one for multiplication and one for

division. Addition and subtraction are the

same operation in this field, and are identical

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Implementation of Linear Network on OpenGL Devesh Kasturia ; Akshat Sharma ; Govind Rajput ;
Kartik Singh

P a g e 1232

with th e exclusive OR (XOR) operation on

the CPU.

B. The encoding mechanism

After reading N number of P sized

messages, the encoder is ready to produce

encoded messages for this generation. This

N ∗ P bytes of data chunk is stored in a

matrix of corresponding dimensions. For the

coding it needs a random seed. In this paper

we are not going into details about the

connection between the entropy of this seed

and the quality of the network coding. From

this seed the generator gets an N byte long

header for each encoded packet, and

calculates the payload by multiplying the

header as a vector with the data matrix. This

operation is realized with simple array

lookups and xor operations. The cost of

getting a coded message is O(N P). At least

N encoded message should be delivered to

the decoder side to be able to decode the

message. Therefore the total computing cost

of transmitting N ∗ P bytes of data is O(N

2P), and the transmitted overload is N ∗ N

bytes.

C. The decoding mechanism

Upon receiving a coded message, the

received data is being interpreted by using

the previous data. Basically the decoding

algorithm is a step by step Gaussian

eliminationover the Galois Field with back

propagation. The elimination is based on the

header part of the coded message, but the

corresponding operations are also done on

the payload part. The decoder stores the

received, and partially decoded, data in an N

∗(N +P) size matrix. After the forward

substitution part of the elimination each

message which carries new information will

have a leading column in the header part

with a nonzero pivot element, let's mark this

column with L. This row is then normalized

by dividing all of its elements by the leading

value. After this step the new row can be

inserted into the decoding matrix to the

corresponding row (row L). The last step is

to propagate this row back to the existing

nonzero rows. The algorithm stops when the

matrix does not have any empty rows,

thence the header part forms an echelon

form, and the payload part of contains the

decoded data in order. The cost of encoding

a row is O(N (N + P)) for the forward

substitution, O(N) for the pivot search, O(N

+ P) for the normalization and O(N (N + P

)) for the backward substitution, therefore

totally O(N (N + P)) for each row. The total

computational cost is then O(N 3 + N 2P).

D. Basic Operations on the GPU

Porting such a poshformula to the GPU

isn'tan easy task, as a result ofthe standard

arithmetic operations and management

structures don't seem to

beaccessible,it'svitalto note that shadersdo

notadd a serial manner, pixels square

measure rendered in parallel by the presently

activated shaders. Directly reading and

writing memory in a

veryshaderisn'tattainable, the solethanks to

store and retrieve information is by

mistreatment textures. From our purpose of

read, textures behave as two-dimensional

arrays of bytes,it'sattainable to

browsesureparts of this array by performing

arts texture operation operations. 2

dimensional vectors (called texture

coordinates) square measureaccustomed

specify that array component is to be

browse. These texture coordinates square

measureperpetually floating-point numbers,

thusfurtherautomotive e should be taken to

confirm that they're rounded to the

properwhole number indices,the foremost

serious limitation is that no informationmay

be written into a texture in a veryshader.

OpenGL solely offers functions to

repeatinformation from traditional memory

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Implementation of Linear Network on OpenGL Devesh Kasturia ; Akshat Sharma ; Govind Rajput ;
Kartik Singh

P a g e 1233

to a texture and from the framebuffer to a

texture

E. Encoder on the GPU The XOR texture

is also used here to perform addition over

the Galois Field.The encoded image is

rendered row-by-row as GL_LINES

primitives. Every row is rendered exactly N

times using the encoder shader. This shader

performs the following steps:

1)Get the multiplication coefficient from the

random ma- trix

2)Multiply it with the next row of the

original image

3)Xor this product with the previous results

for this row

Of course, every row is rendered onto the

framebuffer and the resulting pixels must be

copied back to the result texture after

completing Step 3. So these steps are done

N times for each row. After this, the next

row of the random matrix is selected to

calculate the next line of the result texture.It

means NxN line primitives are rendered to

encode the whole image, and it would mean

NxN OpenGL calls on the CPU. Fortunately

OpenGL offers the possibility to pre-

compile these API calls into a display list.

All these instruc- tions can be executed by

calling this pre-compiled display list. It

means that the whole image can be encoded

by a single API call on the CPU. But before

calling this function, the shader and its

parameters must be set up properly. The

resulting encoded texture serves as the input

for the decoder.

F. Decoder on the GPU

The decoder is composed of 3 different

shaders that imple- ment the 3 consecutive

phases of the Gaussian elimination:

1)phase: Forward substitution: reduce the

new data row by the existing rows

2)phase: Find the pivot point in the reduced

row

3)phase: Backward substitute this

normalized row into the existing rows

The task in the 2nd phase is to find the pivot

element (if any) in the reduced new packet.

It is implemented using a simple shader

which enumerates all elements of this

packet, and stores the position and value of

the first non-zero element into a special

pixel. In this phase rendering is performed

point-by- point, because data elements must

be processed in a sequential manner. The

pivot point position and value is used in the

next phase.

G. GUI

We have developed a simple GUI to see the

actual results of the computations. This GUI

uses both the CPU and the GPU

implementation to encode and decode the

same data. Thereby it is possible to compare

the resulting images and verify the GPU

algorithm's correctness. The bottom row

shows calculation results on the CPU,

whereas the top row shows the results of the

same calculations performed on the GPU.

IV. RESULTS

The following measurements are done on

different plat- forms with different

generation sizes.For simplicity, the packet

size is always equal to 1024 (P = 1024). The

CPU implementation runs only on one

thread, so it utilizes only a single CPU core

even if there are more available.The

tendency is the same on all platforms: the

throughput is approximately a first-order

function of the generation size. This

observation is in accordance with the cost

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Implementation of Linear Network on OpenGL Devesh Kasturia ; Akshat Sharma ; Govind Rajput ;
Kartik Singh

P a g e 1234

formulae presented previously, since the

cost of encoding or decoding a single packet

(O (N P) and O (N (N + P)) respectively)

theoretically determines the achievable

throughputs. Decoding performance is about

15-30% lower than encoding perfor- mance.

This fact can also be justified theoretically

by the same cost formulae, noticing that N +

P is only slightly larger than P itself, as N

<< P in most cases.

V. CONCLUSION

Our work shows that it is possible to

implement Random Linear Network Coding

on state-of-the-art graphics cards. We intend

to port this implementation onto OpenGL-

enabled mobile devices. These devices also

have a programmable GPU pipeline, but

their capabilities are limited compared to

graphics cards in the PC. Although these

results seem very promising, a more native

approach like NVIDIA's CUDA toolkit

could yield much better results.

Unfortunately, none of the state-of- the-art

mobile devices support CUDA.

REFERENCES

[1]R. Ahlswede, NingCai, S.-Y.R. Li, and

R.W. Yeung. Network informa- tion flow.

Information Theory, IEEE Transactions on,

46(4):1204–1216, Jul 2000.

[2]Christina Fragouli, Jean-Yves Le Boudec,

and JörgWidmer . Network coding: an

instant primer. SIGCOMM Comput.

Commun. Rev., 36(1):63– 68, 2006.

[3]Christina Fragouli and EminaSoljanin.

Network Coding Applications. Now

Publishers Inc, January 2008.

[4]Janus Heide, Morten V. Pedersen, Frank

H.P. Fitzek, and Torben Larsen. Cautious

view on network coding - from theory to

practice. Journal of Communications and

Networks (JCN), 2009.

[5]Tracey Ho and Desmond Lun. Network

Coding: An Introduction. Cambridge

University Press, 2008.

[6]R. Jacobsen, K. Jakobsen, P. Ingtoft, T.

Madsen, and F.H.P. Fitzek. Practical

Evaluation of Partial Network Coding in

Wireless Sensor Networks. In 4th

International Mobile Multimedia

Communications Conference (MobiMedia

2008), Oulu, Finland, July 2008.

ICTS/ACM.

