

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1323

To Study the Open Sources and its
Applications in Industry

Author Name: - Gurlal Singh

Guide Name: - Mr. Ashwani Sethi

College: - Guru Nanak College Killianwali

Email Id: - Ls.Sidhu@Ymail.Com

ABSTRACT

Open source is software developed by

uncoordinated but loosely collaborating

programmers, using freely distributed

source code and the communications

infrastructure of the Internet. Open source

has a long history rooted in the Hacker

Ethic. The term open source was adopted in

large part because of the ambiguous nature

of free software. Various categories of free

and non-free software are commonly

referenced, some with interchangeable

meanings. Several licensing agreements

have therefore been developed to formalize

distribution terms. The Cathedral and the

Bazaar is the most frequently cited

description of the open-source development

methodology, however although the paper

identifies many mechanisms of successful

open-source development, it does not expose

the dynamics. There are literally hundreds,

if not thousands, of open-source projects

currently in existence.

The term Open Source is widely applied to

describe some software development

methodologies. This paper does not provide

a judgment on the open source approach,

but exposes the fact that simply stating that

a project is open source does not provide a

precise description of the approach used to

support the project. By taking a

multidisciplinary point of view, we propose

a collection of characteristics that are

common, as well as some that vary among

open source projects. The set of open source

characteristics we found can be used as a

tick-list both for analyzing and for setting up

open source projects. Our tick-list also

provides a starting point for understanding

the many meanings of the term open source.

Keywords: -

Open Source Software; Software Process;

Software Business Models; Information

Systems (IS) Development

INTRODUCTION

 Open-source software (OSS) is computer

software with its source code made available

with a license in which the copyright holder

provides the rights to study change and

distribute the software to anyone and for any

purpose. Open-source software is very often

developed in a public, collaborative manner.

Open-source software is the most prominent

example of open-source development and

often compared to (technically defined)

user-generated content or (legally defined)

open-content movements.

A report by the Standish Group (from 2008)

states that adoption of open-source software

models has resulted in savings of about

$60 billion per year to consumers.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1324

Figure 1.1: A screenshot of Linux Mint running the Xfce desktop environment, Firefox, a

calculator program, the builtin calendar, Vim, GIMP, and VLC media player, all of which are

open source software.

1.1 DEFINITIONS

The Open Source Initiative's (OSI)

definition is recognized as the standard or de

facto definition. Eric S. Raymond and Bruce

Perens formed the organization in February

1998. With about 20 years of evidence from

case histories of closed and open

development already provided by the

Internet, OSI continued to present the "open

source" case to commercial businesses.

They sought to bring a higher profile to the

practical benefits of freely available source

code, and wanted to bring major software

businesses and other high-tech industries

into open source.

OSI uses The Open Source Definition to

determine whether it considers a software

license open source. The definition was

based on the Debian Free Software

Guidelines, written and adapted primarily by

Perens. Perens did not base his writing on

the "four freedoms" of Free Software from

the Free Software Foundation (FSF), which

were only widely available later.

Figure 1.2: the logo of the

Open Source Initiative

1.1.1 PROLIFERATION OF THE TERM

While the term "open source" applied

originally only to the source code of

software, it is now being applied to many

other areas such as Open source ecology, a

movement to decentralize technologies so

that any human can use them. However, it is

often misapplied to other areas which have

different and competing principles, which

overlap only partially.

http://en.wikipedia.org/wiki/Linux_Mint
http://en.wikipedia.org/wiki/Xfce
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/Firefox
http://en.wikipedia.org/wiki/Vim_(text_editor)
http://en.wikipedia.org/wiki/GIMP
http://en.wikipedia.org/wiki/VLC_media_player
http://en.wikipedia.org/wiki/Open_Source_Initiative
http://en.wikipedia.org/wiki/Eric_S._Raymond
http://en.wikipedia.org/wiki/The_Open_Source_Definition
http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
http://en.wikipedia.org/wiki/Free_Software_Foundation

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1325

1.1.2 OPEN SOFTWARE LICENSING

A license defines the rights and obligations

that a licensor grants to a licensee. Open

source licenses grant licensees the right to

copy, modify and redistribute source code

(or content). These licenses may also impose

obligations (e.g., modifications to the code

that are distributed must be made available

in source code form, an author attribution

must be placed in a program/ documentation

using that open source).

Authors initially derive a right to grant a

license to their work based on the legal

theory that upon creation of a work the

author owns the copyright in that work.

What the author/licensor is granting when

they grant a license to copy, modify and

redistribute their work is the right to use the

author's copyrights. The author still retains

ownership of those copyrights; the licensee

simply is allowed to use those rights, as

granted in the license, so long as they

maintain the obligations of the license. The

author does have the option to sell/assign,

versus license, their exclusive right to the

copyrights to their work; whereupon the new

owner/assignee controls the copyrights. The

ownership of the copyright (the "rights") is

separate and distinct from the ownership of

the work (the "thing") – a person can own a

copy of a piece of code (or a copy of a book)

without the rights to copy, modify or

redistribute copies of it.

When an author contributes code to an open

source project (e.g., Apache.org) they do so

under an explicit license (e.g., the Apache

Contributor License Agreement) or an

implicit license (e.g., the open source license

under which the project is already licensing

code). Some open source projects do not

take contributed code under a license, but

actually require (joint) assignment of the

author's copyright in order to accept code

contributions into the project (e.g.,

OpenOffice.org and its Joint Copyright

Assignment agreement).

Placing code (or content) in the public

domain is a way of waiving an author's (or

owner's) copyrights in that work. No license

is granted, and none is needed, to copy,

modify or redistribute a work in the public

domain.

Examples of free software license / open

source licenses include Apache License,

BSD license, GNU General Public License,

GNU Lesser General Public License, MIT

License, Eclipse Public License and Mozilla

Public License.

The proliferation of open-source licenses is

one of the few negative aspects of the open-

source movement because it is often difficult

to understand the legal implications of the

differences between licenses. With more

than 180,000 open source projects available

and its more than 1400 unique licenses, the

complexity of deciding how to manage

open-source usage within "closed-source"

commercial enterprises have dramatically

increased. Some are home-grown while

others are modeled after mainstream FOSS

licenses such as Berkeley Software

Distribution ("BSD"), Apache, MIT-style

(Massachusetts Institute of Technology), or

GNU General Public License ("GPL"). In

view of this, open source practitioners are

starting to use classification schemes in

which FOSS licenses are grouped (typically

based on the existence and obligations

imposed by the copyleft provision; the

strength of the copyleft provision).

An important legal milestone for the open

source / free software movement was passed

in 2008, when the US federal appeals court

ruled that free software licenses definitely

do set legally binding conditions on the use

of copyrighted work, and they are therefore

enforceable under existing copyright law. As

a result, if end-users do violate the licensing

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1326

conditions, their license disappears, meaning

they are infringing copyright.

1.1.3 CERTIFICATIONS

Certification can help to build higher user

confidence. Certification could be applied to

the simplest component that can be used by

developers to build the simplest module to a

whole software system. There have been

numerous institutions involving in this area

of the open source software including The

International Institute of Software

Technology / United Nations University.

UNU/IIST is a non-profit research and

education institution of The United Nations.

It is currently involved in a project known as

"The Global Desktop Project". This project

aims to build a desktop interface that every

end-user is able to understand and interact

with, thus crossing the language and cultural

barriers. It is drawing huge attention from

parties involved in areas ranging from

application development to localization.

Furthermore, this project will improve

developing nations' access to information

systems. UNU/IIST aims to achieve this

without any compromise in the quality of

the software It believes a global standard

can be maintained by introducing

certifications and is currently organizing

conferences in order to explore frontiers in

the field.

Alternatively, assurance models (such as

DO178B) have already solved the

"certification" approach for software. This

approach is tailorable and can be applied to

OSS, but only if the requisite planning and

execution, design, test and traceability

artifacts are generated.

1.2 OPEN-SOURCE SOFTWARE

DEVELOPMENT

1.2.1 DEVELOPMENT MODEL

In his 1997 essay The Cathedral and the

Bazaar, open-source evangelist Eric S.

Raymond suggests a model for developing

OSS known as the bazaar model. Raymond

likens the development of software by

traditional methodologies to building a

cathedral, "carefully crafted by individual

wizards or small bands of mages working in

splendid isolation". He suggests that all

software should be developed using the

bazaar style, which he described as "a great

babbling bazaar of differing agendas and

approaches."

In the traditional model of development,

which he called the cathedral model;

development takes place in a centralized

way. Roles are clearly defined. Roles

include people dedicated to designing (the

architects), people responsible for managing

the project, and people responsible for

implementation. Traditional software

engineering follows the cathedral model.

Fred P. Brooks in his book The Mythical

Man-Month advocates this model. He goes

further to say that in order to preserve the

architectural integrity of a system; the

system design should be done by as few

architects as possible.

The bazaar model, however, is different. In

this model, roles are not clearly defined.

Gregorio Robles suggests that software

developed using the bazaar model should

exhibit the following patterns:

Users should be treated as co-developers

The users are treated like co-developers and

so they should have access to the source

code of the software. Furthermore users are

encouraged to submit additions to the

software, code fixes for the software, bug

reports, documentation etc. Having more co-

developers increases the rate at which the

software evolves. Lanus’s law states, "Given

enough eyeballs all bugs are shallow." This

means that if many users view the source

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1327

code, they will eventually find all bugs and

suggest how to fix them. Note that some

users have advanced programming skills,

and furthermore, each user's machine

provides an additional testing environment.

This new testing environment offers that

ability to find and fix a new bug.

Early releases

The first version of the software should be

released as early as possible so as to increase

one's chances of finding co-developers

early.

Frequent integration

Code changes should be integrated (merged

into a shared code base) as often as possible

so as to avoid the overhead of fixing a large

number of bugs at the end of the project life

cycle. Some open source projects have

nightly builds where integration is done

automatically on a daily basis.

Several versions

There should be at least two versions of the

software. There should be a buggier version

with more features and a more stable version

with fewer features. The buggy version (also

called the development version) is for users

who want the immediate use of the latest

features, and are willing to accept the risk of

using code that is not yet thoroughly tested.

The users can then act as co-developers,

reporting bugs and providing bug fixes.

High modularization

The general structure of the software should

be modular allowing for parallel

development on independent components.

Dynamic decision making structure

There is a need for a decision making

structure, whether formal or informal, that

makes strategic decisions depending on

changing user requirements and other

factors. Cf. Extreme programming.

Data suggests, however, that OSS is not

quite as democratic as the bazaar model

suggests. An analysis of five billion bytes of

free/open source code by 31,999 developers

shows that 74% of the code was written by

the most active 10% of authors. The average

number of authors involved in a project was

5.1, with the median at 2.

PROBLEM FORMULATION

 Before developing research we keep

following things in mind so that we

can develop powerful and quality

research.

 3.1 PROBLEM

STATEMENT

 Open-source software can be sold

and used in general commercially.

Also, commercial open-source

applications are a part of the

software industry for some time.

Despite that, except for Red Hat and

VA Software, no other pure open-

source company has gone public on

the major stock markets. While

commercialization or funding of

open-source software projects is

possible, it is considered challenging.

 Since several open-source licenses

stipulate that derived works must

distribute their intellectual property

under an open-source (copyleft)

license, ISVs and VARs have to

develop new legal and technical

mechanisms to foster their

commercial goals, as many

traditional mechanisms are not

directly applicable anymore.

 Traditional business wisdom

suggests that a company's methods,

assets, and intellectual properties

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1328

should remain concealed from

market competitors as long as

possible to maximize the profitable

commercialization time of a new

product. [According to whom?]

Open-source software development

minimizes the effectiveness of this

tactic; development of the product is

usually performed in view of the

public, allowing competing projects

or clones to incorporate new features

or improvements as soon as the

public code repository is updated, as

permitted by most open-source

licenses. Also in the computer

hardware domain, a hardware

producer who provides free and open

software drivers reveals the

knowledge about hardware

implementation details to

competitors, who might use this

knowledge to catch up.

 Therefore, there is considerable

debate about whether vendors can

make a sustainable business from an

open-source strategy. In terms of a

traditional software company, this is

probably the wrong question to ask.

Looking at the landscape of open

source applications, many of the

larger ones are sponsored (and

largely written) by system companies

such as IBM who may not have an

objective of software license

revenues. Other software companies,

such as Oracle and Google, have

sponsored or delivered significant

open-source code bases. These firms'

motivation tends to be more

strategic, in the sense that they are

trying to change the rules of a

marketplace and reduce the influence

of vendors such as Microsoft.

Smaller vendors doing open-source

work may be less concerned with

immediate revenue growth than

developing a large and loyal

community, which may be the basis

of a corporate valuation at merger

time.

 A variety of open-source compatible

business approaches have gained

prominence in recent years

[according to whom?]; notable

examples include dual licensing,

software as a service, not charging

for the software but for services,

fermium, donation-based funding,

and crowd funding.

 The underlying objective of these

business models is to harness the size

and international scope of the open-

source community (typically more

than an order of magnitude larger

than what would be achieved with

closed-source models) for a

sustainable commercial

venture.[citation needed] The vast

majority of commercial open-source

companies experience a conversion

ratio (as measured by the percentage

of downloader’s who buy something)

well below 1%, so low-cost and

highly-scalable marketing and sales

functions are key to these firms'

profitability.

OBJECTIVE

Software development requires much

knowledge and work. I wonder why useful

software such as Mozilla and VideoLAN are

made free for download. Much free software

tends to be very good indeed. I'm not against

free software, though. I also benefit from

them. Free software is developed and given

away normally with an option to donate to

help with development costs.

Open source software is developed by

groups of people that contribute different

features and functions to an application or

operating system.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1329

Take Linux for example. There are many

versions of Linux that have been contributed

too over the years, but the underlying code

is very similar and uses a Linux Kernel as

the basis for the OS.

Free software model in the context of your

question liberates the revenue model from

the software product. You are no more just

charging for a product, although you can

still charge for the product. For example if

shoe-making was open sourced. You'd not

just sell shoes, but also the design blueprint

for it. How do you gain the upper hand? If

you're the person with original plan,

everyone down the line credits you. Buyers

know who the original person who knows

the stuff is. If you're one who bought the

shoes and now designed your derivative,

they'd sell based on whats the speciality of

your derivative. You'd realize that setting up

shop would require capital and it’s

somewhat true for open source software. All

major successful free software has the

biggest corporations FUNDING the labor

towards developing them. VideoLAN

doesn't exactly enjoy a prominent corp

backing, so their development on Mac

had/still has come down to a crawl.

I would add an example of open source

ERP. OpenERP is a comprehensive suite of

business applications and has a modular

approach which allows customers to start

with one application and then adds other

modules as they go. It’s license free,

customizable and very easy to use.

The product has gained a lot of popularity

due to its no license policy and the verity of

solutions it offers. To which its community

can contribute to develop and improve. To

know more about the line of solutions

OpenERP offers, follow this

link: http://bit.ly/aUeAZu.

The main objective of this research is to

study the open sources and its applications

used in the industry.

 RESEARCH METHODOLOGY

4.1 METHODOLOGY

The Cathedral and the Bazaar is the most

frequently cited description of the open-

source development methodology. Eric

Raymond’s discussion of the Linux

development MODEL as applied to a small

project is a useful commentary. However, it

should be noted that although the paper

identifies many mechanisms of successful

open-source development, it does not expose

the dynamics. In this sense, the description

is inherently weak.

4.1.1 Plausible Promise

Raymond remarks that it would be difficult

to originate a project in bazaar mode. To

build a community, a program must first

demonstrate plausible promise. The

implementation can be crude or incomplete,

but it must convince others of its potential.

This is given as a necessary precondition of

the bazaar, or open-source, style.

Interestingly, many COMMERCIAL

SOFTWARE companies use this approach

to ship software products. Microsoft, for

example, consistently ships early versions of

products that are notoriously bug ridden.

However as long as a product can

demonstrate plausible promise, either by

setting a standard or uniquely satisfying a

potential need, it is not necessary for early

versions to be particularly strong.

Critics suggest that the effective utilization

of bazaar principles by closed source

developers implies ambiguity. Specifically

that the Cathedral and the Bazaar does not

sufficiently describe certain aspects of the

open-source development process.

http://bit.ly/aUeAZu.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1330

4.1.2 Release Early, Release Often

Early and frequent releases are critical to

open-source development. Improvements in

functionality are incremental, allowing for

rapid evolution, and developers are

"rewarded by the sight of constant

improvement in their work."

Product evolution and incremental

development are not new. Mills initially

proposed that any software system should be

grown by incremental development (Mills,

1971). Brooks would later elaborate on this

concept, suggesting that developers should

grow rather than build software, adding

more functions to systems as they are run,

used, and tested (Brooks, 1986). Basili

suggested the concept of iterative

enhancement in large-scale software

development (Basili and Turner, 1975), and

Boehm proposed the spiral MODEL, an

evolutionary prototyping approach

incorporating risk management.

Let's have a look at the general diagram

in a different way to see what is running

concurrently: Release Early, Release

Often

Figure 4.1: General Diagram In A Different

Way To See What Is Running

Concurrently: Release Early, Release Often

Open source relies on the Internet to

noticeably shorten the iterative cycle.

Raymond notes that "it wasn’t unknown for

[Linux] to release a new kernel more than

once a day." (Raymond, 1998a) Mechanisms

for efficient distribution and rapid feedback

make this practice effective.

However, successful application of an

evolutionary approach is highly dependent

on a modular architecture. Weak modularity

compromises change impact and minimizes

the effectiveness of individual contributors.

In this respect, projects that do not

encourage a modular architecture may not

be suitable for open-source development.

This contradicts Raymond’s underlying

assertion, that open source is a universally

better approach.

4.1.3 Debugging is Parallelizable

Raymond emphasizes large-scale peer

review as the fundamental difference

underlying the cathedral and bazaar styles.

The bazaar style assumes that "given a large

enough beta-tester and co-developer base,

almost every problem will be characterized

quickly and the fix obvious to someone."

Debugging requires less coordination

relative to development, and thus is not

subject "to the same quadratic complexity

and management costs that make adding

developers problematic." (Raymond, 1998a)

The basic premise is that more debuggers

will contribute to a shorter test cycle without

significant additional cost. In other words,

"more users find more bugs because adding

more users adds more ways of stressing the

program." (Raymond, 1998a) However,

open source is not a prerequisite for peer

review. For instance, various forms of peer

review are commonly employed in

SOFTWARE ENGINEERING. The

question might then become one of scale,

but Microsoft practices beta-testing on a

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1331

scale matched only by larger open-source

projects.

Raymond continues, suggesting that

debugging is even more efficient when users

are co-developers, as is most often the case

in open-source projects. This is also subject

to debate. Raymond notes that each tester

"approaches the task of bug characterization

with a slightly different perceptual set and

analytical toolkit, a different angle on the

problem." (Raymond, 1998a) This is

characterized by the fact that developers and

end-users evaluate products in very different

ways. It therefore seems likely that peer

review under the bazaar MODEL would be

constrained by a disproportionate number of

co-developers.

EXPERIMENTAL RESULTS

5.4 THE GROWTH OF OPEN

SOURCE

Open source software is having a major

impact on the software industry and its

production processes. Many software

products today contain at least some open

source software components. Some

commercial products are completely open

source software. In some markets, for

example, web servers, open source software

hold a dominant market share.

Open source software today has a strong

presence in industry and government. Walli

et al. observe: “Organizations are saving

millions of dollars on IT by using open

source software. In 2004, open source

software saved large companies (with

annual revenue of over $1 billion) an

average of $3.3 million. Medium-sized

companies (between $50 million and $1

billion in annual revenue) saved an average

$1.1 million. Firms with revenues under $50

million saved an average $520,000.”

Commercially, the significance and growth

of open source is measured in terms of

revenue generated from it. Lawton and

Notarfonzo state that packaged open source

applications generated revenues of $1.8

billion in 2006. The software division of the

Software & Information Industry

Association estimates that total packaged

software revenues were $235 billion in

2006. Thus, open source revenue, while still

small compared to the overall market

(~0.7%) is not trivial any longer.

However, open source software today is part

of many proprietary (closed) source

products, and measuring its growth solely by

packaged software revenue is likely to

underestimate its size and growth by a wide

margin. To measure the growth of open

source we need to look at the total growth of

open source projects and their source code.

Several studies have been undertaken to

measure the growth and evolution of

individual open source software projects.

Most of these studies are exemplary,

focusing on a few selected projects only.

The exception is Koch’s work, which uses a

large sample (>4000 projects) to determine

overall growth patterns in open source

projects, concluding that polynomial growth

patterns provide good models for these

projects. Such work is mostly motivated by

trying to understand how individual open

source projects grow and evolve.

The work presented in this paper, in

contrast, analyzes the overall growth of open

source, aggregating data from more than

5000 active and popular open source

projects to determine the total growth of

source code and number of projects.

Assuming a positive correlation between

work spent on open source, its total growth

in terms of code and number of projects, and

the revenue generated from it, understanding

the overall growth of open source will give

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1332

us a better indication of how significant a

role open source will play in the future.

Understanding overall open source growth

helps more easily answer questions about,

for example, future product structures (how

much code of an application is likely to be

open source code?), labor economics (how

much and which open source skills does a

company need?), and revenue (what

percentage of the software market’s revenue

will come from open source?).

The work presented in this paper shows that

the total amount of open source code and the

total number of projects is growing

exponentially. Assuming a base of 0.7% of

the market’s revenue, exponential growth is

a strong indicator that open source will be of

significantly increasing commercial

importance. The remainder of this paper

discusses our study and validates the

hypothesis of exponential growth of open

source.

However, we cannot unambiguously

identify situations where a developer adds

redundant source code to the code base.

Copy and paste is a common practice in

software development, independently of

whether it is internal, external, planned or

opportunistic. To deal with this issue, we

adopt two approaches.

1. In the first approach we ignore the copy

and paste problem and analyze the

source lines of code added. The

argument is that copy and paste is a

reality of software development and that

the copied code is part of the project.

Hence, copy and paste simply needs to

be accepted.

2. In the second approach we find the

average and the standard deviation for

the code added over time. We ignore all

commits where lines of code added is

greater than average code added per

commit plus three times the standard

deviation. The heuristic’s assumption is

that by not considering such large

commits we ignore all commits based on

copy and paste.

An analysis of average code contribution

size in commits provides a cut-off value of

3060 SLoC that we use for the heuristic.

This second approach is conservative in that

we ignore not only copy and paste but also

commits containing new code added. So we

err on the lower side of total open source

contributions.

We employ these two approaches to get an

upper and a lower bound for the growth in

source lines of code and number of projects.

We can therefore say that properties like the

exponential growth observed in both the

upper and lower bound curve apply to the

real curve as well.

5.5 ANALYSIS AND RESULTS

We first analyze growth rate and total

growth in open source software code and

then analyze growth rate and total growth in

open source software projects.

5.5.1 Growth in source code

Figures 1 and 2 show plots that represent the

growth in source lines of code added using

Approach 1 and 2 respectively. The Y-axis

shows the number of lines of code added

each month and the X-axis shows the time.

Each data point on the plot represents the

total number of lines of code added during

that month. The time frame is 1995 through

2006 for all projects. We can see an upward

trend in the amount of code added over time.

Both Approach 1 and 2 show a similar

pattern of growth.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1333

Figure5.1: Graph of source lines of code

added [millions] (Approach 1)

Figure 5.2: Graph of source lines of code

added [millions] (Approach 2)

Table shows models for the two plots. In

both cases, the best fitting model is an

exponential curve with an R-square value of

about 0.9, giving us confidence in the

validity of the claim that the amount of code

added is growing exponentially.

Table 5.1: Model of source lines of code

added

Figure 3 shows the total number of lines of

open source code over time. Table 2 shows

the statistical models for the two

approaches. The doubling time for Approach

1 is 12.5 months, and the doubling time for

Approach 2 is 14.9 months. We observe that

the total code in Approach 2 is lower than in

Approach 1 but follows a similar trend. This

behavior is expected as we eliminated all

large commits in the second approach to

exclude copy and paste contributions.

Figure 5.3: Graph of total source

lines of code [millions] (both approaches)

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1334

Table 5.2: Model of total source lines of

code

5.5.2 GROWTH IN OPEN SOURCE

Figure 4 shows the number of projects

added over time and Table 3 shows the

model and its fit with the data. For each

project, there is a first occurrence of a

project action (for example, the initial

commit action), and that point of time is

considered the birth date of the project. This

is the point of time when the project is

counted as added to the overall set of

projects.

Figure 5.4: Graph of number of open source

projects added

Table 5.3: Model of number of open source

projects added

Large distributions like Debian are counted

as one project. Popular projects such as

GNU Emacs are counted as projects of their

own, little known or obsolete packages such

as the Zoo archive utility are ignored. Many

of the projects that were included in a

Debian distribution around 1998 are not

popular enough today (as stand-alone

projects) to be included in our copy of the

Ohloh database. And again, we get the best

fit for the resulting curve for an exponential

model with an R-square value of 0.88.

Figure 5 then shows the total number of

projects and Table 4 shows the

corresponding model and its fit with the

data. Again, we get the best fit for an

exponential model with an R-square value of

0.96. The doubling time is 13.9 months.

Figure 5.5: Graph of total number of open

source projects

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1335

Table 5.4: Model of total number of open

source projects

5.5.3 REVIEW OF FINDINGS

This section shows the growth of source

code in open source projects as well as the

growth of open source projects itself. We

consistently get the best fit for the data using

exponential models. The doubling time

based on the exponential models is about 14

months for both the total amount of source

code and the total number of projects. It

should be noted that if we were to break up

the data sets into separate time periods, we

might find better fits for other models than

the exponential model. In future work we

will analyze the overall growth in distinct

phases, each of which is best explained by a

separate growth model.

We discuss the size and frequency of code

contributions to open source projects. We

can use those results to further increase our

confidence in the results presented above.

Specifically, the lines of code added can be

assumed equal to the product of the average

size of a commit in terms of source lines of

code and the commit frequency. Our

analysis shows that the average commit size

is almost constant while the commit

frequency (number of commits per week)

increases exponentially between Jan 1995 to

Dec 2006. This verifies our findings about

the exponential growth in open source.

CONCLUSION AND FUTURE

WORK

This chapter is based upon the conclusion of

what we have done so far and how the

system can be further enhanced with an

increase in requirements.

6.1 CONCLUSION
Open source is software developed by

uncoordinated but loosely collaborating

programmers, using freely distributed source

code and the communications infrastructure

of the Internet. Open source is based on the

philosophy of free software. However,

open source extends this ideology slightly to

present a more commercial approach that

includes both a business model and

development methodology. Various

categories of free and non-free software are

commonly, and incorrectly, referenced,

including public domain, freeware, and

shareware. Licensing agreements such as

the GPL have been developed to formalize

distribution terms. The Open Source

Definition provides a framework for

evaluating these licenses.

There are hundreds, if not thousands, of

open-source projects currently in existence.

These projects face growing challenges in

terms of scalability and inherently weak tool

support. However open source is a

pragmatic example of software development

over the Internet

The significance of open source has been

continuously increasing over time. Our

research validates this claim by looking at

the total growth of open source. Our work

shows that the additions to open source

projects, the total project size (measured in

source lines of code), the number of new

open source projects, and the total number

of open source projects are growing at an

exponential rate. The total amount of source

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

To Study the Open Sources and its Applications in Industry Gurlal Singh

P a g e 1336

code and the total number of projects double

about every 14 months.

Our results open gates for further research

around the growth of open source and the

acceptance of open source in industry and

government. Future research should explore

questions like what factors are influencing

this exponential growth, how source code

growth relates to the number of engaged

software developers, and whether or how

long open source can sustain this

exponential growth.

REFERENCES

 [1]. Mockus, A. AT&T Bell Labs. Naperville, IL,

USA “A case study of open source software

development: the Apache server” Date of

Conference: 4-11 June 2000, Pages 263-272, Print

ISBN: 1-58113-206-9, INSPEC Accession Number:

6734866

[2]. Joseph Feller, Brian Fitzgerald. “A

Framework Analysis of the Open Source

Software Development Paradigm” Published In

ICIS '00 Proceedings of the twenty first

international conferences on Information

System, Pages 58 - 69 Publication Date: 10 Dec

2012

[3]. Stefan Koch and Georg Schneider, “Effort,

Co-Operation and Co-Ordination in an Open

Source Software Project: GNOME” Date of

Conference: 8 Feb. 2002, Pages: 27 – 42

[4]. Yunwen Ye, “Toward an understanding of

the motivation of open source software

developers” Date of Conference: 3-10 May

2003, Pages 419 - 429, Print ISBN: 0-7695-

1877-X, INSPEC Accession Number: 8064388).

[5]. Godfrey, M.W; “Evolution in open source

software: a case study” Publication Date: 11-14

Oct 2000, Pages 131 - 142, E-ISBN: 1063-6773,

Print ISBN: 0-7695-0753-0, INSPEC Accession

Number: 6771737)

[6]. Georg von Krogh. ; “Community, joining,

and specialization in open source software

innovation: a case study” Date of Conference:

19 June 2003, Pages 1141 – 1152

[7]. Guido Hertel, Sven Niedner; “Motivation of

software developers in Open Source projects”

Date of Conference: 12 April 2003, Pages 141 –

152

[8] Georg Von Krogh; “Special issue on open

source software development” Vol 32, Issue 7,

Date of Conference: July 2003, Pages 1149 –

1157

[9] Andrea Bonaccorsi, Cristina Rossi; “Why

Open Source software can succeed” Vol 32,

Issue 7, and Date of Conference: July 2003,

Pages 1243 – 1258

[10] Siobhán O’Mahony; “Guarding the

commons: how community managed software

projects protect their work” Vol 32, Issue 7,

Date of Conference: 28 May 2003, Pages 1179 –

1198

[11] David Zeitlyn; “Gift economies in the

development of open source software:

anthropological reflections” Vol 32, Issue 7,

Date of Conference: 10 April 2003, Pages 1287

– 1291

[12] Nikolaus Franke, Eric von Hippel;

“Satisfying heterogeneous user needs via

innovation toolkits: the case of Apache security

software” Vol 32, Issue 7, Date of Conference:

29 May 2003, Pages 1199 – 1215

[13] Audris Mockus; “A case study of open

source software development: the Apache

server” ICSE '00 Proceedings of the 22nd

international conference on Software, Date of

Conference: 1 June 2000, Pages 263 – 272

[14] Gacek, C; “The many meanings of open

source” Publication Date: 9 Aug 2004, Pages 34

- 40, Print ISBN: 0740-7459, INSPEC

Accession Number: 7949988)

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Paracha,%20M.A..QT.&searchWithin=p_Author_Ids:38201609900&newsearch=true

