

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1671

Design of a Parallel Self-Timed Adder using Recursive Approach

Nalamala Ramya

, B. Baloji Naik , K. Amit Bindaj

ramya.nalamala@gmail.com, balaji.nb7@gmail.com
1MTECH, Sai Tirumala NVR Engineering College, Jonnalagadda, Narasaraopet, Guntur, Andhra Pradesh, India

2Associate Professor, Dept of ECE, Sai Tirumala NVR Engineering College, Jonnalagadda, Narasaraopet, Guntur, Andhra

Pradesh, India
3HOD, Dept of ECE, Sai Tirumala NVR Engineering College, Jonnalagadda, Narasaraopet, Guntur, Andhra Pradesh, India

Abstract: Many pipelined adaptive signal

processing systems are subject to a trade-off between

throughput and signal processing performance

incurred by the pipelined adaptation feedback loops.

In the conventional synchronous design regime, such

throughput/performance trade-off is typically fixed

since the pipeline depth is usually determined in the

design phase and remains unchanged in the run time.

With this motivation, we propose to apply self-timed

pipeline, an alternative to synchronous pipeline, to

implement the pipelined adaptive signal processing

systems, in which the pipeline depth can be

dynamically changed to realize run-time configurable

throughput/performance trade-offs. Based on a well-

known high speed self-timed pipeline style, we

developed architecture and circuit level design

techniques to implement the self-timed pipelined

adaptation feedback loop with configurable pipeline

depth.

The data transfer rate in hard disk varies as

the read head moves among tracks with different

distance from the center of the disk platter. By

adjusting the pipeline depth on-the-fly, the DLMS

equalizer can dynamically track the best equalization

performance allowed by the varying data transfer

rates. Simulation result shows a significant

performance improvement compared with its

synchronous counterpart.

Keywords: Manchester coding, Encoder, Decoder,

NRZ, Moore’s law, UART, clock frequency.

I. INTRODUCTION

Over the last two decades, adaptive signal

processing has developed into a self-contained field

[1], [2] that finds wide range of real-life applications

such as adaptive equalization, noise and echo

cancellation, linear predictive coding, and adaptive

beam-forming. Adaptive signal processing algorithms

are characterized by their recursive operations for

realizing algorithmic self-designing/adaptation.

To realize high-throughput VLSI

implementation of adaptive signal processing

algorithms, architecture-level technique pipelining is

typically used [3]. Pipelined adaptive signal

processing systems are essentially subject to a trade-

off between system throughput and signal processing

performance, i.e., deeper pipelined adaptation

feedback loop can realize higher throughput, but the

delayed feedback will incur larger performance

degradation. It should be pointed out that, for other

recursive algorithms such as infinite impulse

response (IIR) filtering and Viterbi algorithm, direct

pipelining may simply ruin their functionality and

appropriate algorithm-level modification is required

for the use of pipelining.

A pipelined adaptive signal processing

algorithm implemented using the conventional

synchronous pipeline typically has a fixed pipeline

depth that is determined in the design phase to

accommodate the highest run-time throughput

requirement. Although it is possible to on-the-fly

configure the pipeline depth of synchronous pipeline

by selectively bypassing certain levels of registers,

this is very inflexible and cannot realize fine-grain

graceful configuration on the throughput/performance

trade-offs. For example, consider an 8-stage pipelined

recursive adaptation loop in which the registers are

almost evenly placed along the loop for maximizing

the throughput. If we bypass one level of registers to

realize a 7-stage pipeline, the delay of the critical

path may double and the throughput will reduce

almost by half.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1672

 Self-timed pipeline [4], [5] works in a

different way from its synchronous counterpart.

Without a common and discrete notion of time, self-

timed pipeline relies on the handshake between

components to perform the synchronization and

communication. Each distinct data propagating

through a self timed pipeline is conventionally called

a token. The pipeline depth of a self-timed pipeline

simply equals the number of tokens present in the

pipeline at the same time. Hence, we can dynamically

configure the pipeline depth by controlling the

number of tokens present in the pipeline. This

property of self-timed pipeline has been exploited in

the design of a mixed synchronous-asynchronous FIR

filter that can support variable latency (in terms of

clock cycles) [6] and power management of an

embedded, single-issue processor [7].

In pipelined adaptive signal processing

systems, the pipeline depth of the adaptation

feedback loops is the key to tune the inherent tradeoff

between throughput and signal processing

performance. This directly motivates us to apply self-

timed pipeline for the implementation of adaptive

signal processing systems to realize gracefully

configurable throughput/performance tradeoff. This

can be leveraged to improve the overall system

performance in many circumstances. For example,

for adaptive signal processing systems with variable

data rate, we can dynamically adjust the pipeline

depth to the minimum allowable value according to

the current data rate to realize the best signal

processing performance. Although the basic idea of

the above design approach is simple and intuitive,

how to implement it in the real systems involves the

following three critical design issues:

1) What type of self-timed pipeline structure

should be used? Clearly, to justify the practicality of

this design approach, the employed self-timed

pipeline must be able to support the same (or

comparable) throughput as its synchronous

counterpart when they have the same pipeline depth.

This means that the recursive self-timed pipeline data

path should have the same (or comparable)

propagation delay as its synchronous counterpart.

This is a very strict requirement since most self-timed

pipeline design schemes involve extra delay overhead

for realizing self-timed handshake and have the

longer latency than their synchronous counterparts,

although they can support very fine-grain pipeline to

realize high throughput. In this work, we propose to

use the well-known Ted William’s high-speed self-

timed pipeline [4], [8] because of its zero delay-

overhead feature (i.e., no extra handshake delay is

incurred when data propagate through the pipeline).

Hence the zero-delay-overhead pipeline can achieve

the same latency performance as its synchronous

counterpart.

2) How to realize the self-timed data flow

synchronization in the recursive adaptation loop? In

self-timed data path, synchronization of parallel

computational threads relies on forks and joins,

where fork refers to a stage with one input channel

and multiple output channels and join refers to a

stage with multiple input channels and a single output

channel. The recursive adaptation loop of adaptive

signal processing algorithms contains many forks and

joins. However, like many other self-timed pipeline

styles, the zero-delay-overhead self-timed pipeline

was initially proposed for linear datapath (i.e.,

without forks and joins). Therefore, it must be

appropriately modified to support forks and joins.

3) How to realize run-time addition/removal

of tokens in order to change the pipeline depth? In a

feed forward only data path, the pipeline depth can be

readily changed by adjusting the input data rate.

However, as we will show later, it is not trivial to

change the pipeline depth in recursive adaptation

loops. We have to design some special circuit

elements that can be placed on the recursive

adaptation loop to realize run-time addition/removal

of tokens.

II. BACKGROUND

This section briefly describes the zero-delay-

overhead self timed pipeline according to [4] and

discusses some basic concepts and properties of self-

timed pipeline. For detailed discussion on self-timed

design, readers are referred to [5]. Fig. 1(a) shows the

structure of a zero-delay-overhead self timed

pipeline, where the function block at each pipeline

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1673

stage is implemented using dynamic differential

cascode voltage switch logic (DCVSL) [12] as

illustrated in Fig. 1(b). The data validity information

in support of self-timed operation is embedded into

the dual-rail signaling of the DCVSL logic: When the

dual-rail output F and F are both 0, it represents an

invalid datum; when one of F and F switches to 1

during evaluation (EN=1), it represents a valid datum

(1 or 0). The completion detector (CD) at each stage,

as shown in Fig. 1(a), generates 1 when it detects

valid data, otherwise generates 0.

The basic idea of zero-delay-overhead self-

timed pipeline is to make each DCVSL stage keep

ready-to-evaluate status so that it can start the

evaluation as soon as tokens arrive, hence tokens can

propagate through the pipeline without being blocked

(or delayed) by handshake. According to the pipeline

as shown in Fig. 1(a), the operation of zero-delay-

overhead self-timed pipeline can be described as

follows: The pipeline is initialized in such a way that

each stage generates invalid output data (i.e., each

ACKi is 0) and is ready to evaluate (i.e., each ENi is

1). Once valid data enter the pipeline and reach stage

n, stage n starts the evaluation; after finishing the

evaluation, it outputs valid data to its successor (i.e.,

stage n + 1) that will subsequently start the

evaluation. The output valid data of stage n will

invoke ACKn switch from 0 to 1. As both EN n and

ACK n are 1, according to Fig. 1(a), ENn−1 will

switch from 1 to 0, leading to the precharge of stage n

− 1. In the same manner, after the stage n + 1 finishes

the evaluation and generates valid data, stage n + 2

will start to evaluate and stage n will be precharged

(i.e., ENn switches from 1 to 0). Clearly, ENn=0 will

make ENn−1 switch back to 1 so that stage n − 1

becomes ready to receive and evaluate new valid

data. In this way, valid data can propagate through

the pipeline data path. The name zero-delay overhead

comes from the fact that the forward propagation

latency exactly equals the function block latency

without any extra delay incurred by self-timed

handshake as in many other self-timed pipeline

design styles.

Fig. 1: (a) Zero-delay-overhead self-timed pipeline

structure, and (b) DCVSL structure.

Such high speed performance comes at the

cost of degraded robustness, i.e., to guarantee the

correct functionality, the precharge of a stage must be

faster than the evaluation of its successor. This

assumption is practically reasonable and can be easily

satisfied in the real implementations. Finally, we note

that the dual-rail dynamic logic DCVSL is self-

consistent with such zero-delay-overhead self-timed

handshake and can provide a 2x speed performance

advantage compared with conventional static CMOS

logic. As the cost, dynamic circuits generally suffer

from higher power dissipation and less noise

immunity.

III. DESIGN OF PASTA

In this section, the architecture and theory

behind PASTA is presented. The adder first accepts

two input operands to perform half additions for each

bit. Subsequently, it iterates using earlier generated

carry and sums to perform half-additions repeatedly

until all carry bits are consumed and settled at zero

level.

A. Architecture of PASTA

The general architecture of the adder is

shown in Fig. 1. The selection input for two-input

multiplexers corresponds to the Req handshake signal

and will be a single 0 to 1 transition denoted by SEL.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1674

It will initially select the actual operands during

SEL=0and will switch to feedback/carry paths for

subsequent iterations using SEL=1. The feedback

path from the HAs enables the multiple iterations to

continue until the completion when all carry signals

will assume zero values

Fig. 2: General block diagram of PASTA

B. State Diagrams

In Fig. 3, two state diagrams are drawn for

the initial phase and the iterative phase of the

proposed architecture. Each state is represented by

(Ci+1Si) pairwhereCi+1, Si represent carry out and

sum values, respectively, from the ith bit adder block.

During the initial phase, the circuit merely works as a

combinational HA operating in fundamental mode. It

is apparent that due to the use of HAs instead of FAs,

state (11) cannot appear.

During the iterative phase (SEL=1), the

feedback path through multiplexer block is activated.

The carry transitions (Ci) are allowed as many times

as needed to complete the recursion. From the

definition of fundamental mode circuits, the present

design cannot be considered as a fundamental mode

circuit as the input–outputs will go through several

transitions before producing the final output. It is not

a Muller circuit working outside the fundamental

mode either as internally; several transitions will take

place, as shown in the state diagram. This is

analogous to cyclic sequential circuits where gate

delays are utilized to separate individual states.

Fig. 3: State diagrams for PASTA. (a) Initial

phase. (b) Iterative phase

C. Recursive Formula for Binary Addition

Let S ji andC j i+1 denote the sum and carry,

respectively, for ith bit at the jth iteration. The initial

condition (j =0) for addition is formulated as follows

The jth iteration for the recursive addition is

formulated by

The recursion is terminated at kth iteration

when the following condition is met:

Now, the correctness of the recursive

formulation is inductively proved as follows.

Theorem 1: The recursive formulation of (1)–(4) will

produce correct sum for any number of bits and will

terminate within a finite time.

Proof: We prove the correctness of the algorithm by

induction on the required number of iterations for

completing the addition (meeting the terminating

condition).

Basis: Consider the operand choices for which no

carry propagation is required, i.e., C0
i = 0 for ∀i,i

∈[0..n]. The proposed formulation will produce the

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1675

correct result by a single-bit computation time and

terminate instantly as (4) is met.

Induction: Assume that Ck
i+1≠0 for something bit at

kth iteration. Let l be such a bit for which Ck
l+1 =1.

We show that it will be successfully transmitted to

next higher bit in the (k+1)th iteration. As shown in

the state diagram, the kth iteration of lth bit state

(Ck
l+1,S

k
l) and (l +1)th bit state Ck

l+2,S
k
l+1) could be in

any of (0,0), (0,1),or(1,0) states. As Ck
l+1 =1, it

implies that Sk
l =0. hence, from (3),Ck+1

l+1 =0 for any

input condition between 0to l bits.

We now consider the (l +1)th bit state (Ck
l+2,S

k
l+1) for

kth iteration. It could also be in any of (0,0),

(0,1),or(1,0) states. In(k+1)th iteration,

the(0,0)and(1,0)states from the kth iteration will

correctly produce output of(0,1) following (2) and

(3). For(0,1) state, the carry successfully propagates

through this bit level following (3).

Thus, all the single-bit adders will

successfully kill or propagate the carries until all

carries are zero fulfilling the terminating condition.

The mathematical form presented above is valid

under the condition that the iterations progress

synchronously for all bit levels and the required input

and outputs for a specific iteration will also be in

synchrony with the progress of one iteration. In the

next section, we present an implementation of the

proposed architecture which is subsequently verified

using simulations.

IV. IMPLEMENTATION

A CMOS implementation for the recursive

circuit is shown in Fig. 3. For multiplexers and AND

gates we have used TSMC library implementations

while for the XOR gate we have used the faster ten

transistor implementation based on transmission gate

XOR to match the delay with AND gates [4]. The

completion detection following (4) is negated to

obtain an active high completion signal (TERM).

This requires a large fan-in n-input NORgate.

Therefore, an alternative more practical pseudo-

nMOS ratioed design is used. The resulting design is

shown in Fig. 3(d).

Using the pseudo-nMOS design, the

completion unit avoids the high fan-in problem as all

the connections are parallel. The pMOS transistor

connected toVDDof this ratio-ed design acts as a load

register, resulting in static current drain when some

of the nMOS transistors are on simultaneously. In

addition to the Cis, the negative of SEL signal is also

included for the TERM signal to ensure that the

completion cannot be accidentally turned on during

the initial selection phase of the actual inputs. It also

prevents the pMOS pull up transistor from being

always on. Hence, static current will only be flowing

for the duration of the actual computation

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1676

Fig. 3: CMOS implementation of PASTA. (a)

Single-bit sum module. (b) 2×1 MUX for the 1 bit

adder. (c) Single-bit carry module. (d) Completion

signal detection circuit.

V. SIMULATION RESULTS

PASTA:

Synthesis Results:

RTL Schematic:

Technology Schematic:

Design Summary:

VI. CONCLUSION

In this paper, for the first time, we propose to

exploit the dynamic pipelining property of self-timed

pipeline to realize reconfigurable

throughput/performance trade-off in pipelined

adaptive signal processing systems. PRML read

channel equalizer is considered in this work as a test

vehicle. For practical implementation, we propose to

use a zero-delay-overhead self timed pipeline style

that supports very high speed operation. We develop

techniques to enable the application of zero delay-

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1677

overhead self-timed pipeline in this context and

realize run-time pipeline depth control. Simulations

under variable data rate scenarios demonstrate a

significant performance gain. It is our hope that this

work will motivate the real life adaptive signal

processing system designers to re-think their design

from a self-timed perspective integrally at the

algorithm, architecture, and circuit levels for potential

system performance improvement.

REFERENCES

[1] B. Widrow and S. D. Stearns, “Adaptive Signal

Processing,” Prentice Hall, 1985.

[2] S. Haykin, “Adaptive filter theory,” Prentice Hall,

1996.

[3] N. R. Shanbhag and K. K. Parhi, “Pipelined

Adaptive Digital Filters,” Kluwer, 1994.

[4] T. Williams, “Self-Timed Pipelines (Chapter 9 in

Design of HighPerformance Microprocessor Circuits

edited by A. Chandrakasan et al.),” John Wiley &

Sons, 2000.

[5] J. Sparso and S. Furber, “Principles of

Asynchronous Circuit Design: A Systems

Perspective,” Kluwer Academic Publishers, 2002.

[6] M. Singh, J. A. Tierno, A. Rylyakov, S. Rylov,

and S. M. Nowick, “An adaptively-pipelined mixed

synchronous-asynchronous digital FIR filter chip

operating at 1.3 gigahertz,” in Proc. Eighth

International Symposium on Asynchronous Circuits

and Systems, April 2002, pp. 84– 95.

[7] A. Efthymiou and J. D. Garside, “Adaptive

pipeline depth control for processor power-

management,” in Proc. IEEE International

Conference on Computer Design: VLSI in Computers

and Processors, Sept. 2002, pp. 454–457.

[8] T. E. Williams and M. A. Horowitz, “A zero-

overhead self-timed 160-ns 54-b CMOS divider,”

IEEE Journal of Solid-State Circuits, vol. 26, no. 11,

pp. 1651–1661, Nov. 1991.

[9] T. D. Howell, W. L. Abbott, and K. D. Fisher,

“Advanced read channels for magnetic disk drives,”

IEEE Transactions on Magnetics, vol. 30, no. 6, pp.

3807–3812, Nov. 1994.

[10] C. Ruemmler and J. Wilkes, “An introduction to

disk drive modeling,” Computer, vol. 27, no. 3, pp.

17–28, March 1994.

[11] Hitachi Global Storage Technologies, “Deskstar

120GXP OEM Specification v4.1,”

http://www.hitachigst.com/tech/techlib.nsf/products/

Deskstar 120GXP, 2003.

