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Abstract: Many pipelined adaptive signal 

processing systems are subject to a trade-off between 

throughput and signal processing performance 

incurred by the pipelined adaptation feedback loops. 

In the conventional synchronous design regime, such 

throughput/performance trade-off is typically fixed 

since the pipeline depth is usually determined in the 

design phase and remains unchanged in the run time. 

With this motivation, we propose to apply self-timed 

pipeline, an alternative to synchronous pipeline, to 

implement the pipelined adaptive signal processing 

systems, in which the pipeline depth can be 

dynamically changed to realize run-time configurable 

throughput/performance trade-offs. Based on a well-

known high speed self-timed pipeline style, we 

developed architecture and circuit level design 

techniques to implement the self-timed pipelined 

adaptation feedback loop with configurable pipeline 

depth.  

The data transfer rate in hard disk varies as 

the read head moves among tracks with different 

distance from the center of the disk platter. By 

adjusting the pipeline depth on-the-fly, the DLMS 

equalizer can dynamically track the best equalization 

performance allowed by the varying data transfer 

rates. Simulation result shows a significant 

performance improvement compared with its 

synchronous counterpart.  

Keywords: Manchester coding, Encoder, Decoder, 

NRZ, Moore’s law, UART, clock frequency. 

 

I.  INTRODUCTION 

Over the last two decades, adaptive signal 

processing has developed into a self-contained field 

[1], [2] that finds wide range of real-life applications 

such as adaptive equalization, noise and echo 

cancellation, linear predictive coding, and adaptive 

beam-forming. Adaptive signal processing algorithms 

are characterized by their recursive operations for 

realizing algorithmic self-designing/adaptation.  

To realize high-throughput VLSI 

implementation of adaptive signal processing 

algorithms, architecture-level technique pipelining is 

typically used [3]. Pipelined adaptive signal 

processing systems are essentially subject to a trade-

off between system throughput and signal processing 

performance, i.e., deeper pipelined adaptation 

feedback loop can realize higher throughput, but the 

delayed feedback will incur larger performance 

degradation. It should be pointed out that, for other 

recursive algorithms such as infinite impulse 

response (IIR) filtering and Viterbi algorithm, direct 

pipelining may simply ruin their functionality and 

appropriate algorithm-level modification is required 

for the use of pipelining.  

A pipelined adaptive signal processing 

algorithm implemented using the conventional 

synchronous pipeline typically has a fixed pipeline 

depth that is determined in the design phase to 

accommodate the highest run-time throughput 

requirement. Although it is possible to on-the-fly 

configure the pipeline depth of synchronous pipeline 

by selectively bypassing certain levels of registers, 

this is very inflexible and cannot realize fine-grain 

graceful configuration on the throughput/performance 

trade-offs. For example, consider an 8-stage pipelined 

recursive adaptation loop in which the registers are 

almost evenly placed along the loop for maximizing 

the throughput. If we bypass one level of registers to 

realize a 7-stage pipeline, the delay of the critical 

path may double and the throughput will reduce 

almost by half. 
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 Self-timed pipeline [4], [5] works in a 

different way from its synchronous counterpart. 

Without a common and discrete notion of time, self-

timed pipeline relies on the handshake between 

components to perform the synchronization and 

communication. Each distinct data propagating 

through a self timed pipeline is conventionally called 

a token. The pipeline depth of a self-timed pipeline 

simply equals the number of tokens present in the 

pipeline at the same time. Hence, we can dynamically 

configure the pipeline depth by controlling the 

number of tokens present in the pipeline. This 

property of self-timed pipeline has been exploited in 

the design of a mixed synchronous-asynchronous FIR 

filter that can support variable latency (in terms of 

clock cycles) [6] and power management of an 

embedded, single-issue processor [7].  

In pipelined adaptive signal processing 

systems, the pipeline depth of the adaptation 

feedback loops is the key to tune the inherent tradeoff 

between throughput and signal processing 

performance. This directly motivates us to apply self-

timed pipeline for the implementation of adaptive 

signal processing systems to realize gracefully 

configurable throughput/performance tradeoff. This 

can be leveraged to improve the overall system 

performance in many circumstances. For example, 

for adaptive signal processing systems with variable 

data rate, we can dynamically adjust the pipeline 

depth to the minimum allowable value according to 

the current data rate to realize the best signal 

processing performance. Although the basic idea of 

the above design approach is simple and intuitive, 

how to implement it in the real systems involves the 

following three critical design issues: 

1) What type of self-timed pipeline structure 

should be used? Clearly, to justify the practicality of 

this design approach, the employed self-timed 

pipeline must be able to support the same (or 

comparable) throughput as its synchronous 

counterpart when they have the same pipeline depth. 

This means that the recursive self-timed pipeline data 

path should have the same (or comparable) 

propagation delay as its synchronous counterpart. 

This is a very strict requirement since most self-timed 

pipeline design schemes involve extra delay overhead 

for realizing self-timed handshake and have the 

longer latency than their synchronous counterparts, 

although they can support very fine-grain pipeline to 

realize high throughput. In this work, we propose to 

use the well-known Ted William’s high-speed self-

timed pipeline [4], [8] because of its zero delay-

overhead feature (i.e., no extra handshake delay is 

incurred when data propagate through the pipeline). 

Hence the zero-delay-overhead pipeline can achieve 

the same latency performance as its synchronous 

counterpart. 

2) How to realize the self-timed data flow 

synchronization in the recursive adaptation loop? In 

self-timed data path, synchronization of parallel 

computational threads relies on forks and joins, 

where fork refers to a stage with one input channel 

and multiple output channels and join refers to a 

stage with multiple input channels and a single output 

channel. The recursive adaptation loop of adaptive 

signal processing algorithms contains many forks and 

joins. However, like many other self-timed pipeline 

styles, the zero-delay-overhead self-timed pipeline 

was initially proposed for linear datapath (i.e., 

without forks and joins). Therefore, it must be 

appropriately modified to support forks and joins.  

3) How to realize run-time addition/removal 

of tokens in order to change the pipeline depth? In a 

feed forward only data path, the pipeline depth can be 

readily changed by adjusting the input data rate. 

However, as we will show later, it is not trivial to 

change the pipeline depth in recursive adaptation 

loops. We have to design some special circuit 

elements that can be placed on the recursive 

adaptation loop to realize run-time addition/removal 

of tokens. 

II. BACKGROUND 

This section briefly describes the zero-delay-

overhead self timed pipeline according to [4] and 

discusses some basic concepts and properties of self-

timed pipeline. For detailed discussion on self-timed 

design, readers are referred to [5]. Fig. 1(a) shows the 

structure of a zero-delay-overhead self timed 

pipeline, where the function block at each pipeline 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 1673 

stage is implemented using dynamic differential 

cascode voltage switch logic (DCVSL) [12] as 

illustrated in Fig. 1(b). The data validity information 

in support of self-timed operation is embedded into 

the dual-rail signaling of the DCVSL logic: When the 

dual-rail output F and F are both 0, it represents an 

invalid datum; when one of F and F switches to 1 

during evaluation (EN=1), it represents a valid datum 

(1 or 0). The completion detector (CD) at each stage, 

as shown in Fig. 1(a), generates 1 when it detects 

valid data, otherwise generates 0.  

The basic idea of zero-delay-overhead self-

timed pipeline is to make each DCVSL stage keep 

ready-to-evaluate status so that it can start the 

evaluation as soon as tokens arrive, hence tokens can 

propagate through the pipeline without being blocked 

(or delayed) by handshake. According to the pipeline 

as shown in Fig. 1(a), the operation of zero-delay-

overhead self-timed pipeline can be described as 

follows: The pipeline is initialized in such a way that 

each stage generates invalid output data (i.e., each 

ACKi is 0) and is ready to evaluate (i.e., each ENi is 

1). Once valid data enter the pipeline and reach stage 

n, stage n starts the evaluation; after finishing the 

evaluation, it outputs valid data to its successor (i.e., 

stage n + 1) that will subsequently start the 

evaluation. The output valid data of stage n will 

invoke ACKn switch from 0 to 1. As both EN n and 

ACK n are 1, according to Fig. 1(a), ENn−1 will 

switch from 1 to 0, leading to the precharge of stage n 

− 1. In the same manner, after the stage n + 1 finishes 

the evaluation and generates valid data, stage n + 2 

will start to evaluate and stage n will be precharged 

(i.e., ENn switches from 1 to 0). Clearly, ENn=0 will 

make ENn−1 switch back to 1 so that stage n − 1 

becomes ready to receive and evaluate new valid 

data. In this way, valid data can propagate through 

the pipeline data path. The name zero-delay overhead 

comes from the fact that the forward propagation 

latency exactly equals the function block latency 

without any extra delay incurred by self-timed 

handshake as in many other self-timed pipeline 

design styles.  

 

 
Fig. 1: (a) Zero-delay-overhead self-timed pipeline 

structure, and (b) DCVSL structure. 

Such high speed performance comes at the 

cost of degraded robustness, i.e., to guarantee the 

correct functionality, the precharge of a stage must be 

faster than the evaluation of its successor. This 

assumption is practically reasonable and can be easily 

satisfied in the real implementations. Finally, we note 

that the dual-rail dynamic logic DCVSL is self-

consistent with such zero-delay-overhead self-timed 

handshake and can provide a 2x speed performance 

advantage compared with conventional static CMOS 

logic. As the cost, dynamic circuits generally suffer 

from higher power dissipation and less noise 

immunity. 

III.   DESIGN OF PASTA 

In this section, the architecture and theory 

behind PASTA is presented. The adder first accepts 

two input operands to perform half additions for each 

bit. Subsequently, it iterates using earlier generated 

carry and sums to perform half-additions repeatedly 

until all carry bits are consumed and settled at zero 

level. 

A. Architecture of PASTA 

The general architecture of the adder is 

shown in Fig. 1. The selection input for two-input 

multiplexers corresponds to the Req handshake signal 

and will be a single 0 to 1 transition denoted by SEL. 
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It will initially select the actual operands during 

SEL=0and will switch to feedback/carry paths for 

subsequent iterations using SEL=1. The feedback 

path from the HAs enables the multiple iterations to 

continue until the completion when all carry signals 

will assume zero values 

 
Fig. 2: General block diagram of PASTA 

B. State Diagrams 

In Fig. 3, two state diagrams are drawn for 

the initial phase and the iterative phase of the 

proposed architecture. Each state is represented by 

(Ci+1Si) pairwhereCi+1, Si represent carry out and 

sum values, respectively, from the ith bit adder block. 

During the initial phase, the circuit merely works as a 

combinational HA operating in fundamental mode. It 

is apparent that due to the use of HAs instead of FAs, 

state (11) cannot appear. 

During the iterative phase (SEL=1), the 

feedback path through multiplexer block is activated. 

The carry transitions (Ci) are allowed as many times 

as needed to complete the recursion. From the 

definition of fundamental mode circuits, the present 

design cannot be considered as a fundamental mode 

circuit as the input–outputs will go through several 

transitions before producing the final output. It is not 

a Muller circuit working outside the fundamental 

mode either as internally; several transitions will take 

place, as shown in the state diagram. This is 

analogous to cyclic sequential circuits where gate 

delays are utilized to separate individual states. 

 
Fig. 3: State diagrams for PASTA. (a) Initial 

phase. (b) Iterative phase 

C. Recursive Formula for Binary Addition 

Let S ji andC j i+1 denote the sum and carry, 

respectively, for ith bit at the jth iteration. The initial 

condition (j =0) for addition is formulated as follows  

 

The jth iteration for the recursive addition is 

formulated by 

 

The recursion is terminated at kth iteration 

when the following condition is met: 

 

Now, the correctness of the recursive 

formulation is inductively proved as follows.  

Theorem 1: The recursive formulation of (1)–(4) will 

produce correct sum for any number of bits and will 

terminate within a finite time. 

Proof: We prove the correctness of the algorithm by 

induction on the required number of iterations for 

completing the addition (meeting the terminating 

condition). 

Basis: Consider the operand choices for which no 

carry propagation is required, i.e., C0
i = 0 for ∀i,i 

∈[0..n]. The proposed formulation will produce the 
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correct result by a single-bit computation time and 

terminate instantly as (4) is met. 

Induction: Assume that Ck
i+1≠0 for something bit at 

kth iteration. Let l be such a bit for which Ck
l+1 =1. 

We show that it will be successfully transmitted to 

next higher bit in the (k+1)th iteration. As shown in 

the state diagram, the kth iteration of lth bit state 

(Ck
l+1,S

k
l) and (l +1)th bit state Ck

l+2,S
k
l+1) could be in 

any of (0,0), (0,1),or(1,0) states. As Ck
l+1 =1, it 

implies that Sk
l =0. hence, from (3),Ck+1

l+1 =0 for any 

input condition between 0to l bits. 

We now consider the (l +1)th bit state (Ck
l+2,S

k
l+1) for 

kth iteration. It could also be in any of (0,0), 

(0,1),or(1,0) states. In(k+1)th iteration, 

the(0,0)and(1,0)states from the kth iteration will 

correctly produce output of(0,1) following (2) and 

(3). For(0,1) state, the carry successfully propagates 

through this bit level following (3). 

Thus, all the single-bit adders will 

successfully kill or propagate the carries until all 

carries are zero fulfilling the terminating condition. 

The mathematical form presented above is valid 

under the condition that the iterations progress 

synchronously for all bit levels and the required input 

and outputs for a specific iteration will also be in 

synchrony with the progress of one iteration. In the 

next section, we present an implementation of the 

proposed architecture which is subsequently verified 

using simulations. 

IV. IMPLEMENTATION 

A CMOS implementation for the recursive 

circuit is shown in Fig. 3. For multiplexers and AND 

gates we have used TSMC library implementations 

while for the XOR gate we have used the faster ten 

transistor implementation based on transmission gate 

XOR to match the delay with AND gates [4]. The 

completion detection following (4) is negated to 

obtain an active high completion signal (TERM). 

This requires a large fan-in n-input NORgate. 

Therefore, an alternative more practical pseudo-

nMOS ratioed design is used. The resulting design is 

shown in Fig. 3(d).  

Using the pseudo-nMOS design, the 

completion unit avoids the high fan-in problem as all 

the connections are parallel. The pMOS transistor 

connected toVDDof this ratio-ed design acts as a load 

register, resulting in static current drain when some 

of the nMOS transistors are on simultaneously. In 

addition to the Cis, the negative of SEL signal is also 

included for the TERM signal to ensure that the 

completion cannot be accidentally turned on during 

the initial selection phase of the actual inputs. It also 

prevents the pMOS pull up transistor from being 

always on. Hence, static current will only be flowing 

for the duration of the actual computation 

 

 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 1676 

 

 
Fig. 3: CMOS implementation of PASTA. (a) 

Single-bit sum module. (b) 2×1 MUX for the 1 bit 

adder. (c) Single-bit carry module. (d) Completion 

signal detection circuit. 

V.  SIMULATION RESULTS 

PASTA: 

 

Synthesis Results: 

RTL Schematic: 

 

Technology Schematic: 

 

Design Summary: 

 

VI. CONCLUSION 

In this paper, for the first time, we propose to 

exploit the dynamic pipelining property of self-timed 

pipeline to realize reconfigurable 

throughput/performance trade-off in pipelined 

adaptive signal processing systems. PRML read 

channel equalizer is considered in this work as a test 

vehicle. For practical implementation, we propose to 

use a zero-delay-overhead self timed pipeline style 

that supports very high speed operation. We develop 

techniques to enable the application of zero delay-
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overhead self-timed pipeline in this context and 

realize run-time pipeline depth control. Simulations 

under variable data rate scenarios demonstrate a 

significant performance gain. It is our hope that this 

work will motivate the real life adaptive signal 

processing system designers to re-think their design 

from a self-timed perspective integrally at the 

algorithm, architecture, and circuit levels for potential 

system performance improvement. 
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