

A Novel Design of Cryptography Algorithm for Data Security using RRG

P.Venkateswara Reddy & B.SudhaKiran

M.Tech(VLSI Design) Dept of E.C.E (VLSI), Lenora College of Engineering, Rampachodavaram, East Godavari, Andhra Pradesh-533288.

pvreddy423@gmail.com

AMIETE,M.M.Tech(ES) Associate Professor, Lenora College of Engineering, Rampachodavaram East Godavari, Andhra Pradesh-533288 sudhakiran18@gmail.com

Abstract—*Reversible* logic is the recent advancement in the electronics field as it shows low heat dissipating features and low power consumption. On the other hand, reversible logic decrease dissipation circuits can energy theoretically to zero. Recently an approach to encryption/decryption based on using reversible logic circuits has been proposed. This paper presents a solution to designing encryption and decryption schemes based entirely on reversible logic. In our solution a building block of an encryption and decryption scheme is a cascade of 4-input reversible gates. In this way the building block can perform any reversible 4-variable function. For this purpose a reconfigurable reversible gate (RRG) has been proposed. The design of such a reconfigurable gate built from standard reversible gates, i.e. NOT, CNOT, Toffoli and Fredkin gates, is presented. In the paper a complete cryptography scheme for encryption/decryption of 9-bit data is described using Verilog HDL language and its quantum cost is calculated. Simulation and verification of this scheme is presented on Xilinx ISE 14.7.

Index Terms—encryption, decryption, reversible logic circuits, reconfigurable reversible gate;

I. INTRODUCTION

The growing technologies have increased the high performance demand of computing. According to G. Moore's low [1], number of transistor counts to be integrated per unit area in devices will almost double in one and half year. To achieve high speed computation, high packaging density in the logic circuits is required which results in more heat dissipation. The conventional computing is found unable to deal with low power, high compaction and heat dissipation issues of the current computing environment. Recently, it has been applied to cryptography [2-10]. A circuit (gate) is called reversible if there is a one-to-one correspondence between its inputs and outputs. Research on reversible logic circuits is motivated by advances in quantum computing, nanotechnology and lowpower design. Therefore, reversible logic synthesis has been intensively studied recently. The attention is focused mainly on the synthesis

of circuits built from the NCT library of gates, i.e. NOT. CNOT and Toffoli gates. Modern simulation tools based on FPGAs have enabled modeling of such circuits [11]. The design of a cipher in VHDL was described [9]. In the paper we study an application of reversible logic to developing encryption circuits. The simple implementation of a cipher using reversible circuits was the aim of this work. Each gate used in a cascade of reversible gates is determined by the main key. By choosing different main keys different cascades and different substitution encryption are determined. For this purpose a reconfigurable reversible gate has been proposed. The design of this gate is presented for the first time in the literature. Results of Xilinx ISE based simulation of a simple encryption circuit built from reversible gates are also presented.

The paper is organized as follows. Section 2 recalls basic concepts of reversible logic. In Section 3 design of reconfigurable reversible gate (RRG) is introduced. In Section 4 an implementation of encryption/decryption by cascades of RRG gates is given. In Section 5 simulation of the cipher in Xilinx ISE is presented. Section 6 summarizes the paper.

II. REVERSIBLE DEFINATIONS

Let us recall basic notions of reversible logic gates and circuits.

Definition 1. A completely specified n-input noutput Boolean function (referred to as n*nfunction) is called reversible if it maps each input assignment into a unique output assignment. There are 2n ! reversible n*n Boolean functions. For n = 3 this number equals to 40,320, for n = 4is greater than 2Â1013.

Definition 2. An n-input n-output (n^*n) gate (or circuit) is reversible if it realizes an n*n reversible function. In a reversible circuit fanout of each gate output is always equal to 1. As a consequence n*n reversible circuits can be only built as a cascade of k*k reversible gates (k \leq n).

Definition 3. A set of reversible gates that can be used to build reversible circuits is called a gate library.

Many gate libraries have been examined in the literature. The so called NCT library for $n \le 4$ consists of 1*1 NOT, 2*2 CNOT and 3*3 and 4*4 TOFFOLI gates. Definitions of mixed polarity generalizations of these gates as well as 3*3 Fredkin gate are given below.

Definition 4. Let $ai \in \{0, 1\}$ for i = 1, 2, 3, 4, and let x' denotes negation of x.

1*1 NOT(x1) gate performs the operation (x1) - (x1 \oplus 1),

2*2 CNOT(x1, x2) gate performs the operation (x1, x2) -(x1, (x1 \oplus a1) \oplus x2),

3*3 TOFFOLI(x1, x2, x3) gate performs the operation (x1, x2, x3)- (x1, x2, (x1 \oplus a1)(x2 \oplus a2) \oplus x3),

4*4 TOFFOLI4(x1, x2, x3, x4) gate performs the operation (x1, x2, x3, x4) -(x1, x2, x3, (x1 \oplus a1)(x2 \oplus a2)(x3 \oplus a3) \oplus x4),

3*3 FREDKIN(x1, x2, x3) gate performs the operation (x1, x2, x3) -(x1, x1' x2 + x1 x3, x1 x2 + x1' x3).

The above defined i*i gates, where i = 1, 2, 3, 4, (in short, denoted by N, C, T, T4 and F, respectively) invert input xi if and only if the values of inputs x1, x2, ..., xi-1 differ from corresponding a1, a2, ..., ai-1 coefficients, passing these inputs unchanged to corresponding outputs. Signals which are passed unchanged from input to output of the gate are called control lines. The signal xi which can be modified by the gate is called target. In the Fredkin gate x1 is the control line. When its input signal is 0 then the signals x2 and x3 are passed to outputs unchanged, and when its input signal is 1 then the signals x2 and x3 are swapped.

Some commonly used names for describing control lines have been introduced. If all a1, a2, ..., ai coefficients equals zero, the gate has positive-polarity control lines. Alternatively, if all a1, a2, ..., ai coefficients equals one, the gate has negativepolarity control lines. These names come from expanding the expressions for the functions realized by the gate. Positivepolarity means that all inputs which correspond to control lines directly affect the target line. Negative-polarity means that the target line is affected only if the values of control lines are equal to 0. The term mixed-polarity control lines is used if all values of the coefficients a1, a2, ..., ai are allowed to be either 0 or 1. Pictorial symbols of the above defined positive-polarity gates are shown in Fig. 1, and the pictorial symbol of Fredkin gate is shown in Fig. 2.

Fig. 1. Graphical representations of reversible gates N3, C3-1 and T3-210.

X0 —	×	Y0
X1 —	*	Y1
x2-	-	Y2

Fig. 2. Graphical representation of Fredkin gate F10-2.

Pictorial symbols of mixed-polarity gates are shown in Fig. 4 (gates B3, B4, B5, B7, B8 and B9). In the description of a gate from NCT library, e.g. T3-210 (see Fig. 1), the first number appearing after the gate's name (in this case: T) denotes the target line (3) while the numbers appearing after the hyphen denote control lines (2, 1, 0). In the description of a Fredkin gate, e.g.

F10-2, the first two numbers appearing after the gate's name (in this example: F) denote controlled (swapping) lines (1 and 0) while the number appearing after the hyphen denotes control line (2). The number of different positive-polarity gates belonging to NCT library which can appear in 4-line circuits is 32 (4 NOT gates, 12 CNOT gates, 12 Toffoli gates and 4 T4 gates).

III. IMPLEMENTATION OF RRG

Reconfigurable reversible gate (RRG) replaces one of 32 gates from the NCT library in the cipher. This is why besides 4 inputs transferring information data there have to be five lines for choosing one of 32 types of gates. At the present state-of-the-art of reversible logic synthesis it is not possible to optimally synthesize 9-input reversible gate. After considering many variants of gates RRG the circuit shown in Fig. 3 has been constructed with the relatively small quantum cost equal to 79.

Fig. 3. General scheme of Reconfigurable Reversible Gate (RRG).

The first three Fredkin gates B0, B1 and B2 select the input signal which will be modified by the 4input Toffoli gate B6. The next three 3-input Toffoli gates B3, B4 and B5 feed control signals for the gate B6 that are selected by the given configuration either input or constant signals. Thus functioning of the gate B6 is determined by signals K. Gates B7, B8 and B9 reconstruct initial constant signals, while gates B10, B11 and B12 fix the order of output signals Y3, Y2, Y1 and Y0. The RRG built from basic reversible gates is shown in Fig. 4.

Fig. 4. Reconfigurable Reversible Gate (RRG).

For simulation of RRG a procedure B_FREDKIN for representing functioning of Fredkin gate and a procedure B_NCT for representing any 4-input

International Journal of Research Available at https://edupediapublications.org/journals e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 05 Issue 04 February 2018

gate from NCT library have been constructed in VHDL and shown in Tables I and II.

TABLE I. PROCEDURE B_FREDKIN

procedure B_FREDKIN
(X : in std_logic_vector; input line
C : in integer; number of control line
L1 : in integer; number of first line
L2 : in integer; number of second line
Y : out std_logic_vector) output line
is
begin
if X(C)='0' then Y:=X;
else Y:=X; Y(L1):=X(L2);
Y(L2):=X(L1);
end if;
end procedure B_FREDKIN;

In the procedure B_NCT signals C1, C2 and C3 determine number of line to which control inputs of Toffoli gate are attached while the number of controlled line is determined by signal C0. Binary signals N1, N2 and N3 determine polarization of the control signal Ci. Value N1 = 1 indicates that i-th signal is a negative control signal.

TABLE II. PROCEDURE B_NCT

```
procedure B NCT
   (X : in std_logic_vector; -- input line
   C1 : in integer;
                      -- control line
   N1 : in std_logic; -- negative control line C1
   C2 : in integer;
                       -- control line
   N2 : in std_logic; -- negative control line C2
                       -- control line
   C3 : in
            integer;
   N3 : in std_logic; -- negative control line C3
   CO : in integer; -- control line output
   Y : out std_logic_vector) -- output line
begin
 if
       C1=12 then Y:=X; Y(CO):= not X(CO);
 elsif C2=12 then Y:=X;
                  Y(CO) := (X(C1) xor N1) xor X(CO);
 elsif C3=12 then Y:=X;
                  Y(CO) := ((X(C1) xor N1)
                      and (X(C2) xor N2))xor X(CO);
             else Y:=X;
                  Y(CO) := ((X(C1) xor N1)
                      and (X(C2) xor N2)
                      and (X(C3) xor N3))xor X(CO);
 end if:
end procedure B_NCT;
```

The above presented procedures were used for describing the gate RRG as shown below.

KX(0):=(KEY(0)&KEY(1)&KEY(2)&KEY(3)& KEY(4) & "111" & DIN(0)&DIN(1)&DIN(2)&DIN(3));

B_FREDKIN (KX(0),0,10,11, KX(1)); B_FREDKIN (KX(1),0, 8, 9, KX(2));

B_FREDKIN (KX(2),1, 9,11, KX(3)); B_NCT (KX(3),2,'0', 8,'1',12,'0', 5,KX(4));

B_NCT (KX(4),3,'0', 9,'1',12,'0', 6,KX(5)); B_NCT (KX(5),4,'0',10,'1',12,'0', 7,KX(6));

B_NCT (KX(6),5,'0', 6,'0', 7,'0',11,KX(7)); B_NCT (KX(7),4,'0',10,'1',12,'0', 7,KX(8));

B_NCT (KX(8),3,'0', 9,'1',12,'0', 6,KX(9)); B_NCT (KX(9),2,'0', 8,'1',12,'0', 5,KX(10));

B_FREDKIN (KX(10),1, 9,11, KX(11)); B_FREDKIN (KX(11),0, 8, 9, KX(12));

B_FREDKIN (KX(12),0,10,11, KX(13));

DOUT(3 downto 0)<=(KX(13)(11) & KX(13)(10) & KX(13)(9) & KX(13)(8));

12-bit word KX is the state of line just before or just after gate and is transferred from i-th to (i+1)-th gate.

IV. DESIGN OF ENCRYPTION BY RRG GATE

General idea of a cipher built from reversible gates was presented in [9]. It is shown in Fig. 5. The basic element of the cipher is a cascade of 16 4-input reversible gates. The same main key is used for encryption and decryption. The order of gates in the cascade for decryption is reversed in comparison with the cascade for encryption what ensures that it transforms ciphertext into plaintext.

It has been proved in [12-13] that optimal circuits for any of the 16! (equal to over 2x1013) require at most 15 4-input gates. Thus the circuit shown in Fig. 6 enables realization of any 4-variable reversible function. The circuit has 80 inputs denoted K (with indexes) that are partitioned into groups with 5 inputs in each of them. A 5-line group $K[(5^{*}(i+1) - 1):5^{*}i]$ is used to configure ith RRG gate. All inputs K are transferred to outputs so they can be reused for controlling the next gate. There are 4 data inputs X[3:0] and three lines with constant inputs (equal to 1) and identical outputs. Detailed description of the main key register as well as the circuit modifying its contents during encryption/decryption are presented in [14].

V. SYNTHESIS AND SIMULATION RESULTS

For encryption and decryption of 5-bit key and two 4-bit ciphers and the main key register were

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 05 Issue 04 February 2018

used.In this section, first we will see the synthesis and simulation of the Encryption and Decryption using reconfigurable reversible gate. Encryption and Decryption using reconfigurable reversible gatesare designed on Xilinx ISE 14.7 with Verilog HDL. The RTL schematics and simulation results of the Proposed Reversible Encryption and Decryptions are shown below.

Fig 7. RTL Schematic of Proposed Reversible Encryption

Fig 8. Internal RTL Schematic of Proposed Reversible Encryption

Fig 9.Technology Schematic of Proposed Reversible Encryption

ISim (P.20131013) - (Default.wcfg)	10 M 10 10 10	ACCOUNTS ON THE OWNER.	Carlor and a second second	law (MCNL)						- 0 ×
😇 File Edit View Simulation Win	ndow Layout Hel	p								_ 8 X
🗋 🤌 🖬 🕾 🕺 🗅 🗅 🗙 🚳	N (A) IN (A)	110 38	0 0 P 12 P	P B P 3	**	63	🖬 🕨 🗚 1.00us	💌 🕼 🛛 🖓 Re-laund	Ы	
Instances and Processes ++ C & X	Objects	+082	< .						2	1,000.000 ns
	Simulation Objects for	rvtf_BNC								
	181818181		Name	Value	Ors		200 ns	400 ns	1600 ns	800 ns
Instance and Process Name D	Carcarcarcarc		γ[3:0]	0001	0000	1200	X		001	
ver_enc ver_enc	Object Name	Value	🖉 🕨 💐 co(2:0)	111	000	X 111	X		11	
D 🗧 ĝibi 🛛 ĝi	▷ → y(3:0)	0001	😂 🕨 📑 ko[4:0]	01001	00000	01111	X	0	1001	
	p a coproj	01003	🙆 🕨 💐 x(3:0)	1110	0000	0110	X		100	
	5 X30	1110	1t > (2.0)	111	000	x		111		
	b 💐 ci[20]	111	🔸 🕨 📑 k(4:0)	01001	00000	01111	X	0	1001	
	b 💐 K(4:0)	01001	-	-1			()			
			1							
			1							
			-							
			El							
			[31]							
					X1: 1,000	000 ns				
< >]			F 4 - F	•	18				× •
🚣 Instanc 🚼 Memory 📔 Source	<		2	Default.v	vcfg					
Console			-A							+0.6×
The R Revenue of American										
This is a Full version of 25m.										
Time resolution is 1 ps										
Simulator is doing circuit initialization process.										
Finished circuit initialization process.										
Console Compliation Log	Breakpoints 🚓 Fir	d in Files Results 🛛 👔 S	Search Results							
Set view such that the entire contents is vi	sible									Sim Time: 1,000,000 ps
			E C				-			14.34
🐨 🕖 🔚 O		i 1 🚺							• •	3 .4 (0 10:50 06-06-2017

Fig 10. Simulation of Proposed Reversible Encryption

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 05 Issue 04 February 2018

Decryption

Fig 12. Internal RTL Schematic of Proposed Reversible Decryption

ISE Project Navigator (P.20131013) - D/2016-2017 leee projects/2016 IEEE PRD/E	CT5\16V14\16V14\ERRG\ERRG.xise - (DEC	Tech1))	
File Edit View Project Source Process Tools Window Layout I	Help		- 0
	N SH D S / M /	· 2 7 V	
Design ++ C 8 × K	ul View		
👕 View: 💌 🏭 Implementation 🔿 🔤 Simulation			
Hierarchy 24			
G PRG			
S CNOT (CNOT_x)			
E CRYPGRPY (CRYPGRPY.//)		0.54.04	
🛃 🛞 💟 u0 - ENC (ENC.v) 📴		나 쓰 ~ 나 ~	
CEVETOGRADUV (CEVETOGRAD Dec (DEC/M)	1	المالي المسترككة المتقا	
ENCDEC (ENCDEC.v)		1 5 5	
- FG (FG.v)		-14	
FREDKIN (FREDKIN.v)			
No Processes Running			
T Processes: ul - DEC			
📆 📃 🚬 Design Summary/Reports		لها ضلالية	
St + W User Constraints		부	
E Synthesize - XST E			
View RTL Schematic			
View Technology Schematic			
Generate Post-Synthesis Si.		- 1 - E	
🕀 🚷 🕺 Implement Design			
Generate Programming File			
Start R Design Pres Libraries Design Summary (Synthesize)	d) 🗌 📄 ENC.v 🔃 🛃 ENC(87.1) 🗌 🔀 ENC (Techi) 🔝 📄 Vef_ENC.V 🗉 🛃	DEC (RTL 1) 🔝 📓 DEC (Tech1) 🔯
Vev by Category			+0.6×
Design Objects of Top Level Block		Properties of Insta	nce: 86/s_and0000392
Instances A Pins A	Signals ^	Name	Value *
- ID- 86/s_and0000391	🐵 👗 DEC	Type	1464
30 B6/s_and0000392		Instance Name	86/s_and0000992
👔 Console 🔕 Errors 🔔 Wannings 🙀 Find in Files Results 🔠 Wewby C	ategory		
Set view such that the entire contents is visible			[228,16]
🚳 🖉 🔚 o 🕥 🖷 📑 🤇			 ▲ ● ● 16:39 ● 06-06-2017

Fig 13.Technology Schematic of Proposed Reversible Decryption

Sim (P.20131013) - (D	lefault.wcfg)	and the state of		10.75	-	ine (MCNU)						
👼 File Edit View S	Simulation Win	dow Layout Help										_ 8 ×
🗋 ờ 🖬 🕹 🛛	🗅 🗅 X 🔇	K (M 10 CH	110 🧟	809	18 1	° 🔊 / 🗟	** 1	$ \hat{f}^{(n)} ^2$	🖬 🕨 📲 1.00us 📼	🔄 II 🗔 Re-laund]	
Instances and Processes	++ ⊡ # ×	Objects	++ [18× 🏓								1,000.000 rs
	RC	Simulation Objects for	vtf_DEC									
1			IB 😫	8	Name	Value	Ons		200 re	400 ns	600 ns	800 ns
Instance and Process Na	ime U	Object Name	Value		> = 3 1(3:0]	1110	0000	0110	x	1	ibo	
Valuet	1	5 2 v20	1110		co[2:0]	011	000	<u> </u>		011		
2 4 900		b a co[2:0]	011		ko[4:0]	01001	00000	01111	<u>x</u>	01	901	
		ko[4:0]	01001	0	x[3:0]	0001	0000	1100	<u>x</u>	0	01	
		> 💕 x(3x)	0001	1	ei[2:0]	111	000			111		
		b = 0[2:0]	111	27	k[4:0]	01001	00000	01111	x	01	001	
		b signal	01001									
				T								
				1								
				3								
				113								
				11								
				121								
							X1-1.000.0	00.~*				
7							4					
R testers ID Menor	nu Scance					Defender.	-					
ee rourt. 10 Hero	/ Canada					Delauru	coy.		•			
Console												+08x
INFO: There is another simul	lation running in th	e same directory. Using a	latabase file name	isim1.wdb.								
This is a Full version of 15m	ux//uerusu)											
Time resolution is 1 ps												
Simulator is doing circuit initia	alization process.											
Hinshed orcuit initialization p	process.											
🔳 Console 📃 Completions Log 🔸 Breakpoints 🙀 Find in Files Results 🥁 Search Results												
Set view such that the entire contents is visible												
A A	1 D		Pa								- 1	16.39
					ISING L							06-06-2017

Fig 14. Simulation of Proposed Reversible Decryption

TABLE III. RLG FACTORS COMPARISONFOR ENCRPTION AND DECRYPTION

DESIGN	GC	CI	GO	QC
ENCRYPTION	13	3	0	79
DECRYPTION	13	3	0	79

Note: Gate count (GC), Garbage Outputs (GO),

ConstantInput (CI) and Quantum Cost (QC)

V. CONCLUSIONS

Firstly we have coded Verilog code for the reversible data encryption and decryption and all the synthesis and simulation results are implemented on Xilinx ISE 14.7. The main aim of the paper is a design of simple reconfigurable reversible gate (RRG) which enables implementation of any of the 32 4-input reversible gates from the NCT library. The design of RRG is presented for the first time in the literature. An application of this gate to implement ciphers for encryption and decryption of binary data is described. Results of encryption and decryption simulation of the cipher built from reversible gates are also presented.

REFERENCES

 A. De Vos, Reversible Computing.
 Fundamentals, Quantum Computing, and Applications. Wiley-VCH, Berlin 2010.

[2] H. Thapliyal and M. Zwolinski,: "Reversible logic to cryptographic hardware: a new paradigm," Proc. 49th International Midwest Conference on Circuits and Systems, s. 342-346, 2006.

[3] N. M. Nayeem, L. Jamal , and H. M. H. Babu, "Efficient reversible Montgomery multiplier and its application to hardware cryptography," Journal of Computer Science, vol. 5, no. 1, pp. 49-56, 2009.

[4] Y. Zhang, Z. Guan, and Z. Nie, "Function modular design of the DES encryption system based on reversible logic gates," Proc. International Conference on Multimedia Communications, pp. 104- 107, 2010.

[5] A. Banerjee, "Reversible cryptographic hardware with optimized quantum cost and delay," Proc. Annual IEEE India Conference, pp. 1-4, 2010.

[6] K. Datta and I. Sengupta, "Applications of reversible logic in cryptography and coding theory (Tutorial)," Proc. Conference on VLSI Design (VLSID), 2013.

[7] K. Datta, V.Shrivastav, I. Sengupta and H. Rahaman, "Reversible logic implementation of AES algorithm," Proc. 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 140-144, 2013.

[8] A.C. Nuthan, C. Nagaraj and V.B. Havyas, "Implementation of Data Encryption Standard Using Reversible Gate Logic," International Journal of Soft Computing and Engineering, vol. 3, no. 3, pp. 270-272, 2013.

[9] A. Skorupski, M. Pawłowski, K. Gracki, and P. Kerntopf, "FPGAbasedmodeling of encryption systems implemented in reversible logic" (in Polish), PomiaryAutomatykaKontrola, vol. 58, no. 7, pp. 620-622, 2012.

[10] A. Skorupski, M. Pawłowski, K. Gracki, and P. Kerntopf, "Reconfiguration of reversible

functions using modeling of gates in FPGA" (in Polish), PomiaryAutomatykaKontrola, vol. 60, no. 9, pp. 471-473, 2014.

[11] M. Pawłowski and A. Skorupski, Design of Complex Digital Devices (in Polish), WKŁ, Warsaw 2010.

[12] O. Golubitsky and D. Maslov, "A study of optimal 4-bit reversible Toffoli circuits and their synthesis," IEEE Transactions on Computers, vol. 61, no. 9, s. 1341-1353, 2012.

[13] M. Szyprowski and P. Kerntopf, "A Study of Optimal 4-bit Reversible Circuit Synthesis from Mixed-Polarity Toffoli Gates," Proc. 12th IEEE Conference on Nanotechnology, 2012.

[14] M. Bryk, "Cipher built from reversible gates" (in Polish), MSc thesis, Institute of Computer Science, Warsaw University of Technology, February 2016. P.Venkateswara Reddy received B.Tech from JNTU Kakinada. Now he is pursuing M. Tech in Electronics and VLSI Systems at Lenora College of Engineering, Rampachodavaram, AP, India.

B.SudhaKiran, AMIETE,M.Tech(ES), currently Working as an Associate Professor, ECE in Lenora College of Engineering,Rampachodavaram, AP, India.

Author's Profile:

