"Some Results on the Dual Space of Normed Almost Linear Space"

Dr. T. Markandeya Naidu

Lecturer in Mathematics, SVCR Govt. Degree College, Palamaner, Andhra Pradesh-517002, India
Email: tmnaidu.maths@yahoo.co.in
Abstract: G. Godini introduced the concept normed almost linear space which generalizes normed linear space. To support the idea that the normed almost linear space is a good concept the notion of a dual space of normed almost linear space X, has been introduced in this paper. In this paper we prove some results like if X is normed almost linear space then i) $V_{X^{*}}$ is a Banach space, ii) If B is a basis of X then for each $b_{0} \in B \backslash V_{X}$ there exists $f \in X^{\#}$ such that $f\left(b_{0}\right)=1$ and $f\left(b_{0}\right)=0$ for each $b \in$ $B \backslash\left\{b_{0}\right\}$. If $b_{0} \in W_{X}$ then $f \in X^{*}$ iii) If W_{X} has a basis, then $X \neq\{0\}$ iv)If B is a basis such that $\operatorname{card}\left(B \mid V_{X}\right)<\infty$, then $X^{*}=\left\{f \in X^{\#}: f \mid V_{X} \in\left(V_{X}\right)^{*}\right\}$ and is total over X andv) If $\left.f \in\left(W_{X}\right)^{*}\right\}$, then there exists $f_{1} \in X^{*}$ such that $f_{1}\left|W_{X}=f,\| \| f_{1}\right|\|=\|\|f\| \mid$ and $f_{1} \mid V_{X}=0$. Using these results we prove that if X is strong normed almost linear space such thatp is a metric and if $x \in X \backslash\left(W_{X}+V_{X}\right), X=\left\{\alpha x_{0}+\mu(-\right.$ $\left.\left.x_{0}\right)+w+v: w \in W_{X}, v \in V_{X}, \alpha, \mu \geq 0\right\}$ then i) for each $f \in\left(V_{X}\right)^{*}$ there exists $f_{1} \in V^{*}$ such that f_{1} $\mid V_{X}=f$ ii) $V_{X} * \neq\{0\}$ and ii) for eachf $\in\left(W_{X}+V_{X}\right)^{*}$ there exists $f_{1} \in X^{*}$ such that $f_{1} \backslash\left(W_{X}+V_{X}\right)=f$.

Keywords:Almost linear space (als), basis of an almost linear space, almost linear functional, norm on an almost linear space, normed almost linear space (nals),strong normed almost linear spaces (snals),the dual space ofnormed almost linear space.

1. Introduction:G. Godini[2] introduced the concept normed almost linear space which generalizes normed linear space. All spaces involved in this chapter are over the real field \mathbb{R}. A normed almost linear space is an almost linear space X together with a functional $\|\|\| \mid.: X \rightarrow \mathbb{R}$ called a norm which satisfies all the axioms of an usual norm on a linear space as well as some addition ones i.e. $|\| x-z| \mid \leq$ $|||x-y|||+|||y-z|||$. Due to the fact that they have weakened the axioms of a linear space but they have strengthen the axioms of the norm. Since the norm of a normed almost linear space X does not generate a metric on X, they considered the strong normed almost linear space which also generalizes the normed linear space. To support the idea that the normed almost linear space is a good concept they introduced the concept of a dual space of normed almost linear space X where the functional on

International Journal of Research
Available at https://edupediapublications.org/journals
X are no longer linear but almost linear which is also a normed almost linear space. This chapter consists three sections.

2. Preliminaries:

2.1: Almost linear space (als): An almost linear space(als) is a non empty setXtogether with two mappings s: $X \mathrm{x} X \rightarrow \mathrm{X}$ and m: $\mathbb{R} \mathrm{x} X \rightarrow X$ satisfying (i) - (viii)below.

For $x, y \in X$ and $\alpha \in \mathbb{R}$ we denote $\mathrm{s}(x, y)$ by $x+y$ and $\mathrm{m}(\alpha, x)$ by αx. Let $x, y, z \in X$ and $\alpha, \beta \in \mathbb{R}$ i) $(x$ $+y)+z=x+(y+z)$ ii) $\quad x+y=y+x$ iii) There exists an element $0 \in X$ such that $x+0=x$ for each $x \in X$. iv) $\alpha(x+y)=\alpha x+\alpha y \quad$ v) $(\alpha+\beta) x=\alpha x+\beta x$ for $\alpha \geq 0, \beta \geq 0$ vi) $\alpha(\beta x)=\alpha \beta($ x), vii) $1 x=x$ and viii) $0 x=0$.

For an almost linear space X we introduce the following two sets
$V_{X}=\{x \in X: x-x=0\} \mathrm{and} W_{X}=\{x \in X: x=-x\}$
2.2: Basis of an almost linear space: A subset B of an almost linear space X is called a basis of X if for each $x \in X \backslash\{0\}$ there existunique sets $\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\} \subset \mathrm{B}$ and $\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right\} \subset \mathbb{R} \backslash\{0\}$ (n depending on x) such that $x=\sum \alpha_{i} \mathrm{~b}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{n})$ where $\alpha_{\mathrm{i}}>0$ for $\mathrm{b}_{\mathrm{i}} \notin \mathrm{V}_{\mathbf{x}}$.
2.2.3: Almost linear functional: Let X be an almost linear space. A function $f: X \rightarrow \mathbb{R}$ is called an almost linear functional if f satisfies the following conditions. For $x, y \in X a n d \alpha(\geq 0) \in \mathbb{R}$

$$
\text { i) } f(x+y)=f(x)+f(y) \text { ii) } f(\alpha x)=\alpha f(x) \text { iii) }-f(-x) \leq f(x) \text { (or) } f(w) \geq 0 \text { for every } w \in W_{X} \text {. }
$$

The set of all almost linear functional defined on an almost linear space X is denoted by $X^{\#}$.
2.4: Norm on an almost linear space: A norm $\|\|\cdot\| \mid$ on an almost linear space X is a function satisfying the following conditions $\mathrm{N}_{1}-\mathrm{N}_{3}$.

Let $x, y, z \in X$ and $\alpha \in \mathbb{R} . \mathrm{N}_{1} \cdot| | x \mid \|=0$ if and only if $x=0$.
$\mathrm{N} 2 .||\alpha x|||=|\alpha| \quad||x| \mid$, and
$\mathrm{N}_{3} .|||x-z||| \leq|||x-y|||+||y-z|| \mid$
2.5: Normed almost linear space (nals): An almost linear space X together with $|\|\cdot\|| \|: X \rightarrow \mathbb{R}$ satisfying $\mathrm{N}_{1}-\mathrm{N}_{3}$ is called a normed almost linear space .

International Journal of Research
2.6: Metric: A metric on normed almost linear space $\mathrm{d}: X \mathrm{x} X \rightarrow \mathbb{R}$ is defined as

2.7: Strong normed almost linear spaces (snals): A strong normed almost linear space is a normed almost linear space X together with a semi-metric ρ on X which satisfies the following conditions.

For $x, y, z \in \mathrm{X}$ and $\alpha \in \mathbb{R}$

$$
\|\|x\|\|-\| \| y\| \| \leq \rho(x, y) \leq\| \| x-y\| \|
$$

ii) $\quad \rho(x+z, y+z) \leq \rho(x, y)$
iii) The function $\alpha \rightarrow \rho(\alpha x, x)$ is continuous at $\alpha=1$
2.8: The dual space: Let $X^{*}=\left\{f \in X^{\#}:\left|\left||f \|| |<\infty\}\right.\right.\right.$, then the space X^{*} together with $\left.|\right||.|| |$ defined by $|| f$ $\mid \|=\sup \{|f(x)|:|||x||| \leq 1\}$ is called the dual space of the normed almost linear space X.

Lemma 2.9: Let X be an almost linear space and let $f \in X^{\#}$. We have $f \in V_{X^{\#}}$ iff f is linear on X, if and only if $-1 o f=-f$, if and only if $f / W_{X}=0$.

Lemma 2.10: Let X be an almost linear space with a basis B, then the sets $\{-b: b \in B\}$ and $\left\{\alpha_{b} b: b \in B, \alpha_{b} \neq 0, \alpha_{b}>0\right.$ for $\left.b \notin V_{X}\right\}$ are also bases of X.
Corollary 2.11: Let X be an almost linear space with a basis B then W_{X} has a basis.
Proof: Let B be a basis of X.
Theorem 2.12: Let B be a basis of the almost linear space X. Then there exist a basis B^{\prime} of X with the property that for each $b^{\prime} \in B^{\prime} \backslash V_{X}$ we have $-b^{\prime} \in B^{\prime} \backslash V_{X}$. Moreover card $\left(B \backslash V_{X}\right)=\operatorname{card}\left(B^{\prime} \backslash V_{X}\right)$.

Lemma2.13: Let X be a normed almost linear space and let $x \in X, w \in W_{X}$, thenmax $\{|||x|||,|||w|||\}$ $|||x+w||$.

Lemma2.14: Let X be a normed almost linear space and let $x, x_{n} \in X, \alpha_{n} \in R, n \in N, \lim \alpha_{n}=\infty$. If the sequence $\left.\boldsymbol{T B}_{\|}\left\|\alpha_{n} x+x_{n}\right\| \mid\right\}_{n=1}^{\infty}$ is bounded, then $x \in V_{X}$.

3. Some results:

Theorem3.1: Let X be a nals and for $f \in X^{\#}$ define $\|\mid f\| \|=\sup \{|f(x)|: x \in X \mid\|x\| \leq 1\}$. Let $X^{*}=$ $\left\{f \in X^{\#}:\||f|\|<\infty\right\}$, then X^{*} together with $\|\|\cdot\|\|$, defined as above is a normed almost linear space.Proof: It is easy to show that X^{*} is an almost linear space. We now show that the $|||\cdot|||$ defined in hypothesis satisfies the conditions $N_{1}-N_{3}$.

We now show N_{1}. To show N_{1} we have to show that for $f_{i} \in X^{*}, i=1,2,3$.

$$
\left|\left\|f_{1}+\left(-1 o f_{3}\right)\right\|\right| \leq\left|\left\|f_{1}+\left(-1 o f_{2}\right)\right\|\|+\|\left\|f_{2}+\left(-1 o f_{3}\right)\right\|\right| .
$$

Let $x \in B_{X}$, then $\left|f_{1}+\left(-1 o f_{3}\right)(x)\right|=\left|f_{1}(x)+f_{3}(-x)\right|$.

$$
\mathrm{If}\left|f_{1}+\left(-1 o f_{3}\right)(x)\right|=-f_{1}(x)-f_{3}(-x)
$$

Then by definition of almost linear functional we get

$$
\left|f_{1}+\left(-1 o f_{3}\right)(x)\right|=-f_{1}(x)-f_{3}(-x) \leq f_{1}(-x)+f_{2}(x)+f_{2}(-x)+f_{3}(x)
$$

$$
\left.\leq \mid f_{1}+\left(-1 o f_{2}\right)\right)(-x)\left|+\left|\left(f_{2}+\left(1 o f_{3}\right)\right)(-x)\right|\right.
$$

$$
\leq\| \| f_{1}+\left(-1 o f_{2}\right)\| \|+\| \| f_{2}+\left(-1 o f_{3}\right)\| \|
$$

$\left.\operatorname{If} \mid f_{1}+\left(-1 o f_{3}\right)\right)(x)\left|=\left|f_{1}(x)+f_{3}(-x)\right|\right.$.
In this case also we get
$\left.\mid f_{1}+\left(-1 o f_{3}\right)\right)(x)\left|\leq\left|\left|\left|f_{1}+\left(-1 o f_{2}\right)\right|\right|\right|+\left|\left|\left|f_{2}+\left(-1 o f_{3}\right)\right|\right|\right|\right.$
To show N_{2} we have to show that $\|||\alpha f|||=|\alpha||| | f| | \mid$.
Now for some $\alpha \in \mathbb{R} w e$ have
$|||\alpha f|||=\sup \{|\alpha f(x)|:|||x||| \leq 1\}=|\alpha| \sup \{|f(x)|:|||x||| \leq 1\}=|\alpha|| ||f|| |$.
N_{3} follows trivially.
Proposition3.2: For any normed almost linear space X, the dual space X^{*} is a strong normed almost linear space for the metric ρ defined by
$\rho\left(f_{1}, f_{2}\right)=\sup \left\{\left|f_{1}(x)-f_{2}(x)\right|: x \in X\| \| x \|| | \leq 1\right\}, f_{1}, f_{2} \in X^{*}$.
Proof: clearly ρ is a metric on X.

International Journal of Research
Available at https://edupediapublications.org/journals

To prove condition (i) of snals let $f_{1}, f_{2} \in X^{*}$ and $x \in B_{X}$.
Then $\left|f_{1}(x)\right| \leq\left|f_{1}(x)-f_{2}(x)\right|+\left|f_{2}(x)\right| \leq \rho\left(f_{1}, f_{2}\right)+\left|\left|\left|f_{2}\right|\right|\right|$.
Since $x \in B_{X}$ was arbitrary, if follows $\left\|\left\|f_{1}\right\|\right\| \leq \rho\left(f_{1}, f_{2}\right)+\left\|| | f_{2}\right\| \|$.
Similarly $\left|\left|\left|f_{2}\left\|\left|\leq \rho\left(f_{1}, f_{2}\right)+\left|\left|\left|f_{1}\right| \|\right.\right.\right.\right.\right.\right.\right.$. Hence it follows $\left.\left.|\right|\right|\left|f_{1}\right|| |-\left|\left|\left|f_{2}\right| \|\right| \leq \rho\left(f_{1}, f_{2}\right)\right.$
Now let $x \in B_{X}$. By the definition of almost linear functional we have that
$f_{1}(x)-f_{2}(x) \leq f_{1}(x)+f_{2}(-x)=f_{1}(x)+\left(-l o f_{2}\right)(x) \leq\left\|\mid f_{1}+\left(-1 o f_{2}\right)\right\| \|$
Similarly $f_{2}(x)-f_{1}(x) \leq\left\|\mid f_{1}+\left(-1 o f_{2}\right)\right\| \|$
Hence for each $x \in B_{X}$ we have $\left|f_{1}(x)-f_{2}(x)\right| \leq\left\|\mid f_{1}+\left(-1 o f_{2}\right)\right\| \|$
Therefore it follows that $\rho\left(f_{1}, f_{2}\right) \leq\| \| f_{1}+\left(-1 o f_{2}\right)\| \|$

Hence condition (i) of snalsfollows.
To provecondition (ii) of snals let $f_{1} \in X^{*}, i=1,2,3$.
$\operatorname{Then} \rho\left(f_{1}+f_{3}, f_{2}+f_{3}\right)=\sup \left\{\left|\left(f_{1}+f_{3}\right)(x)-\left(f_{2}+f_{3}\right)(x)\right|: x \in B_{X}\right\}=\rho\left(f_{1}, f_{2}\right)$
To provecondition (iii) of snals we show that for each $f \in X^{*}$, the function $\alpha \rightarrow \rho(\alpha o f, f)$ is continuous at any $\alpha>0$.

Indeed, for $\alpha>0$ we have $\rho(\alpha o f, f)=\sup \left\{|f(\alpha x)-f(x)|: x \in B_{X}\right\}=|\alpha-1|| ||f|| |$.
Hence X^{*} is a strong normed almost linear space.

Lemma3.3: For any nals $X, V_{X^{*}}$ is a Banach space.Proof: $V_{X^{*}}$ is a normed linear space for the norm defined as in the definition of an almost linear functional. By Lemma 2.9 each $f \in V_{X} *$ is linear on X.We know that the dual space of a normed linear space is complete. Since V_{X} is a normed linear space it is also complete. Hence $V_{X^{*}}$ is a Banach space.

Lemma3.4: Let X be a nals with a basis B. Then for each $b_{0} \in B \backslash V_{X}$ there exists $f \in X^{\#}$ such that $f\left(b_{0}\right)=1$ and $f(b)=0$ for each $b \in B \backslash\left\{b_{0}\right\}$.If $b_{0} \in W_{X}$, then $f \in X^{*}$.

Proof:Let $x \in X \backslash\{0\}$.
$\sum_{i=1}^{n} \alpha_{i} b_{i}$, where $b_{i} \neq b_{j}$ for $i \neq j$, and $\alpha_{i}>0$ for $b_{i} \in B \backslash V_{X}$.

Define $f(x)=0$ if $b_{0} \notin\left\{b_{1}, \ldots, b_{n}\right\}$ and $f(x)=\alpha_{i_{0}}$ if $b_{i_{0}}=b_{0}$ for some $i_{o} \in\{1, \ldots \ldots, n\}$.
Define also $f(0)=0$. Then f satisfies all conditions of an almost linear functional. Therefore $f \in X^{\#}$. Suppose now that $b_{0} \in W_{X}$. By Lemma 2.10, we
can suppose $\left\|\mid b_{0}\right\| \|=1$.
Let $x=\alpha_{0} b_{0}+\sum_{i=1}^{k} \alpha_{i} b_{i}$, where $\alpha_{0}>0, b_{i} \neq b_{j}$ for $i \neq j$ such that $f(x)>0$.Then by Lemma 2.13, we have $f(x)=\alpha_{0}=\left|\left|\left|\alpha_{0} b_{0}\right|\right| \leq|||x|||\right.$ and so $f \in X^{*},|||f|||=1$.

Theorem3.5: Let X be a nals such that W_{X} has a basis, then $X^{*} \neq\{0\}$.
Proof: Since W_{X} has a basis, by Lemma 3.6 there exists $f \in\left(W_{X}\right)^{*} \backslash\{0\}$.
Let $x \in X$ and define $f_{1}(x)=f(x-x)$. Then $f_{1} \in X^{\#}, f_{1} \neq 0$ and for each $x \in X$, we have that $0 \leq f_{1}(x) \leq||f||| || | x-x| | \leq 2| ||f|| || | x| | \mid$

This implies $\left|\left|\left|f_{1} \|\right|<\infty\right.\right.$. Hence $f_{1} \in X^{*} \backslash\{0\}$. Thus $X^{*} \neq\{0\}$.
Corollary3.6: If the nals X has a basis, then $X^{*} \neq\{0\} ■$

Theorem3.7:Let X be a nals with a basis B such that $\operatorname{card}\left(B \backslash V_{X}\right)<\infty$, then $X^{*}=\left\{f \in X^{\#}: f / V_{X} \in\left(V_{X}\right)^{*}\right\}$.

Proof:Let $f \in X^{\#}, f / V_{X} \in\left(V_{X}\right)^{*}$. If $f \notin X^{*}$, then there exists $x_{n} \in x,\left\|x_{n}\right\| \| \leq 1, n \in N$, such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. Let $B \backslash V_{X}=\left\{b_{1}, \ldots . b_{k}\right\}$.Then we have that $x_{n}=\sum_{i=1}^{k} \alpha_{n_{i}} b_{i}+v_{n}, \alpha_{n_{i}} \geq 0$, $v_{n} \in V_{X}, n \in N$.

Nowthe sequence $\left\{\alpha_{n_{i}}\right\}_{n=1}^{\infty}, 1 \leq i \leq k$ are all bounded.

Since $\left|f\left(x_{n}\right)\right|=\sum_{i=1}^{k} \alpha_{n_{i}} f\left(b_{i}\right)+f\left(v_{n}\right) \mid \rightarrow \infty$ ，it follows that $\left|f\left(v_{n}\right)\right| \rightarrow \infty$ ．

Since $f / V_{X} \in\left(V_{X}\right)^{*}$ ，we must have $\left\|\mid v_{n}\right\| \| \infty$ ．
On the other hand $\left\|\left|v_{n}\right|\right\| \leq\left|\left\|x_{n}\right\|\|+\|\right| \sum_{i=1}^{k} \alpha_{n_{i}} b_{i}\| \|$ for each $n \in N$.

It is a contradiction since the right hand inequality is bounded．Hence $f \in X^{*}$ ．

Corollary3．8：If the nals X has a basis B such that $\operatorname{card} B<\infty$ ，then $X^{\#}=X^{*}$ ．
Proof：By the Theorem 3．7，we have $X^{*}=\left\{f \in X^{\#}: f / V_{X} \in\left(V_{X}\right)^{*}\right\}$ ，since X has a basis such that $\operatorname{card} B<\infty$ ．So we must have that $X^{\#}=X^{*}$ ．

Theorem3．9：Let X be a nals and let $f \in\left(W_{X}\right)^{*}$ ．Then there exists $f_{1} \in X^{*}$ such that $f_{1} / W_{X}=f,\left\|\mid f_{1}\right\| \|$

Proof：Let X be a nals and let $f \in\left(W_{X}\right)^{*}$ ．

Define a function f_{1} by $f_{1}(x)=f(x-x) / 2, x \in X$ ．
Then f_{1} satisfies all the conditions of an almost linear functional．Hence $f_{1} \in X^{*}$ ．

$$
\begin{aligned}
& \left|\left\|f _ { 1 } \left|\left\|\left|=\sup \left\{\left|f_{1}(x)\right|:|||x|| \leq 1\}=\sup \frac{f(x-x)}{2}|:\|x \mid\| \leq 1\}\right.\right.\right.\right.\right.\right. \\
& \left.=\sup \text { 自 } \left.\frac{f(x)+f(-x)}{2} \right\rvert\,:\|x\| \leq 1\right\} \leq \frac{1}{2} \sup \text { 自 } f(x)|+|f(-x)|:\|x\| \leq 1\} \\
& \left.=\frac{1}{2} \sup \underline{\operatorname{Lq}}|f(x)|:|\|x\|| \mid \leq 1\right\}=\sup |f(x)|:||x| \| \leq 1\}=\|||f||<\infty \text {. }
\end{aligned}
$$

Hence $\left|\left|\left|f_{1}\||\leq||f| \|\right.\right.\right.$
Let $w \in W_{X}$ ，then $f_{1}(w)=\frac{f(w-w)}{2}=\frac{f(w+(-w))}{2}=f(w)$
Hence $f_{1}(w)=f(w)$ for every $w \in W_{X}$.
Therefore $f_{1} / W_{X}=f$ and we have $\left\|\left\|f_{1}\right\|\right\| \geq\|f \mid\|$ ．This implies $\left|\left\|f_{1}\right\|\|=\|\right| f\|\|$ ．
Let $x \in V_{X}$ ，then $f_{1}(x)=\frac{f(x-x)}{2}=\frac{f(0)}{2}=0$ ．for every $x \in V_{X}$ ．Hence $f_{1} / V_{X}=0 . ■$
Let X be a nals．If $\left(W_{X}\right)^{*} \neq\{0\}$ ，then $X^{*} \neq\{0\}$ ．

Theorem3.10:The following assertions are equivalent.
i) There exists a nals X such that $X^{*}=\{0\}$.
ii) There exists a nals X such that $X^{*} \neq\{0\}$, and $X^{*}=V_{X^{*}}$. That is X^{*} is a Banach space.

Proof: To prove (i) \Rightarrow (ii)

Suppose X is a nals such that $X^{*}=\{0\}$.

Let $Y=\{(x, \alpha): x \in X, \alpha \in R\}$ and Let $s: Y \times Y \rightarrow Y$ and $m: R \times Y \rightarrow Y$ be defined by
$s\left(\left(x_{1} \alpha_{1}\right),\left(x_{2}, \alpha_{2}\right)\right)=\left(x_{1}+x_{2}, \alpha_{1}+\alpha_{2}\right)$ and $m(\gamma(x, \alpha))=(\gamma x, \gamma \alpha)$
Let $0 \in Y$ be the element $(0,0)$.
Then Y is
an als and we have $V_{Y}=\left\{(v, \alpha): v \in V_{X}, \alpha \in R\right\}$ and $W_{Y}=\left\{(w, 0): w \in W_{X}\right\} . \quad$ Since $X \neq V_{X}$,
then $Y \neq V_{Y}$. Define a norm on Y by $\||(x, \alpha)|\|\left\|_{1}=\right\|\left||x| \|+|\alpha|\right.$. Then Y together with $\|\|\cdot\|\|_{1}$ is a nals.
Clearly the function f_{0} defined on Y by $f_{0}((x, \alpha))=\alpha,(x, \alpha) \in Y$ belongs to $V_{Y^{*}}$, and $\left\|\mid f_{0}\right\|_{1}=1$.We show that $Y^{*}=V_{Y^{*}}$.Let $f \in Y^{*} \backslash V_{Y^{*}}$ By Lemma 2.8, there exists $\left(W_{0}, 0\right) \in W_{Y}, W_{0} \in W_{X}$ such that $f((w, 0))>0$.Define the functional f_{1} on X by $f_{1}(x)=f((x, 0)), x \in X$.

Then $f_{1} \in X^{*}$ and by (i) $f_{1}=0$, a contradiction Since $f_{1}\left(W_{0}\right)=f\left(\left(W_{0}, 0\right)\right)>0$.
Therefore $V_{Y^{*}}=Y^{*}$. To show $(i i) \Longrightarrow(i)$.
Let X be a nals such that $X^{*}=V_{X^{*}} \neq\{0\}$.
Since X is not a linear space that $W_{X} \neq\{0\}$ and we have $\left(W_{X}\right)^{*}=\{0\}$. Thus there exists nals W_{X} such that $\left(W_{X}\right)^{*}=\{0\}$.

Theorem3.11:Let X be a nals with a basis B.
i) For each $f \in\left(V_{X}\right)^{\#}$ there exists $f_{1} \in V_{X^{\#}}, f_{1} / V_{X}=f$.
ii) If $\operatorname{card}\left(B / V_{X}\right)<\infty$, then for each $f \in\left(V_{X}\right)^{*}$, there exists $f_{1} \in V_{X^{*}}$ such that $f_{1} / V_{X}=f$.

Proof: Suppose B has the property that for each $b \in B / V_{X}$ we have $-b \in B / V_{X}$.
i) Let $f \in\left(V_{X}\right)^{\#} \backslash\{0\}$ and let $x \in X / V_{X}$. Now there exists unique $b_{1}, \ldots, b_{n} \in B \backslash V_{X}, \alpha_{i}>0,1 \leq i \leq$ n and $v \in V_{X}$ such that $x=\sum_{i=1}^{n} \alpha_{i} b_{i}+v$ 3.2Define $f_{1}(x)=f(v)$ and for $v \in V_{X}$ define $f_{1}(v)=$ $f(v)$.Then clearly $f_{1} \in X^{\#}$ and f_{1} is an extension of f. To show that $f_{1} \in V_{X^{\#}}$, by Lemma 2.8 , we must show that $f_{1}(-x)=-f_{1}(x)$ for each $x \in X \backslash V_{X}$.

If X has the representation given in (3.2), then $-x=\sum_{i=1}^{n} \alpha_{i}\left(-b_{i}\right)-v$ and so $f_{1}(x)=f(-v)=$ $-f(v)=f_{1}(x)$.
ii). Supposecard $\left(B \backslash V_{X}\right)<\infty$. Let $f \in\left(V_{X}\right)^{*} \backslash\{0\}$. Then by (i) there exists $f_{1} \in V_{X^{\#}} . f_{1} / V_{X}=$ f.Then by Theorem 3.7, the result follows.

Corollary3.12:Let X be a nals with a basis B, such that $\operatorname{card}\left(B \backslash V_{X}\right)<\infty$. Then X^{*} is total over X.
Proof: Suppose $B \backslash V_{X}=\left\{b_{1}, \ldots, b_{n}\right\}$ Let $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for each $f \in X^{*}$.
Now we have that $x_{i}=\sum_{j=1}^{n} \alpha_{i j} b_{j}+v_{i}, \alpha_{i j} \geq 0,1 \leq j \leq n, v_{i} \in V_{X}, i=1,2$.
By Lemma 3.6 for each $b_{j} \in B \backslash V_{X}$ there exists $f_{j} \in X^{\#}$ such that $f_{j}\left(b_{j}\right)=1$ and $f_{j}(b)=0$ for $b \in B \backslash\left\{b_{j}\right\}$.By Theorem 3.9, $f_{j} \in X^{\#}$, hence by our assumption,

$$
\begin{gathered}
f_{j}\left(x_{1}\right)=f_{j}\left(\sum_{j=1}^{n} \alpha_{1 j} b_{j}\right)+f_{j}\left(v_{1}\right)=\sum_{j=1}^{n} \alpha_{1 j} f_{j}\left(b_{j}\right)+f_{j}\left(v_{1}\right)=\alpha_{1 j} . \quad f_{j}\left(x_{2}\right)= \\
f_{j}\left(\sum_{j=1}^{n} \alpha_{2 j} b_{j}\right)+f_{j}\left(v_{2}\right)=\sum_{j=1}^{n} \alpha_{2 j} f_{j}\left(b_{j}\right)+f_{j}\left(v_{2}\right)=\alpha_{2 j} .
\end{gathered}
$$

Hence $\alpha_{1 j}=\alpha_{2 j}$ for $1 \leq j \leq n$. Consequently for each $f \in X^{*}$, we get $f\left(v_{1}\right)=f\left(v_{2}\right)$. Since V_{X} is a normed linear space, by Theorem 3.11, it follows that $v_{1}=v_{2}$. Therefore $x_{1}=x_{2}$ and hence X^{*} is total over X.

Theorem3.13: Let X be a nals such that $X=W_{X}+V_{X}$. Then for each $f \in\left(V_{X}\right)^{*}$ there exists a norm preserving extension $f_{1} \in V_{X^{*}}$.

Proof:Let $f \in\left(V_{X}\right)^{*}\{0\}$.Now for each $x \in X$, there exists unique $w \in W_{X}$ and $v \in V_{X}$ such that $x=w+v$.Define $f_{1}(x)=f(v)$. Clearly $f_{1} \in X^{\#}$ and $f_{1} \in V_{X^{\#}}$. Now we get $\left|f_{1}(x)\right|=|f(v)| \leq|| | f$ $|||||v||| \leq|||f||||| x||\mid$ and so $||\left|f_{1}\right|||=|||f|||$.

Theorem3.14: Let X be snals such that ρ is a metric and if $x \in X \backslash\left(W_{X}+V_{X}\right)$. Suppose $\quad X=\left\{\alpha x_{0}+\right.$
$\left.\mu\left(-x_{0}\right)+w+v: w \in W_{X}, v \in V_{X}, \alpha, \mu \geq 0\right\}$ then
i) for
each $f \in\left(V_{X}\right)^{*}$ there exists $f_{1} \in V^{*}$ such that $f_{1} \backslash V_{X}=f$
$V_{X^{*}} \neq\{0\}$ and
iii) for
each $f \in\left(W_{X}+V_{X}\right)^{*}$ there exists $f_{1} \in X^{*}$ such that $f_{1} \backslash\left(W_{X}+V_{X}\right)=f$.

Proof: We first show that $X=X_{1} \cup X_{2} \cup\left(W_{X}+V_{X}\right)$ 3.3 Where $X_{1}=\left\{\alpha x_{0}+w+v: \alpha>0, w \in\right.$ $W X, v \in V X\}$
$X_{2}=\left\{-\alpha x_{0}+w+v: \alpha>0, w \in W_{X}, v \in V_{X}\right\}$ and we have that $X_{1} \cap X_{2}=\emptyset, X_{i} \cap\left(W_{X}+V_{X}\right)=$ $\emptyset, i=1,2$.

Since $X_{1} \cup X_{2} \cup\left(W_{X}+V_{X}\right) \subset X$ is obvious, let $x \in X$.
Say $x=\alpha x_{0}+\mu\left(-x_{0}\right)+w+v, \alpha, \mu \geq 0, w \in W_{X}, v \in V_{X}$.
If $\alpha=\mu$ then, since $\alpha\left(x_{0}-x_{0}\right) \in W_{X}$, it follows that $x \in W_{X}+V_{X}$.
$\alpha>\mu$ then $x=(\alpha-\mu) x_{0}+\mu\left(x_{0}-x_{0}\right)+w+v \in X_{1}$.
Similarly if $\alpha<\mu$ then $x \in X_{2}$. This proves (3.3). Since $\pm x_{0} \notin W_{X}+V_{X}$, it follows that $X_{i} \cap\left(W_{X}+\right.$ $\left.V_{X}\right)=\emptyset, i=1,2$. Let $x \in X_{1} \cap X_{2}$. Then there exists $\alpha_{i}>0, w_{i} \in W_{X}, v_{i} \in V_{X}, i=1,2$,such that $x=\alpha_{1} x_{0}+w_{1}+v_{1}=-\alpha_{2} x_{0}+w_{2}+v_{2}$.

Hence $\left(\alpha_{1}+\alpha_{2}\right) x_{0}+w_{1}+v_{1}=\alpha_{2}\left(x_{0}-x_{0}\right)+w_{2}+v_{2} \in W_{X}+V_{X}$.
Now againit follows that $\left(\alpha_{1}+\alpha_{2}\right) x_{0} \in W_{X}+V_{X}$.

It is a contradiction since $\alpha_{1}+\alpha_{2}>0$ and $x_{0} \notin W_{X}+V_{X}$.
Therefore $X_{1} \cap X_{2}=\emptyset$.For $Y=W_{X}+V_{X}$, we get that any $x \in X$ can be uniquely represented in the form $x=\alpha x_{0}+w+v,\left(\alpha \in R, w \in W_{X}, v_{i} \in V_{X}\right)$
i). Let $f \in\left(V_{X}\right)^{*} \backslash\{0\}$.If $x \in X$ has the representation given by (3.4) define $f_{1}(x)=f(v)$.

Clearly $f_{1} \in V_{X^{\#}}$ If $f_{1} \notin V_{X^{*}}$ then there exists $x_{n} \in X,\left\|\left|\left|x_{n}\right| \| \leq 1, n \in N\right.\right.$, such that $| f_{1}\left(x_{n}\right) \mid \rightarrow \infty$.

International Journal of Research
Available at https://edupediapublications.org/journals

Suppose $x_{n}=\alpha_{n} x_{0}+w_{n}+v_{n}, \alpha_{n} \in R, w_{n} \in W_{X}, v_{n} \in V_{X}, n \in N$.
Suppose
that for an infinity of n we have $\alpha_{n} \geq 0$ and without loss of generality we can suppose $\alpha_{n} \geq 0$ for
all $n \in N$. Now it follows that $\left\|\left|\alpha_{n} x_{0}+v_{n}\|\mid \leq\| x_{n} \| \leq 1\right.\right.$ for each $n \in N$.
And so
the sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is bounded. Then $\left|\left\|v_{n}\right\|\left\|\leq 1+\alpha_{n}\right\|\right| x_{n}\| \|, n \in N$ hence the sequence $\left\{\left\|\mid v_{n}\right\| \|\right\}_{n=1}^{\infty}$ is bounded. We get the same conclusion if $\alpha_{n} \leq 0, n \in N$.

Then we work with $-x_{0}$ instead of x_{0}.
Now
since $\left|f_{1}\left(x_{n}\right)\right|=\left|f\left(v_{n}\right)\right| \rightarrow \infty$ and $f \in\left(V_{X}\right)^{*}$ We obtain that $v_{n} \rightarrow \infty$ a contradiction. Hence $f_{1} \in V_{X^{*}}$.
ii) If $V_{X} \neq\{0\}$, then by (i) we get $V_{X^{*}} \neq\{0\}$. Suppose now $V_{X}=\{0\}$.

Let $x \in X$, then by (3.3) there exists unique $\alpha \in R, w \in W_{X}$ such that $x=\alpha x_{0}+w$. Define
$f(x)=\alpha \mid\left\|x_{0}\right\| \|$. Clearly we have $f \in V_{X^{\#}}$. Now we get $f(x)=\alpha\left\|| | x_{0}\right\| \leq\left\|\left|\left|\alpha x_{0}+w\| \|=\|x \mid\|\right.\right.\right.$ Hence $f \in$ $V_{X^{*}} \backslash\{0\}$.
iii). Let $f \in\left(W_{X}+V_{X}\right)^{*} \backslash\{0\}$.
$V_{X}=\{0\}$ then the result follows by Theorem 3.9. Suppose now $V_{X} \neq\{0\}$ By (i) there exists $f_{2} \in X^{*}$ such that $f_{2} / V_{X}=f / V_{X}$ and $f_{2} / W_{X}=0$. By Theorem 3.9, there exists $f_{3} \in X^{*}$ such that $f_{3} / W_{X}=$ f / W_{X} and $f_{3} / V_{X}=0$.

Let $f_{1}=f_{2}+f_{3}$. Then $f_{1} \in X^{*}$ and we have $f_{1} /\left(W_{X}+V_{X}\right)=f$.

4. REFERENCES

[1] R.Freese and S.Gähler
[2] G. Godini
[3] G. Godini
[4] G. Godini
[5] G. Godini
[6] G. Godini
[7] Sang Han Lee
[8] Sung Mo Im and Sang Han Lee
: Remarks on semi 2-normed space, 105(1982) 151-161.
: An approach to generalizing Banach spaces. Normed almost linear spaces, Proceedings of the $12^{\text {th }}$ winter school on Abstract Analysis. 5 (1984) 33-50.
: Best approximation in normed almost linear spaces. In constructive theory of functions. Proceedings of the International conference on constructive theory of functions. (Varna 1984) Publ. Bulgarium Academy of sciences; Sofia (1984) 356-363.
: A Frame work for best simultaneous approximation: Normed almost linear spaces. J.Approxi. Theory. 43 (1985) 338-358.
: On Normed almost linear spaces, Math.Ann. 279 (1988) 449-455.
: Operators in Normed almost linear spaces Proceedings of the $14^{\text {th }}$ winter school on Abstract Analysis (Srni.1986).Suppl. Rend. Circ. Mat. Palermo II. Numero. 14(1987) 309-328.
: Reflexivity of normed almost linear space, comm.koreanMath.Soc. 10(1995) 855-866.
: Uniqueness of basis for almost linear space, Bll. korean Math.Soc. 34 (1997) 123-133.
: A Metric Induced by a Norm on normed almost linear space, Bull. Korean Math. Soc. 34 (1997) 115-125.
: acterization of reflexivity of normed
: linear space, Comm.KoreanMath.Soc.
97) 211-219.

