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Abstract: G. Godini introduced the concept normed almost linear space which generalizes normed 

linear space. To support the idea that the normed almost linear space is a good concept the notion of 

a dual space of normed almost linear space X, has been introduced in this paper. In this paper we 

prove some results like if X is normed almost linear space then i)𝑉𝑋∗  is a Banach space,  ii) If B is a 

basis of  X then for each 𝑏0 ∈B\𝑉𝑋  there exists f ∈ 𝑋#such that f(𝑏0) =1 and f(𝑏0) = 0  for each b ∈ 

B\{𝑏0}. If 𝑏0 ∈ 𝑊𝑋 then f ∈ 𝑋∗iii) If 𝑊𝑋has a basis, then X ≠{0} iv)If  B is a basis such that 

card(B\𝑉𝑋) <∞, then X
* 

=  { f ∈ 𝑋#:  f \𝑉𝑋 ∈(𝑉𝑋)
*
} and is total over X andv) If f ∈(𝑊𝑋)

*
},then there 

exists 𝑓1 ∈ X
*
 such that 𝑓1\𝑊𝑋  = f, |||𝑓1||| =    ||| f ||| and 𝑓1\𝑉𝑋=0. Using these results we prove that  if 

X is strong normed almost linear space such that𝜌 is a metric and if x ∈ X\ (𝑊𝑋+ 𝑉𝑋  ), X ={𝛼x0 + 𝜇(-

x0) +w+v : w ∈ 𝑊𝑋 ,  v ∈ 𝑉𝑋 ,  𝛼, 𝜇 ≥0} then  i) for each  f ∈ (𝑉𝑋)
*
 there exists 𝑓1 ∈ 𝑉∗ such that 𝑓1 

\𝑉𝑋= f  ii) VX* ≠{0} and ii) for eachf∈(WX+VX)
*
 there exists 𝑓1 ∈ 𝑋∗ such that  𝑓1 \(𝑊𝑋 + 𝑉𝑋) = f .  

Keywords:Almost linear space (als), basis of an almost linear space, almost linear functional,norm on 

an almost linear space,normed almost linear space (nals),strong normed almost linear spaces 

(snals),the dual space ofnormed almost linear space. 

1. Introduction:G. Godini[2] introduced the concept normed almost linear space which generalizes 

normed linear space. All spaces involved in this chapter are over the real field ℝ. A normed almost 

linear space is an almost linear space X together with a functional ||| . ||| :X→ ℝ called a norm which 

satisfies all the axioms of an usual norm on a linear space as well as some addition ones i.e.  |||x - z |||≤ 

||| x – y ||| +|||y - z |||. Due to the fact that they have weakened the axioms of a linear space but they have 

strengthen the axioms of the norm. Since the norm of a normed almost linear space X does not 

generate a metric onX, they considered the strong normed almost linear space which also generalizes 

the normed linear space. To support the idea that the normed almost linear space is a good concept 

they introduced  the concept of a dual space of normed almost linear space X where the functional on 
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X are no longer linear but almost linear which is also a normed almost linear space. This chapter 

consists three sections. 

2. Preliminaries: 

2.1: Almost linear space (als): An almost linear space(als) is a non empty setXtogether with two 

mappings s:  XxX → X and m: ℝ x X → X satisfying (i) – (viii)below.                                                                       

For x , y  ∈X and α∈ℝ we denote s(x ,y) by x + y and m(α , x ) by αx.Let x, y, z ∈X and α ,β∈ℝ  i) (x 

+y) + z = x + (y +z)ii) x +y = y +x   iii) There exists an element 0 ∈X such that x+ 0 = x for 

each x∈X.  iv)α( x + y) = αx  + α y                       v)  (α +β ) x = αx + βx  for α0, β0 vi) α(βx ) = αβ ( 

x), vii) 1x  = x and viii) 0x  = 0. 

For an almost linear space 𝑋  we introduce the following two sets 

𝑉𝑋 = {𝑥 ∈ 𝑋: 𝑥 − 𝑥 = 0}and𝑊𝑋 = {𝑥 ∈ 𝑋: 𝑥 = −𝑥} 

2.2: Basis of an almost linear space: A subset B of an almost linear space X is called a basis of X if 

for each x∈X \{0} there existunique sets {b1,…,bn}  B and {α1,... ,α n} ℝ \{0}(n depending on x)  

such that   x  =  ⅀𝛼i bi   (i=1,…,n) where α i>0 for bi  VX. 

2.2.3: Almost linear functional:Let X be an almost linear space.  A function f:X → ℝ is called an 

almost linear functional if  f satisfies the following conditions. For x, y∈Xandα(≥0) ∈ℝ 

      i) f(x+y) = f(x) +f(y)  ii) f(αx) = αf(x)  iii) -f(-x) ≤  f(x) (or) f(w) ≥ 0 for every w∈ 𝑊𝑋 . 

The set of all almost linear functional defined on an almost linear space X is denoted by X
#
. 

2.4: Norm on an almost linear space: A norm ||| ∙ ||| on an almost linear space X is a function 

satisfying the following conditions N1 – N3. 

Let x, y, z ∈X and α∈ℝ. N1.|||x ||| = 0 if and only if x=0.  

N2.|||αx ||| = |α|   |||x|||, and 

N3. |||x - z |||≤ ||| x – y ||| +|||y - z ||| 

2.5: Normed almost linear space (nals): An almost linear space X together with |||. ||| :X → ℝ  

satisfying N1 – N3 is called a normed almost linear space . 
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2.6: Metric: A metric on normed almost linear space d: XxX→ ℝ is defined as                             d(x, y) 

= ||| vx - vy + ∑ (αi – βi)bi ||| , i=1 to n , x, y∈X ,  vx , vy∈VX, bi∈B\VX, αi , βi   ≥ 0. 

2.7: Strong normed almost linear spaces (snals): A strong normed almost linear space is a normed 

almost linear spaceX together with a semi-metric ρon X which satisfies the following conditions. 

For x, y, z ∈X and   α∈ℝ 

i)  ||| x||| - ||| y ||| ≤ ρ( x, y) ≤ ||| x- y ||| 

ii) ρ (x+z , y+z ) ≤ ρ (x , y) 

iii)  The function α → ρ (α x , x) is continuous at α = 1 

2.8: The dual space: Let X*={ f∈X
 #
:  ||| f ||| < ∞}, then the space X * together with ||| . ||| defined by ||| f 

||| = sup{ |f (x)| : ||| x ||| ≤ 1}is called the dual space of the normed almost linear space X. 

Lemma 2.9:  Let 𝑋 be an almost linear space and let   𝑓 ∈ 𝑋#.  We have  𝑓 ∈ 𝑉𝑋# iff 𝑓  is linear on 

𝑋,if and only if −1𝑜𝑓 = −𝑓, if and only if 𝑓/𝑊𝑋 = 0. 

Lemma 2.10: Let 𝑋  be an almost linear space with a basis 𝐵, then the sets {−𝑏: 𝑏 ∈ 𝐵} 

and{𝛼𝑏𝑏: 𝑏 ∈ 𝐵, 𝛼𝑏 ≠ 0, 𝛼𝑏 > 0 for 𝑏 ∉ 𝑉𝑋} are also bases of 𝑋. 

Corollary 2.11: Let 𝑋 be an almost linear space with a basis 𝐵 then  𝑊𝑋  has a basis. 

Proof: Let 𝐵 be a basis of   𝑋.   

Theorem 2.12: Let 𝐵 be a basis of the almost linear space   𝑋. Then there exist a basis 𝐵′of 𝑋 with the 

property that for each 𝑏′ ∈ 𝐵′\𝑉𝑋  we have   −𝑏′ ∈ 𝐵′\𝑉𝑋 . Moreover card  𝐵\𝑉𝑋 = 𝑐𝑎𝑟𝑑(𝐵′\𝑉𝑋). 

Lemma2.13:Let 𝑋 be a normed almost linear space and let𝑥 ∈ 𝑋,𝑤 ∈ 𝑊𝑋 , then𝑚𝑎𝑥{ ||| 𝑥 |||, ||| 𝑤 ||| } ≤ 

||| 𝑥 + 𝑤 |||. 

Lemma2.14: Let 𝑋 be a normed almost linear space and let𝑥, 𝑥𝑛 ∈ 𝑋, 𝛼𝑛 ∈ 𝑅,𝑛 ∈ 𝑁,lim 𝛼𝑛 = ∞.  If 

the sequence{||| 𝛼𝑛𝑥 + 𝑥𝑛 |||}𝑛=1
∞ is bounded, then𝑥 ∈ 𝑉𝑋 . 

 

 

 

3. Some results: 
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Theorem3.1:Let 𝑋 be a nals and for 𝑓 ∈ 𝑋#define ||| 𝑓|||= 𝑠𝑢𝑝 { 𝑓 𝑥  : 𝑥 ∈ 𝑋||| 𝑥|||≤ 1}.  Let 𝑋∗ =

{𝑓 ∈ 𝑋#: ||| 𝑓||| < ∞}, then 𝑋∗together with   ||| . |||, defined as above is a normed almost linear 

space.Proof:  It is easy to show that 𝑋∗is an almost linear space.  We now show that the ||| .||| defined 

in hypothesis satisfies the conditions𝑁1 − 𝑁3. 

We now show 𝑁1.  To show 𝑁1we have to show that for 𝑓𝑖 ∈ 𝑋∗, 𝑖 = 1,2,3. 

||| 𝑓1 + (−1𝑜𝑓3)||| ≤ |||𝑓1 + (−1𝑜𝑓2)||| + |||𝑓2 + (−1𝑜𝑓3)|||. 

Let 𝑥 ∈ 𝐵𝑋 , then  𝑓1 +  −1𝑜𝑓3  𝑥  = |𝑓1 𝑥 + 𝑓3 −𝑥 |. 

If 𝑓1 +  −1𝑜𝑓3  𝑥  = −𝑓1 𝑥 − 𝑓3 −𝑥 , 

Then by definition of almost linear functional we get      

  𝑓1 +  −1𝑜𝑓3  𝑥  = −𝑓1 𝑥 − 𝑓3 −𝑥 ≤ 𝑓1 −𝑥 + 𝑓2 𝑥 + 𝑓2 −𝑥 + 𝑓3 𝑥  

≤  𝑓1 +  −1𝑜𝑓2 ) −𝑥  + | 𝑓2 +  1𝑜𝑓3   −𝑥 |   

 ≤ |||𝑓1 +  −1𝑜𝑓2 ||| + |||𝑓2 +  −1𝑜𝑓3 ||| 

If|𝑓1 +  −1𝑜𝑓3 ) 𝑥 | = |𝑓1 𝑥 + 𝑓3 −𝑥 |. 

In this case also we get 

|𝑓1 +  −1𝑜𝑓3 ) 𝑥 | ≤ ||| 𝑓1 +  −1𝑜𝑓2  ||| + ||| 𝑓2 +  −1𝑜𝑓3 ||| 

 To show𝑁2 we have to show that ||| 𝛼𝑓 ||| = |𝛼 | |||𝑓|||.  

Now for some 𝛼 ∈ ℝwe have 

||| 𝛼𝑓 ||| = 𝑠𝑢𝑝 {| 𝛼𝑓(𝑥)| ∶ ||| 𝑥 ||| ≤ 1} =  𝛼 𝑠𝑢𝑝{ 𝑓 𝑥  : ||| 𝑥 ||| ≤ 1} =  𝛼 |||𝑓|||. 

𝑁3follows trivially.■ 

Proposition3.2:  For any normed almost linear space 𝑋, the dual space 𝑋∗ is a strong normed almost 

linear space for the metric 𝜌defined by 

𝜌 𝑓1 , 𝑓2 = 𝑠𝑢𝑝 { 𝑓1 𝑥 − 𝑓2 𝑥  : 𝑥 ∈ 𝑋||||𝑥|||≤ 1}, 𝑓1 , 𝑓2 ∈ 𝑋∗. 

Proof:  clearly 𝜌is a metric on𝑋. 
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To prove condition (i) of snals let 𝑓1 , 𝑓2 ∈ 𝑋∗and𝑥 ∈ 𝐵𝑋 . 

Then  𝑓1 𝑥 | ≤ |𝑓1 𝑥 − 𝑓2 𝑥  + |𝑓2 𝑥 | ≤ 𝜌(𝑓1 , 𝑓2) + |||𝑓2|||.  

Since 𝑥 ∈ 𝐵𝑋was arbitrary, if follows  |||𝑓1|||≤ 𝜌(𝑓1, 𝑓2) + |||𝑓2|||. 

Similarly  |||𝑓2|||≤  𝜌(𝑓1 , 𝑓2) + |||𝑓1|||.Hence it follows | |||𝑓1|||−|||𝑓2||| | ≤ 𝜌(𝑓1, 𝑓2) 

Now let 𝑥 ∈ 𝐵𝑋 .  By the definition of almost linear functional we have that 

𝑓1 𝑥 − 𝑓2 𝑥 ≤ 𝑓1 𝑥 + 𝑓2 −𝑥 = 𝑓1(𝑥) +  −𝑙𝑜𝑓2 (𝑥) ≤ |||𝑓1 +  −1𝑜𝑓2 ||| 

Similarly 𝑓2 𝑥 − 𝑓1 𝑥 ≤ |||𝑓1 +  −1𝑜𝑓2 ||| 

Hence for each 𝑥 ∈ 𝐵𝑋we have|𝑓1 𝑥 − 𝑓2 𝑥 | ≤ |||𝑓1 +  −1𝑜𝑓2 ||| 

Therefore it follows that  𝜌(𝑓1, 𝑓2) ≤ |||𝑓1 +  −1𝑜𝑓2 ||| 

Hence condition (i) of snalsfollows.   

To provecondition (ii) of snals let 𝑓1 ∈ 𝑋∗, 𝑖 = 1,2,3.   

Then𝜌 𝑓1 + 𝑓3, 𝑓2 + 𝑓3 = sup{| 𝑓1 + 𝑓3  𝑥 − (𝑓2 + 𝑓3)  𝑥 |: 𝑥 ∈ 𝐵𝑋} = 𝜌 𝑓1 , 𝑓2  

To provecondition (iii) of snals we show that for each 𝑓 ∈ 𝑋∗, the function𝛼 → 𝜌(𝛼𝑜𝑓, 𝑓)is continuous 

at any 𝛼 > 0.                                                                                                                                                 

Indeed, for 𝛼 > 0we have 𝜌 𝛼𝑜𝑓, 𝑓 = 𝑠𝑢𝑝  𝑓 𝛼𝑥 − 𝑓 𝑥  : 𝑥 ∈ 𝐵𝑋 = |𝛼 − 1| ||| 𝑓 |||.                  

Hence 𝑋∗ is a strong normed almost linear space.■ 

 

Lemma3.3: For any nals𝑋, 𝑉𝑋∗ is a Banach space.Proof:𝑉𝑋∗is a normed linear space for the norm 

defined as in the definition of an almost linear functional. By Lemma 2.9 each𝑓 ∈ 𝑉𝑋∗is linear on 

𝑋.We know that the dual space of a normed linear space is complete.  Since 𝑉𝑋∗is a normed linear 

space it is also complete.  Hence 𝑉𝑋∗is a Banach space.■ 

Lemma3.4:  Let 𝑋 be a nals with a basis B.  Then for each 𝑏0 ∈ 𝐵\𝑉𝑋 there exists 𝑓 ∈ 𝑋# such that 

𝑓(𝑏0) = 1 and  𝑓(𝑏) = 0 for each𝑏 ∈ 𝐵\{𝑏0}.If  𝑏0 ∈ 𝑊𝑋 , then 𝑓 ∈ 𝑋∗.   
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Proof:Let  𝑥 ∈ 𝑋\{0}.                                                                                                               Then 𝑥 =

 𝛼𝑖𝑏𝑖
𝑛
𝑖=1 , where 𝑏𝑖 ≠ 𝑏𝑗 for 𝑖 ≠ 𝑗, and 𝛼𝑖 > 0for𝑏𝑖 ∈ 𝐵\𝑉𝑋 . 

Define 𝑓 𝑥 = 0if 𝑏0 ∉ {𝑏1, … , 𝑏𝑛}and 𝑓 𝑥 = 𝛼𝑖0
if 𝑏𝑖0

= 𝑏0 for some 𝑖𝑜 ∈ {1, …… , 𝑛}. 

Define also 𝑓 0 = 0. Then 𝑓satisfies all conditions of an almost linear functional.Therefore 𝑓 ∈ 𝑋#. 

Suppose now that 𝑏0 ∈ 𝑊𝑋 .                                                                                      By Lemma 2.10, we 

can suppose |||𝑏0|||=1.   

Let 𝑥 = 𝛼0𝑏0 +  𝛼𝑖𝑏𝑖
𝑘
𝑖=1 , where 𝛼0 > 0,𝑏𝑖 ≠ 𝑏𝑗 for 𝑖 ≠ 𝑗 such that 𝑓 𝑥 > 0.Then by Lemma 2.13, 

we have 𝑓 𝑥 = 𝛼0 = ||| 𝛼0𝑏0||| ≤||| 𝑥 ||| and so𝑓 ∈ 𝑋∗, ||| 𝑓 |||=1.■ 

 

 Theorem3.5:Let 𝑋 be a nals such that 𝑊𝑋has a basis, then 𝑋∗ ≠ {0}. 

Proof:  Since 𝑊𝑋has a basis, by Lemma 3.6 there exists 𝑓 ∈ (𝑊𝑋)∗\{0}. 

Let 𝑥 ∈ 𝑋 and define 𝑓1 𝑥 = 𝑓(𝑥 − 𝑥).   Then  𝑓1 ∈ 𝑋#,  𝑓1 ≠ 0 and for each 𝑥 ∈ 𝑋,  

we have that   0 ≤  𝑓1(𝑥) ≤ |||𝑓 ||| |||𝑥 − 𝑥|||≤ 2 |||𝑓 ||| |||𝑥||| 

This implies ||| 𝑓1 |||< ∞.  Hence  𝑓1 ∈ 𝑋∗\{0}.  Thus 𝑋∗ ≠ {0}.■  

Corollary3.6:  If the nals𝑋  has a basis, then 𝑋∗ ≠  0 ■ 

 

 

 

Theorem3.7:Let 𝑋 be a nals with a basis B such that 𝑐𝑎𝑟𝑑 𝐵\𝑉𝑋 < ∞, then  

𝑋∗ = {𝑓 ∈ 𝑋#: 𝑓/𝑉𝑋 ∈ (𝑉𝑋)∗}. 

Proof:Let 𝑓 ∈ 𝑋#,𝑓/𝑉𝑋 ∈ (𝑉𝑋)∗.  If 𝑓 ∉ 𝑋∗, then there exists 𝑥𝑛 ∈ 𝑥, |||𝑥𝑛 ||| ≤ 1, 𝑛 ∈ 𝑁, such 

that|𝑓(𝑥𝑛)| → ∞.  Let 𝐵\𝑉𝑋 = {𝑏1 , … . 𝑏𝑘}.Then we have that 𝑥𝑛 =  𝛼𝑛𝑖

𝑘
𝑖=1 𝑏𝑖 + 𝑣𝑛 , 𝛼𝑛𝑖

≥ 0,

𝑣𝑛 ∈ 𝑉𝑋 , 𝑛 ∈ 𝑁. 

Nowthe sequence {𝛼𝑛𝑖
}𝑛=1
∞ , 1 ≤ 𝑖 ≤ 𝑘are all bounded. 
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Since |𝑓(𝑥𝑛) =  𝛼𝑛𝑖

𝑘
𝑖=1 𝑓(𝑏𝑖 + 𝑓(𝑣𝑛)| → ∞, it follows that  |𝑓(𝑣𝑛)| → ∞.  

Since 𝑓/𝑉𝑋 ∈ (𝑉𝑋)∗, we must have  |||𝑣𝑛 |||→ ∞. 

On the other hand |||𝑣𝑛 ||| ≤|||𝑥𝑛 ||| + |||  𝛼𝑛𝑖

𝑘
𝑖=1 𝑏𝑖 ||| for each 𝑛 ∈ 𝑁. 

It is a contradiction since the right hand inequality is bounded.  Hence 𝑓 ∈ 𝑋∗.■ 

Corollary3.8:  If the nals𝑋 has a basis 𝐵 such that 𝑐𝑎𝑟𝑑 𝐵 < ∞,then 𝑋# = 𝑋∗. 

Proof:  By the Theorem 3.7, we have𝑋∗ = {𝑓 ∈ 𝑋#: 𝑓/𝑉𝑋 ∈ (𝑉𝑋)∗}, since 𝑋 has a basis such that 

𝑐𝑎𝑟𝑑 𝐵 < ∞.So we must have that 𝑋# = 𝑋∗.■ 

Theorem3.9: Let 𝑋 be a nals and let 𝑓 ∈ (𝑊𝑋)∗.  Then there exists 𝑓1 ∈ 𝑋∗such that𝑓1/𝑊𝑋 = 𝑓, |||𝑓1||| 

= |||𝑓|||and 𝑓1/𝑉𝑋 = 0. 

 Proof:  Let 𝑋 be a nals and let 𝑓 ∈ (𝑊𝑋)∗. 

Define a function 𝑓1by 𝑓1 𝑥 = 𝑓(𝑥 − 𝑥)/2, 𝑥 ∈ 𝑋.                                                                            

Then 𝑓1 satisfies all the conditions of an almost linear functional.Hence 𝑓1 ∈ 𝑋∗.  

 |||𝑓1||| =𝑠𝑢𝑝{ 𝑓1 𝑥  : |||𝑥|||≤ 1} = sup{|
𝑓 𝑥−𝑥 

2
| ∶|||𝑥||| ≤ 1} 

  = sup{|
𝑓 𝑥)+𝑓(−𝑥 

2
| ∶|||𝑥||| ≤ 1} ≤

1

2
sup{ 𝑓 𝑥  + |𝑓 −𝑥 | ∶|||𝑥||| ≤ 1} 

=
1

2
sup{2 𝑓 𝑥  :|||𝑥||| ≤ 1} = sup{ 𝑓 𝑥  :|||𝑥||| ≤ 1}= |||𝑓||| < ∞. 

Hence |||𝑓1||| ≤ |||𝑓|||  

Let𝑤 ∈ 𝑊𝑋 , then  𝑓1 𝑤 =
𝑓 𝑤−𝑤 

2
=

𝑓 𝑤+(−𝑤) 

2
= 𝑓(𝑤) 

Hence 𝑓1 𝑤 = 𝑓(𝑤) for every 𝑤 ∈ 𝑊𝑋 . 

Therefore 𝑓1/𝑊𝑋 = 𝑓and we have|||𝑓1||| ≥ |||𝑓|||.This implies |||𝑓1||| =|||𝑓|||.    

Let 𝑥 ∈ 𝑉𝑋 , then 𝑓1 𝑥 =
𝑓 𝑥−𝑥 

2
=

𝑓 0 

2
= 0.for every 𝑥 ∈ 𝑉𝑋 .Hence 𝑓1/𝑉𝑋 = 0.■ 

Let 𝑋 be a nals.  If (𝑊𝑋)∗ ≠ {0},  then 𝑋∗ ≠  0 .■                                                                  3.1 
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Theorem3.10:The following assertions are equivalent. 

i) There exists a nals𝑋 such that 𝑋∗ =  0 . 

ii) There exists a nals X such that 𝑋∗ ≠  0 , and 𝑋∗ = 𝑉𝑋∗. That is 𝑋∗ is a Banach space. 

Proof :   To  prove (i)  (ii) 

Suppose 𝑋 is a nals such that 𝑋∗ =  0 . 

Let 𝑌 = { 𝑥, 𝛼 : 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑅}and Let 𝑠: 𝑌 x 𝑌 → 𝑌and 𝑚: 𝑅 x 𝑌 → 𝑌be defined by 

𝑠((𝑥1 𝛼1), (𝑥2 , 𝛼2)) = (𝑥1+𝑥2, 𝛼1+𝛼2) and  𝑚 𝛾 𝑥, 𝛼  = (𝛾𝑥, 𝛾𝛼) 

Let 0 ∈ 𝑌be the element (0,0).                                                                                                   Then 𝑌 is 

an als and we have 𝑉𝑌 = { 𝑣, 𝛼 : 𝑣 ∈ 𝑉𝑋 , 𝛼 ∈ 𝑅}and 𝑊𝑌 = { 𝑤, 0 : 𝑤 ∈ 𝑊𝑋}.                    Since X≠ 𝑉𝑋 , 

then  𝑌 ≠ 𝑉𝑌.  Define a norm on 𝑌 by |||(𝑥, 𝛼)|||1=|||𝑥||| + |𝛼|.Then 𝑌 together with||| . |||1is a nals. 

Clearly the function 𝑓0 defined on 𝑌by 𝑓0  𝑥, 𝛼  = 𝛼, (𝑥, 𝛼) ∈ 𝑌belongs to𝑉𝑌∗, and |||  𝑓0 |||1=1.We 

show that 𝑌∗ = 𝑉𝑌∗.Let 𝑓 ∈ 𝑌∗\𝑉𝑌∗By Lemma 2.8,there exists  𝑊0 , 0 ∈ 𝑊𝑌 , 𝑊0 ∈ 𝑊𝑋such that 

𝑓  𝑤, 0  > 0.Define the functional  𝑓1on 𝑋 by  𝑓1 𝑥 = 𝑓  𝑥, 0  , 𝑥 ∈ 𝑋.                                                     

Then  𝑓1 ∈ 𝑋∗and by (i)  𝑓1 = 0, a contradiction Since  𝑓1(𝑊0) = 𝑓((𝑊0, 0)) > 0.                            

Therefore𝑉𝑌∗ = 𝑌∗.To show 𝑖𝑖 ⟹ (𝑖).                                                                                                                                  

Let 𝑋 be a nals such that 𝑋∗ = 𝑉𝑋∗ ≠  0 .                                                                                                           

Since 𝑋 is not a linear space that 𝑊𝑋 ≠  0 and we have (𝑊𝑋)∗ = {0}.Thus there exists nals𝑊𝑋  such 

that (𝑊𝑋)∗ = {0}.■ 

Theorem3.11:Let 𝑋 be a nals with a basis 𝐵. 

i)  For each 𝑓 ∈ (𝑉𝑋)#there exists  𝑓1 ∈ 𝑉𝑋#, 𝑓1/𝑉𝑋 = 𝑓. 

ii)  If 𝑐𝑎𝑟𝑑(𝐵/𝑉𝑋) < ∞, then for each 𝑓 ∈ (𝑉𝑋)∗,there exists  𝑓1 ∈ 𝑉𝑋∗such that  𝑓1/𝑉𝑋 = 𝑓. 

Proof:   Suppose 𝐵 has the property that for each 𝑏 ∈ 𝐵/𝑉𝑋we have  −𝑏 ∈ 𝐵/𝑉𝑋 . 
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i)  Let 𝑓 ∈ (𝑉𝑋)#\{0}and let 𝑥 ∈ 𝑋/𝑉𝑋 .Now there exists unique 𝑏1, … . ,  𝑏𝑛 ∈ 𝐵\𝑉𝑋 , 𝛼𝑖 > 0,1 ≤ 𝑖 ≤

𝑛 and 𝑣 ∈ 𝑉𝑋such that 𝑥 =  𝛼𝑖𝑏𝑖 + 𝑣𝑛
𝑖=1 3.2Define  𝑓1 𝑥 = 𝑓 𝑣 and for 𝑣 ∈ 𝑉𝑋define  𝑓1 𝑣 =

𝑓 𝑣 .Then clearly  𝑓1 ∈ 𝑋#and  𝑓1 is an extension of 𝑓.  To show that   𝑓1 ∈ 𝑉𝑋#, by Lemma 2.8,  we 

must show that  𝑓1 −𝑥 = − 𝑓1 𝑥  for each  𝑥 ∈ 𝑋\𝑉𝑋 .                                                                                                                                                

If 𝑋 has the representation given in (3.2), then −𝑥 =  𝛼𝑖(−𝑏𝑖) − 𝑣𝑛
𝑖=1 and so 𝑓1 𝑥 = 𝑓 −𝑣 =

−𝑓 𝑣 =  𝑓1 𝑥 .
 

ii).  Suppose𝑐𝑎𝑟𝑑  𝐵\𝑉𝑋 < ∞.   Let 𝑓 ∈ (𝑉𝑋)∗\{0}.Then by  (i) there exists  𝑓1 ∈ 𝑉𝑋#.   𝑓1/𝑉𝑋 =

𝑓.Then by Theorem 3.7, the result follows.■ 

Corollary3.12:Let 𝑋 be a nals with a basis 𝐵, such that 𝑐𝑎𝑟𝑑  𝐵\𝑉𝑋 < ∞. Then 𝑋∗is total over 𝑋. 

Proof:  Suppose 𝐵\𝑉𝑋 = { 𝑏1, … . ,  𝑏𝑛} Let  𝑥1 ,  𝑥2 ∈ 𝑋 such that  𝑓(𝑥1) = 𝑓( 𝑥2) for each 𝑓 ∈ 𝑋∗.                                                                                                                                                      

Now we have that𝑥𝑖 =  𝛼𝑖𝑗 𝑏𝑗 +𝑣𝑖
𝑛
𝑗=1 ,𝛼𝑖𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛, 𝑣𝑖 ∈ 𝑉𝑋 , 𝑖 = 1,2. 

By Lemma 3.6 for each 𝑏𝑗 ∈ 𝐵\𝑉𝑋  there exists  𝑓𝑗 ∈ 𝑋# such that  𝑓𝑗   𝑏𝑗  = 1and  𝑓𝑗  𝑏 = 0for 

𝑏 ∈ 𝐵\{𝑏𝑗 }.By Theorem 3.9,  𝑓𝑗 ∈ 𝑋#, hence by our assumption, 

  𝑓𝑗   𝑥1 =  𝑓𝑗   𝛼1𝑗
𝑛
𝑗=1  𝑏𝑗  +  𝑓𝑗   𝑣1 =  𝛼1𝑗

𝑛
𝑗=1  𝑓𝑗 ( 𝑏𝑗 ) +  𝑓𝑗   𝑣1 = 𝛼1𝑗 . 𝑓𝑗   𝑥2 =

 𝑓𝑗   𝛼2𝑗
𝑛
𝑗=1  𝑏𝑗  +  𝑓𝑗   𝑣2 =  𝛼2𝑗

𝑛
𝑗=1  𝑓𝑗 ( 𝑏𝑗 ) +  𝑓𝑗   𝑣2 = 𝛼2𝑗 . 

Hence 𝛼1𝑗 = 𝛼2𝑗 for 1 ≤ 𝑗 ≤ 𝑛.Consequently for each 𝑓 ∈ 𝑋∗, we get 𝑓  𝑣1 = 𝑓  𝑣2 .Since 𝑉𝑋 is a 

normed linear space, by Theorem 3.11, it follows that   𝑣1 =  𝑣2.                        Therefore  𝑥1 =  𝑥2and 

hence 𝑋∗is total over 𝑋.■ 

Theorem3.13:Let 𝑋 be a nals such that𝑋 = 𝑊𝑋 + 𝑉𝑋 .Then for each 𝑓 ∈ (𝑉𝑋)∗there exists a norm 

preserving extension  𝑓1 ∈ 𝑉𝑋∗. 

Proof:Let 𝑓 ∈ (𝑉𝑋)∗{0}.Now for each 𝑥 ∈ 𝑋, there exists unique 𝑤 ∈ 𝑊𝑋  and 𝑣 ∈ 𝑉𝑋such that 

𝑥 = 𝑤 + 𝑣.Define  𝑓1(𝑥) = 𝑓(𝑣).  Clearly  𝑓1 ∈ 𝑋#and 𝑓1 ∈ 𝑉𝑋#.Now we get  |𝑓1 𝑥 | = |𝑓 𝑣 | ≤ ||| 𝑓 

||| ||| 𝑣 ||| ≤ ||| 𝑓 ||| ||| 𝑥 |||and so ||| 𝑓1 ||| = ||| 𝑓 |||.■ 
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Theorem3.14: Let𝑋 be snals such that𝜌 is a metric and if 𝑥 ∈ 𝑋\(𝑊𝑋 + 𝑉𝑋).  Suppose    𝑋 = {𝛼𝑥0 +

𝜇 −𝑥0 + 𝑤 + 𝑣: 𝑤 ∈ 𝑊𝑋 , 𝑣 ∈ 𝑉𝑋 , 𝛼, 𝜇 ≥ 0}then                                                                i) for 

each 𝑓 ∈ (𝑉𝑋)∗ there exists  𝑓1 ∈ 𝑉∗  such that  𝑓1\𝑉𝑋 = 𝑓                                                           ii) 

𝑉𝑋∗ ≠ {0} and                                                                                                                                  iii) for 

each 𝑓 ∈ (𝑊𝑋 + 𝑉𝑋)∗there exists  𝑓1 ∈ 𝑋∗  such that  𝑓1\(𝑊𝑋 + 𝑉𝑋) = 𝑓.   

Proof:  We first show that   𝑋 = 𝑋1 ∪   𝑋2 ∪ (𝑊𝑋 + 𝑉𝑋)3.3 Where   𝑋1 = {𝛼𝑥0 + 𝑤 + 𝑣: 𝛼 > 0, 𝑤 ∈

𝑊𝑋,𝑣∈𝑉𝑋} 

  𝑋2 = {−𝛼𝑥0 + 𝑤 + 𝑣: 𝛼 > 0, 𝑤 ∈ 𝑊𝑋 , 𝑣 ∈ 𝑉𝑋}and we have that  𝑋1  ∩ 𝑋2 = ∅,   𝑋𝑖 ∩ (𝑊𝑋 + 𝑉𝑋) =

∅, 𝑖 = 1,2. 

Since   𝑋1  ∪ 𝑋2 ∪ (𝑊𝑋 + 𝑉𝑋) ⊂ 𝑋 is obvious, let 𝑥 ∈ 𝑋. 

Say 𝑥 = 𝛼𝑥0 + 𝜇 −𝑥0 + 𝑤 + 𝑣, 𝛼, 𝜇 ≥ 0, 𝑤 ∈ 𝑊𝑋 , 𝑣 ∈ 𝑉𝑋 .  

If 𝛼 = 𝜇 then, since 𝛼(𝑥0−𝑥0) ∈ 𝑊𝑋 , it follows that 𝑥 ∈ 𝑊𝑋 + 𝑉𝑋 .                                                   If 

𝛼 > 𝜇then𝑥 = (𝛼−𝜇)𝑥0 + 𝜇 𝑥0 − 𝑥0 + 𝑤 + 𝑣 ∈ 𝑋1.                                                                                 

Similarly if 𝛼 < 𝜇then  𝑥 ∈  𝑋2. This proves (3.3). Since ±𝑥0 ∉ 𝑊𝑋 + 𝑉𝑋 , it follows that   𝑋𝑖 ∩ (𝑊𝑋 +

𝑉𝑋) = ∅, 𝑖 = 1,2.   Let  𝑥 ∈   𝑋1 ∩  𝑋2. Then there exists   𝛼𝑖 > 0,   𝑤𝑖  ∈  𝑊𝑋 ,   𝑣𝑖 ∈ 𝑉𝑋 , 𝑖 = 1,2,such that  

  𝑥 = 𝛼1𝑥0 +   𝑤1 +  𝑣1 = −𝛼2𝑥0 +   𝑤2 +  𝑣2. 

Hence  (𝛼1+𝛼2)𝑥0 +   𝑤1 +  𝑣1 =  𝛼2(𝑥0 − 𝑥0) +  𝑤2 +  𝑣2 ∈ 𝑊𝑋 + 𝑉𝑋 .
 

Now againit follows that  (𝛼1+𝛼2)𝑥0 ∈ 𝑊𝑋 + 𝑉𝑋 .
 

 It is a contradiction since  𝛼1+𝛼2 > 0and 𝑥0 ∉ 𝑊𝑋 + 𝑉𝑋 .
 

Therefore   𝑋1 ∩  𝑋2 = ∅.For 𝑌 = 𝑊𝑋 + 𝑉𝑋 , we get that any 𝑥 ∈ 𝑋can be uniquely represented in the 

form𝑥 = 𝛼𝑥0 + 𝑤 + 𝑣, (𝛼 ∈ 𝑅, 𝑤 ∈ 𝑊𝑋  , 𝑣𝑖 ∈ 𝑉𝑋)
  

3.4
 

 i). Let 𝑓 ∈ (𝑉𝑋)∗\{0}.If 𝑥 ∈ 𝑋has the representation given by (3.4) define  𝑓1 𝑥 = 𝑓(𝑣).                                                   

Clearly  𝑓1 ∈ 𝑉𝑋#.If   𝑓1 ∉ 𝑉𝑋∗then there exists  𝑥𝑛 ∈ 𝑋, ||| 𝑥𝑛 |||≤ 1, 𝑛 ∈ 𝑁, such that  |𝑓1( 𝑥𝑛)| → ∞.                                                                                                                         
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Suppose  𝑥𝑛 = 𝛼𝑛𝑥0 + 𝑤𝑛+ 𝑣𝑛 , 𝛼𝑛 ∈ 𝑅, 𝑤𝑛 ∈ 𝑊𝑋 , 𝑣𝑛 ∈ 𝑉𝑋 , 𝑛 ∈ 𝑁.                                            Suppose 

that for an infinity of n we have 𝛼𝑛 ≥ 0and without loss of generality we can suppose 𝛼𝑛 ≥ 0for 

all 𝑛 ∈ 𝑁.  Now it follows that |||𝛼𝑛𝑥0 +  𝑣𝑛 ||| ≤ |||𝑥𝑛 |||≤ 1 for each 𝑛 ∈ 𝑁.                                  And so 

the sequence  {𝛼𝑛}𝑛=1
∞ is bounded.  Then |||𝑣𝑛 ||| ≤ 1+𝛼𝑛 |||𝑥𝑛 |||, 𝑛 ∈ 𝑁hence the sequence {|||𝑣𝑛 |||}𝑛=1

∞ is 

bounded.  We get the same conclusion if 𝛼𝑛 ≤ 0, 𝑛 ∈ 𝑁.                                                                                 

Then we work with −𝑥0 instead of 𝑥0.                                                                                              Now 

since  |𝑓1( 𝑥𝑛)| = |𝑓 𝑣𝑛 | → ∞ and𝑓 ∈ (𝑉𝑋)∗We obtain that𝑣𝑛 → ∞a contradiction.  Hence  𝑓1 ∈ 𝑉𝑋∗. 

ii)  If 𝑉𝑋 ≠ {0}, then by (i) we get 𝑉𝑋∗ ≠ {0}. Suppose now 𝑉𝑋 = {0}.                                                                                                                                        

Let 𝑥 ∈ 𝑋, then by (3.3) there exists unique 𝛼 ∈ 𝑅,𝑤 ∈ 𝑊𝑋such that  𝑥 = 𝛼𝑥0 + 𝑤.         Define 

𝑓 𝑥 = 𝛼|||𝑥0 |||.  Clearly we have 𝑓 ∈ 𝑉𝑋#. Now we get 𝑓 𝑥 = 𝛼|||𝑥0 |||≤ |||𝛼𝑥0 + 𝑤||| = |||𝑥|||Hence 𝑓 ∈

𝑉𝑋∗\{0}. 

iii).  Let𝑓 ∈ (𝑊𝑋 + 𝑉𝑋)∗\{0}.                                                                                                         If 

𝑉𝑋 =  0 then the result follows by Theorem 3.9.  Suppose now 𝑉𝑋 ≠  0  By (i) there exists  𝑓2 ∈ 𝑋∗ 

such that 𝑓2/𝑉𝑋 = 𝑓/𝑉𝑋and  𝑓2/𝑊𝑋 = 0.  By Theorem 3.9, there exists  𝑓3 ∈ 𝑋∗such that  𝑓3/𝑊𝑋 =

𝑓/𝑊𝑋and  𝑓3/𝑉𝑋 = 0.  
 

Let  𝑓1 =  𝑓2+𝑓3.   Then  𝑓1 ∈ 𝑋∗and we have 𝑓1/(𝑊𝑋 + 𝑉𝑋) = 𝑓.■ 
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