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ABSTRACT 

Blind deconvolution is a strongly ill-posed problem 

comprising of simultaneous blur and image 

estimation. Recent advances in prior modeling and/or 

inference methodology led to methods that started to 

perform reasonably well in real cases. However, as 

we show here, they tend to fail if the convolution 

model is violated even in a small part of the image. 

Methods based on variational Bayesian inference 

play a prominent role. In this paper, we use this 

inference in combination with the same prior for 

noise, image, and blur that belongs to the family of 

independent non-identical Gaussian distributions, 

known as the automatic relevance determination 

prior. We identify several important properties of this 

prior useful in blind deconvolution, namely, 

enforcing non-negativity of the blur kernel, favoring 

sharp images over blurred ones, and most 

importantly, handling non-Gaussian noise, which, as 

we demonstrate, is common in real scenarios. The 

presented method handles discrepancies in the 

convolution model, and thus extends applicability of 

blind deconvolution to real scenarios, such as photos 

blurred by camera motion and incorrect focus.  

Index Terms— Blind deconvolution, variational 

bayes, automatic relevance determination, gaussian 

scale mixture. 

I.INTRODUCTION 

Numerous measuring processes in real world are 

modeled by convolution. The linear operation of 

convolution is characterized by a convolution (blur) 

kernel, which is also called a point spread function 

(PSF), since the kernel is equivalent to an image the 

device would acquire after measuring an ideal point  

 

 

source (delta function). In devices with classical 

optical systems, such as digital cameras,  

Optical microscopes or telescopes, image blurs 

caused by camera lenses or camera motion is 

modeled by convolution. Media turbulence (e.g. 

atmosphere in the case of terrestrial telescopes) 

generates blurring that is also modeled by 

convolution. In atomic force microscopy or scanning 

tunneling microscopy, resulting images are 

convolved with a PSF, whose shape is related to the 

measuring tip shape. In medical imaging, e.g. 

magnetic resonance perfusion, pharmacokinetic 

models consist of convolution with an unknown 

arterial input function. These are just a few examples 

of acquisition processes with a convolution model. In 

many practical applications convolution kernels are 

unknown.  

Then the problem of estimating latent Manuscript 

received data from blurred observations without any 

knowledge of kernels is called blind deconvolution. 

Due to widespread presence of convolution in 

images, blind deconvolution is an active field of 

research in image processing and computer vision. 

However, the convolution model may not hold over 

the whole image. Various optical aberrations alter 

images so that only the central part of images follows 

the convolution model. Physical phenomena such as 

occlusion, under and overexposure, violate the 

convolution model locally. It is therefore important to 

have a methodology that handles such discrepancies 

in the convolution model automatically.  

Let us assume the standard image acquisition model, 

in which a noisy observed image g is a result of 

convolution of a latent image u and an unknown PSF 

h, plus corruption by noise 𝜖.                    
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𝑔 = ℎ ∗ 𝑢 + 𝜖                  (1) 

The goal of blind image deconvolution is to recover u 

solely from the given blurry image g. We follow the 

stochastic approach and all the variables in 

consideration are 2D random fields characterized by 

corresponding probability distributions denoted as 

p(h), p(u), and p(𝜖).                   

The Bayesian paradigm dictates that the inference of 

u and h from the observed image g is done by 

modeling the posterior probability distribution p(u, 

h|g) ∝ p(g|u, h)p(u)p(h). Estimating the pair (u ˆ, h ˆ) 

is then accomplished by maximizing the posterior 

p(u, h|g), which is commonly referred to as maximum 

a posteriori (MAP) approach, sometimes denoted 

MAP u,h to emphasize the simultaneous estimation 

of image and blur. Levin et al. in [1] pointed out that 

even for image priors p(u) that correctly capture 

natural image statistics (sparse distribution of 

gradients), MAPu,h approach tends to fail by 

returning a trivial ―no-blur‖ solution, i.e., the 

estimated sharp image is equal to the input blurred 

input g and the estimated blur is a delta function. 

However, MAP u,h avoids the ―no-blur‖ solution if 

we artificially sparsify intermediate images by shock 

filtering, removing weak edges, overestimating noise 

levels, etc., as widely used in [2]–[8]. 

 From the Bayesian perspective, a more appropriate 

approach to blur kernel estimation is by maximizing 

the posterior marginalized w.r.t. the latent image u, 

i.e. p(h|g) =  𝑝(𝑢,ℎ/𝑔)𝑑𝑢. This distribution can be 

expressed in closed form only for simple image 

priors (e.g. Gaussian) and suitable approximation is 

necessary in other cases. In the Variational Bayesian 

(VB) inference, we approximate the posterior p(u, 

h|g) by a restricted parameterization in factorized 

form and optimize its Kullback-Leibler divergence to 

the correct solution. The optimization is tractable and 

the resulting approximation provides an estimate of 

the sought marginal distribution p(h|g). As soon as 

the blur h is estimated, the problem of recovering u 

becomes much easier. It can be usually determined 

by the very same model, only now we maximize the 

posterior p(u|g, h), or outsourced to any of the 

multitude of available non-blind deconvolution 

methods.  

It is important to realize, that the error between the 

observation and the model, 𝜖 = g − h ∗ u, may not 

always be of stochastic uncorrelated zero-mean 

Gaussian nature – the true noise. In real-world cases, 

the observation error comes from many sources, e.g. 

sensor saturation, dead pixels or blur space-variance 

(objects moving in the scene) to name a few. Vast 

majority of blind deconvolution methods do not take 

any extra measures to handle model violation and the 

fragile nature of blind blur estimation typically 

causes complete failure when more than just a few 

pixels do not fit the assumed model, which 

unfortunately happens all too often. A non-identical 

Gaussian distribution with automatically estimated 

precision, which is called the Automatic Relevance 

Determination model (ARD) [9], is simple enough to 

be computationally tractable in the VB inference and 

yet flexible enough to handle model discrepancies far 

beyond the limited scope of Gaussian noise. 

 In this work, we adopt the probabilistic model of 

Tzikas et al. [10], which is based solely on VB 

approximation of the posterior p(u, h) and which uses 

the same ARD model for all the priors p(u), p(h), and 

importantly also for the noise distribution p(𝜖) . Our 

main focus is to analyze properties of the VB-ARD 

model and to elaborate on details of its 

implementation in real world scenarios, which was 

not directly considered in the original work of Tzikas. 

Specifically, we propose several extensions: include 

global precision for the whole image in the noise 

distribution p(𝜖.) to decouple the Gaussian and non-

Gaussian part of noise, different approximation of the 

blur covariance matrix, pyramid scheme for the blur 

estimation, and handling convolution boundary 

conditions. We demonstrate that VB-ARD with 

proposed extensions is robust to outliers and in this 

respect outperforms by a wide margin state-of-the-art 

methods. 

The rest of the paper is organized as follows. Sec. II 

overviews related work in blind deconvolution, ARD 

modeling and masking. Sec. III discusses the 

importance of modeling the data error by ARD. Sec. 

IV presents the VB algorithm with ARD priors. 

Experimental validation of robustness to model 

discrepancies is given in Sec. V and Sec. VI 

concludes this work. 
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II.LITERATURE SURVEY 

[1] A. Levin, Y. Weiss, F. Durand, and W. T. 

Freeman, Blind deconvolution is the recovery of a 

sharp version of a blurred image when the blur kernel 

is unknown. Recent algorithms have afforded 

dramatic progress, yet many aspects of the problem 

remain challenging and hard to understand. The goal 

of this paper is to analyze and evaluate recent blind 

deconvolution algorithms both theoretically and 

experimentally. We explain the previously reported 

failure of the naive MAP approach by demonstrating 

that it mostly favors no-blur explanations. We show 

that, using reasonable image priors, a naive 

simulations MAP estimation of both latent image and 

blur kernel is guaranteed to fail even with infinitely 

large images sampled from the prior. On the other 

hand, we show that since the kernel size is often 

smaller than the image size, a MAP estimation of the 

kernel alone is well constrained and is guaranteed to 

succeed to recover the true blur. The plethora of 

recent deconvolution techniques makes an 

experimental evaluation on ground-truth data 

important. As a first step toward this experimental 

evaluation, we have collected blur data with ground 

truth and compared recent algorithms under equal 

settings. Additionally, our data demonstrate that the 

shift-invariant blur assumption made by most 

algorithms is often violated. 

This paper analyzes the major building blocks of 

recent blind deconvolution algorithms. We illustrate 

the limitation of the simple MAPx;k approach, 

favoring the no-blur (delta kernel) explanation. One 

class of solutions involves explicit edge detection. A 

more principled strategy exploits the dimensionality 

asymmetry, and estimates MAPk while marginalizing 

over x. While the computational aspects involved 

with this marginalization are more challenging, 

existing approximations are powerful. We have 

collected motion blur data with ground truth and 

quantitatively compared existing algorithms. Our 

comparison suggests that the variational Bayes 

approximation [5] significantly outperforms all 

existing alternatives. The conclusions from our 

analysis are useful for directing future blind 

deconvolution research. In particular, we note that 

modern natural image priors do not overcome the 

MAPx;k limitation (and in our tests did not change 

the observation in Section 2). While it is possible that 

blind deconvolution can benefit from future research 

on natural image statistics, this paper suggests that 

better estimators for existing priors may have more 

impact on future blind deconvolution algorithms. 

Additionally, we observed that the popular spatially 

uniform blur assumption is usually unrealistic. Thus, 

it seems that blur models which can relax this 

assumption have a high potential to improve blind 

deconvolution results. 

[2] J. Pan, Z. Lin, Z. Su, and M. H. Yang, Estimating 

blur kernels from real world images is a challenging 

problem as the linear image formation assumption 

does not hold when significant outliers, such as 

saturated pixels and non-Gaussian noise, are present. 

While some existing non-blind deblurring algorithms 

can deal with outliers to a certain extent, few blind 

deblurring methods are developed to well estimate 

the blur kernels from the blurred images with 

outliers. In this paper, we present an algorithm to 

address this problem by exploiting reliable edges and 

removing outliers in the intermediate latent images, 

thereby estimating blur kernels robustly. We analyze 

the effects of outliers on kernel estimation and show 

that most state-of-the-art blind deblurring methods 

may recover delta kernels when blurred images 

contain significant outliers. We propose a robust 

energy function which describes the properties of 

outliers for the final latent image restoration. 

Furthermore, we show that the proposed algorithm 

can be applied to improve existing methods to deblur 

images with outliers. Extensive experiments on 

different kinds of challenging blurry images with 

significant amount of outliers demonstrate the 

proposed algorithm performs favorably against the 

state-of-the-art methods. 

In this work, we propose a robust kernel estimation 

algorithm in which effective edges are selected for 

deblurring images containing significant amount of 

outliers. We present detailed analysis on the effects 

of outliers on kernel estimation. Furthermore, we 

show that the proposed method can be applied to 

improve the accuracy of existing blind deblurring 

methods. In the final deconvolution step, we develop 
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a robust method to restore the latent image under the 

guidance of the proposed outlier-aware function 

where the effects of outliers are minimized. 

Extensive experimental evaluations on real images 

and benchmark datasets demonstrate the proposed 

algorithm performs favorably against the state-of-the-

art methods for uniform as well as non-uniform 

deblurring.  

[3] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M. 

H. Yang,Low rank matrix approximation has been 

successfully applied to numerous vision problems in 

recent years. In this paper, we propose a novel low 

rank prior for blind image deblurring. Our key 

observation is that directly applying a simple low 

rank model to a blurry input image significantly 

reduces blur even without using any kernel 

information, while preserving important edge 

information. The same model can be used to reduce 

blur in the gradient map of a blurry input. Based on 

these properties, we introduce an enhanced prior for 

image deblurring by combining the low rank prior of 

similar patches from both the blurry image and its 

gradient map. We employ a weighted nuclear norm 

minimization method to further enhance the 

effectiveness of low rank prior for image deblurring, 

by retaining the dominant edges and eliminating fine 

texture and slight edges in intermediate images, 

allowing for better kernel estimation. In addition, we 

evaluate the proposed enhanced low rank prior for 

both uniform and non-uniform deblurring. 

Quantitative and qualitative experimental evaluations 

demonstrate that the proposed algorithm performs 

favorably against the state-of-the-art deblurring 

methods. 

In this paper, we present a novel enhanced low rank 

prior for blind image deblurring. The low rank 

properties of both intensity and gradient maps from 

image patches are exploited in the proposed 

algorithm. We present a weighted nuclear norm 

minimization approach based low rank properties to 

effectively recover latent images. Experimental 

results on benchmark datasets show that the proposed 

algorithm performs favorably against the state-of-the-

art deblurring methods. 

III.PROPOSED METHOD 

A. Automatic Relevance Determination  

In the discrete domain, convolution is expressed as 

matrix vector multiplication. Then according to (1) 

the data error 𝜖i of the i-th pixel is 

𝜖i = gi − Hiu = gi − Ui h , i = 1,..., N ,          (2) 

where H and U are convolution matrices performing 

convolution with the blur and latent image, 

respectively, and u are column vectors containing 

lexicographically ordered elements of the 

corresponding 2D random fields. N is the total 

number of pixels. Subscript i in vectors denotes the i-

th element and in matrices the i-th row.  

If the subscript is omitted then we mean the whole 

vector (or matrix). In the majority of blind 

deconvolution methods, the data error term is 

assumed to be i.i.d. zero-mean Gaussian with 

precision α, i.e. 

𝑝 𝜖 𝛼 =  𝒩 𝜖𝑖 0,𝛼−1 

𝑖

                (3) 

Such assumption leads to the common 2 data term α 

2 i(gi − Uih)2. However as we demonstrate below, if 

this Gaussian error assumption is slightly violated 

(e.g. by pixel saturation, model locally doesn’t hold, 

etc.), the 2 data term gives an incorrect solution. It is 

therefore desirable to model both the Gaussian and 

non-Gaussian part of the error, for which the 

Student’s t-distribution is a good choice, as it is 

essentially a scaled mixture of Gaussians and also 

plays nicely with the VB framework.  

As demonstrated earlier for the autoregressive model 

, we propose using a Gaussian distribution with pixel-

dependent factors γi modulated by the overall noise 

precision α. The error model of is then defined as  

  𝑝 𝜖 𝛼, 𝛾 =  𝒩 𝜖𝑖 0, (𝛼𝛾𝑖)
−1 

𝑖

                (4) 

to which we refer as the ARD model with common 

precision. To draw a parallel to the classical 

formulation, the data term in this case takes the form  

. The power of this 
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model lies in determining the precisions α and γi 

automatically. This is covered in the following 

section, where we formulate the VB inference. For 

the current discussion, it suffices to state that we need 

priors also on γ. Let G denote the standard Gamma 

distribution, defined as G (ξ|a, b) = (1/ (a)) baξia−1 

exp (−bξ). We define the γ prior as  

p 𝛾 𝑣  =  𝒢 𝛾𝑖 𝑣 ,𝑣 

𝑖

                  (5)         

Marginalizing p (𝜖|α, γ )p(γ |ν) over γ gives us the 

Student’s t-distribution with zero mean, precision α 

and degrees of freedom 2ν. From the above model it 

follows that the mean of γi is equal to a/b = ν/ν = 1. If 

ν becomes large then G (γi|ν, ν) tends to the delta 

distribution at 1 and the error model will be just a 

Gaussian distribution. As ν decreases, tails decay 

more slowly and γi will be allowed to adjust and 

automatically suppress outliers violating the 

acquisition model. The conventional ARD model 

used e.g. in [10] is  

𝑝∗ 𝜖 𝛾 =  𝒩 𝜖𝑖 0, 𝛾𝑖
−1 

𝑖

 

𝑝∗ 𝛾𝑖 = 𝒢 𝛾𝑖 𝑎𝛾 , 𝑏𝛾                   (6) 

The marginal distribution of this prior over γ is a 

Student’s t-distribution with 2a γ degrees of freedom. 

It is possible to choose the number of degrees of 

freedom as a priori known – a common approach is 

to choose aγ, bγ as small as possible, yielding 

Student’s t-prior with infinite variance. Estimation of 

the hyper parameters aγ , bγ via a numerical MAP 

method has been proposed in [10]. 

 

Fig.1. Sharp (left) and intentionally blurred (right) 

image pair acquired for accurate calculation of the 

blur PSF from the known patterns surrounding the 

image. 

 

Fig. 2. Convolution error distribution in the case of 

real motion blurs (solid green). 

 It is much more heavy-tailed than the usually 

assumed Gaussian (dotted red, α = 0.6 · 103), while 

the Student’s t-distribution (dashed blue, 2ν = 3.5, α 

= 1.2 · 105) is a perfect fit. 

 The ARD model is valuable in real scenarios even 

when there are no visible local discrepancies of the 

convolutional model. We conjecture that under real 

image acquisition conditions there exists no 

convolution kernel h such that the distribution of in 

(2) is strictly Gaussian. Different factors inherently 

present in the acquisition process, such as lens 

imperfections, camera sensor discretization and 

quantization, contribute to the violation of the 

convolution model. 

To verify our conjecture, we acquired several pairs of 

sharp–blurred images (u, g) with intentional slight 

camera motion during exposure. Except for this, we 

carefully avoided any other kinds of error like pixel 

saturation or space-invariance of the blur and worked 

strictly with raw data from the camera. For each of 

these pairs we estimated the blur PSF h following the 

procedure suggested, which uses patterns printed 

around the image and designed to make the blur 

identification stable; see example in Fig. 1. For this 

data, we measured the error of the convolution (2) 
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and plotted its distribution (negative log) in Fig. 2. 

The distribution is far from Gaussian, as the 

maximum likelihood estimate of the Gaussian 

distribution clearly provides a very poor 

approximation, especially in the tails. The Student’s 

t-distribution, on the other hand, approximates the 

error distribution correctly and thus justifies the ARD 

choice for p ().It is interesting to note, that we 

performed a similar analysis on Levin’s dataset [1] 

and obtained the same Student’s t-distribution of the 

convolution error. Another justification of the ARD 

model provided in [10] 

 

Fig.3. Relative data term value (negative log 

likelihood) for commonly used Gaussian (top) and 

ARD (bottom) priors (low value means high 

probability of the particular PSF) for image blurred 

with PSF of size 2.2.  

Different data series correspond to different 

percentages of non-Gaussian error in the input. The 

curves’ minima (indicated by dots) should 

correspond to the true PSF (vertical line). The 

Gaussian prior favors larger and larger blurs as the 

non-Gaussian error increases, while the ARD prior 

remains virtually unaffected and correctly identifies 

the true PSF. 

is that a small error in the blur estimation also 

produces heavy tailed p(). Having demonstrated that 

the model error may have a significantly non-

Gaussian distribution, the logical next step is to 

further analyze how this influences the solution 

accuracy. We conducted an experiment to answer a 

question: Is the ubiquitous standard-issue quadratic 

data term (Gaussian model) the right choice in the 

presence of non-Gaussian input error? As one 

expects, the answer is no. The problem is that in the 

presence of non-Gaussian error, the quadratic data 

term attains its minimum at a wrong point, therefore 

we get a solution, however not the solution we 

sought. The setup of our experiment was as follows.  

We took a sharp image u and set a certain percentage 

of randomly selected pixels to over-exposed values to 

represent non-Gaussian error. We then blurred the 

saturated image with the ―true‖ PSF ht, added mild 

Gaussian noise and clipped the image intensities to 

obtain the final image g. We then proceeded to 

measure the goodness of several PSF candidates h by 

evaluating the corresponding data terms (more 

precisely, − log (·) of the assumed noise distribution) 

of the classical Gaussian model (3) and the ARD 

model with common precision (4). The whole 

experiment is graphically documented in two plots in 

Fig. 3. The top plot corresponds to the Gaussian 

model (quadratic data term) and the bottom plot 

corresponds to the ARD model used by our method. 

Individual line series represent different percentage 

of pixels intentionally corrupted by non-Gaussian 

error.  

The y-axis shows the data-term value for different 

blurs h as a function of their size (x-axis). The 

minimum of each line is marked by a small dot. The 

actual blur size of ht is depicted by a vertical line 

around x = 2.2. For the Gaussian model (top plot), the 

minimum is reached for the correct blur size as long 

as the error is Gaussian-only (0% non-Gaussian). As 

the presence of non-Gaussian error increases, the 

data-term minimum shifts further and further away 

from the true point, effectively eliminating the 

chances of successful blur estimation. The ARD 

model (bottom plot), however, is unaffected by 

whatever amount of non-Gaussian error is thrown at 

it. We can conclude that when non-Gaussian input 
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error can be expected the Gaussian presents a poor 

choice for the likelihood, a choice which 

compromises the chances of successful sharp image 

restoration.  

B. Variational Bayesian Inference  

There are many examples of the VB inference 

applied to blind deconvolution in the literature; see 

e.g. [10]. They approximate the posterior p(u, h|g) by 

a factorized distribution q(u, h) = q(u)q(h). We 

follow the same path and use the ARD model with 

common precision for the error and the conventional 

ARD model for image and blur priors. The common 

precision in the image and blur priors is in our 

opinion superfluous, since it lacks any relation to real 

phenomena as opposed to the error  where the 

common precision models white Gaussian noise. Let 

us first define the individual distributions. 

Substituting from (2) into the ARD model in (4), the 

conditional probability distribution of the blurred 

image is  

𝑝 𝑔 𝑢 ,ℎ,𝛼, 𝛾 = 𝒩 𝑔 𝐻 𝑢,  𝛼Γ −1 

=  𝒩 𝑔𝑖 𝐻𝑖𝑢,  𝛼𝛾𝑖 
−1   

𝑖

 

𝛼 (𝛼𝛾𝑖)
1/2 exp  −

𝛼𝛾𝑖
2

 𝑔𝑖 − 𝐻𝑖𝑢 
2 ,       (7) 

where −1 is a diagonal covariance matrix having the 

inverse of the precision vector γ on the main 

diagonal,  = diag(γ). Let us recall that the precision γi 

is in general different for every pixel and it is 

determined from the data, which allows for automatic 

detection and rejection of outliers violating the 

acquisition model. The image prior p (u) is defined 

over image features (derivatives) and takes the form 

𝑝 𝑢 𝜆  = 𝒩 𝐷𝑢 0 , Λ−1 =  𝒩(𝐷𝑖𝑢 0 , 𝜆𝑖
−1)

𝑖

 

𝛼 𝜆𝑖
1/2

exp  −
𝜆𝑖
2

(𝐷𝑖𝑢)2 

𝑖

,                 (8) 

where Di is the first order difference at the i-th pixel 

and = diag (λ). The operator D can be replaced by 

any sparsifying image transform, like wavelet 

transform or other set of high pass filters. The prior 

ability to capture sparse features (edges) comes from 

the automatically determined precisions λi’s. It was 

advocated in [1] to use flat priors on the blur and 

enforce only non-negativity, hi ≥ 0, and constant 

energy, i |hi| = 1. This reasoning stems from the fact 

that the blur size is by several orders of magnitudes 

smaller than the image size and therefore inferring 

the blur from the posterior is driven primarily by the 

likelihood function (7) and less by the prior p (h). 

However, if the image estimation u is inaccurate, 

which is typically the case in the initial stages of any 

blind deconvolution algorithm, then a more 

informative prior p (h) is likely to help in avoiding 

local maxima and/or speeding up the convergence. 

To keep the approach coherent, we apply the ARD 

model on blur intensities. 

𝑝 ℎ 𝛽 = 𝒩 ℎ 0,𝐵−1 =  𝒩 ℎ𝑖 0,𝛽𝑖
−1 

𝑖

 

𝛼 𝛽𝑖
1 2 

𝑖

exp  −
𝛽𝑖
2
ℎ𝑖

2          (9) 

where B = diag(β). The ARD models in (7), (8), and 

(9) are conditioned to unknown precision parameters 

(α, γi, λi, βi). The conjugate distributions of 

precisions are Gamma distributions and thus for 

image and blur precisions we have 

𝑝 𝜆𝑖 = 𝒢 𝜆𝑖 𝑎𝜆 , 𝑏𝜆  

𝑝 𝛽𝑖 = 𝒢 𝛽𝑖 𝑎𝛽 ,𝑏𝛽        (10) 

And for the error precisions according to (4) and (5) 

we have 

          𝑝 𝛼 = 𝒢 𝛼 𝑎𝛼 ,𝑏𝛼  

       𝑝 𝛾𝑖 𝜈 = 𝒢 𝛾𝑖 𝜈, 𝜈  

𝑝 𝜈 = 𝒢 𝜈 𝑎𝜈 , 𝑏𝜈                 (11) 

The hyper parameters a(·) and b(·) are user-defined 

constants. Let Z = {u, h, α, ν, {γi}, {λi}, {βi}} denote 

all the unknown variables and Zk its particular 

member indexed by k. Using the above defined 

distributions, the posterior p (Z|g) is proportional to   

𝑝 𝑔 𝑢,ℎ,𝛼, 𝛾 𝑝 𝛼 𝑝 𝛾 𝜈 𝑝 𝜈 𝑝 𝑢 𝜆 𝑝 𝜆 𝑝 ℎ 𝛽 𝑝 𝛽  
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The VB inference [38] approximates the posterior 

p(Z|g) by the factorized distribution   

𝑝 Ζ 𝑔 ≈ 𝑞 Ζ 

= 𝑞 𝑢 𝑞 ℎ 𝑞 𝜈 𝑞 𝛾 𝑞 𝜆 𝑞 𝛽     (12) 

This is done by minimizing the Kullback-Leibler 

divergence, which provides a solution for individual 

factors  

𝑙𝑜𝑔𝑞 𝑧𝑘  𝛼 𝔼𝑙≠𝑘 log𝑝 Ζ 𝑔                     (13) 

where El=k denotes expectation with respect to all 

factors q (Zl) except q(Zk). Formula (13) gives 

implicit solution, because each factor q (Zk) depends 

on moments of other factors. We must therefore 

resort to an iterative procedure and update the factors 

q in a loop. A detailed derivation of update equations 

can be found in [10] as the model is similar to ours. 

The interested reader is also referred to [10] for better 

understanding of the derivation. In the following 

subsections we therefore only state the update 

equations yet analyze their properties in detail. A. 

Likelihood the important feature is automatic 

estimation of the nonGaussian part of the error 

modeled by precision γ. utilizing the combination of 

VB inference and ARD prior, we are able to detect 

and effectively reject outliers from the estimation and 

achieve unprecedented robustness of the blur 

estimation, much needed in practical applications. 

Using (13), q (γ) becomes a Gamma distribution with 

a mean value   

γ 
i

=
1 + 2v 

α 𝔼u,h[ gi − Hiu)2 + 2υ 
                             (14) 

where (·) denotes a mean value. Relating the 

inference to the classical minimization of energy 

function − log p (u, h|g), the precision γi corresponds 

to the weight of the i-th pixel in data fidelity term. 

The above equation shows that this weight is 

inversely proportional to the (expected) 

reconstruction error at that pixel (up to the relaxation 

by ν/α) and it is updated during iterations, as the 

image and blurs estimates change. This technique is 

similar to the method of iteratively reweighted least 

squares (IRLS), where the quadratic data terms are 

reweighted according to the error at the particular 

data point to achieve greater robustness to outliers, 

but here it arises naturally as part of the VB 

framework. We demonstrate how the method behaves 

with respect to outliers in the experimental section. 

According to (14), the mean value of γ depends, apart 

from u and h, only on the mean values α and ν. Using 

again the VB inference formula (13), one can deduce 

that both q (α) and q (ν) are Gamma distributions 

with mean values 

𝛼 =
𝑁 + 2𝑎𝛼

 𝛾𝑖 𝔼𝑢 ,ℎ [(𝑔𝑖 −𝐻𝑖𝑢
2]𝑁

𝑖=1 + 2𝑏𝑎
                (15) 

𝜐 =
𝑁 + 2𝑎𝜐

2 (𝛾𝑖 − 𝔼𝛾𝑖 [log 𝛾𝑖 ] − 1)𝑁
𝑖=1 + 2𝑏𝜐

      (16) 

The update equation of ν requires Stirling’s 

approximation; see e.g. [32] for detailed derivation. 

Note that the above update equations (14), (15) and 

(16) are easy to compute. Precision α is expected to 

be inversely proportional to the level of Gaussian 

noise in the input image. It is therefore interesting to 

observe how α behaves during iterations. After the 

initialization, when the reconstruction error is high, 

the weight α is correspondingly low and thus the role 

of priors (regularization) is increased in the early 

stages of estimation. During subsequent iterations, as 

the estimation improves, α increases and the effect of 

priors is attenuated. It has long been observed that 

this adjustment of data-term weight during iterations 

is highly beneficial, if not necessary, for the success 

of blind blur estimation; otherwise the optimization 

tends to get stuck in a local minimum. Many state-of-

the art blind deconvolution methods therefore 

perform some kind of heuristic adjustment of the 

relative data-term/regularize weight [7], often of the 

form of geometric progression αk+1 = rαk, where k 

denotes k-th iteration. The drawback of this approach 

is that the optimal constant r must be determined by 

trial and error and, more importantly, the progression 

must  
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Fig.4. Estimated noise precision as a function of 

iterations:  

The Variational Bayesian algorithm updates the noise 

precision in every iteration. The curves depict its 

typical development for different image SNRs; 50dB 

through 10dB. The diamond markers show the fixed 

update using geometric progression αk = 1.5αk−1. 

Stop when the correct α (corresponding to the true 

noise level) is reached, which is not determined 

automatically but must be specified by the user. The 

VB framework has an indisputable advantage over 

more straightforward MAP methods – not only does 

it give us the optimal update equation for the data 

term precision, it also provides automatic saturation 

when the correct noise level is reached, as we can see 

in Fig. 4. During the early iterations the precision 

sharply increases and then levels out at the correct 

value. For comparison we also show the fixed 

geometric progression for r = 1.5 (diamond markers).  

C. Image Prior  

The factors associated with the image are q (u) and q 

(λ). Applying (13), we get (up to a constant) log 

𝑙𝑜𝑔𝑞 𝑢 = −Εℎ ,𝛼 ,𝛾 ,𝜆 𝛼 𝑔 − 𝐻𝑢 𝑇Γ 𝑔 − 𝐻𝑢 

+ 𝑢𝑇𝐷𝑇Λ𝐷𝑢           (17) 

where the terms independent of u are omitted. The 

distribution q (u) is a normal distribution. The mean u 

and covariance cov (u) are obtained by taking the 

first and second order derivatives of log(q(u)), 

respectively, and solving for zero. The update 

equation for the mean is a linear system  

 𝔼h 𝐻
𝑇Γ 𝐻 + 𝛼 −1𝐷𝑇Λ 𝐷 𝑢 = Η 

𝑇
Γ 𝑔                (18) 

 And for the covariance we get   

cov u = (𝛼 𝔼ℎ  𝐻
𝑇Γ 𝐻 + 𝐷𝑇Λ 𝐷)−1                (19) 

The mean pixel precisions λi form the diagonal 

matrix. They are calculated from q(λ), which is a 

Gamma distribution with the mean  

λ i =
1 + 2aλ

𝔼u (Diu)2 + 2bλ

                  (20) 

The parameter bλ plays the role of relaxation, as it 

prevents division by zero in the case Diu = 0. 

 

Fig.5. Comparison of priors: The graph shows − log 

p(u) of priors as a function of amount of blurring.  

The 1 prior (dotted red line) decreases and so does 

the log prior (dash-dotted yellow line), which is the 

marginalized ARD prior. On the other hand, the ARD 

prior (solid purple line) with precisions estimated 

from the sharp image steeply increases and flattens 

out for large blurs. The normalized prior 2 (dashed 

blue line) increases more slowly but steadily. The 

value of priors are normalized to give 1 on sharp 

images (1 blur size). The curves show means values 

calculated on various images (photos of nature, 

human faces, and buildings). 

It was demonstrated in [1] that commonly used p (p < 

1) priors with |Di u|p in the exponent, counter-

intuitively favor blurred images over the sharp ones 

and therefore cannot avoid the ―no-blur‖ solution by 

itself. The sparsity of image derivatives decreases 

with increasing blur but the variance of image 

derivatives decreases as well. The second effect is 

stronger in natural images and therefore the total 

prior probability increases with blur. We want to 
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analyze if the ARD image prior p (u|λ) in (8) behaves 

better in this respect and how it compares with the 

unconditional (marginalized) version p (u). 

Following the analysis of Gaussian scale mixtures in 

[27] and [29], the unconditional prior p (u) is 

obtained by marginalizing over λ, which in the limit 

for aλ → 0 yields. 

𝑝 𝑢 

=  𝑝 𝑢, 𝜆 𝑑𝜆

=  𝑝 𝑢 𝜇 𝑝 𝜆 𝑑𝜆𝛼 exp(−
1

2
log((𝐷𝑖𝑢)2

𝑖

+ 𝑏))                                                                          (21) 

The marginalized ARD image prior is of the 

exponential form with exponent log (Di u)2 + const. 

It is thus equivalent to the log prior proposed in [22]. 

It is a non-convex prior that aggressively favors 

sparsity of the natural image statistics. In this sense it 

resembles the p priors with p → 0. We calculated − 

log p (u) on natural images (photos of nature, human 

faces, and buildings) blurred with Gaussian blur of 

varying size. We also tried motion and uniform blur 

and the behavior was identical. For each image we 

have normalized − log p (u) calculated on differently 

blurred versions of the image so the original sharp 

image (no blur) gives 1. The normalized − log p (u) 

of different priors as a function of blur size and 

averaged over all images is plotted in Fig. 5. As 

expected, the exponent of the 1 prior decrease as the 

blur increases, i.e. this prior favors blurred images 

over sharp ones. The log prior, which is the 

marginalized ARD prior, decreases less but still 

favors blurred images. In the VB framework, 

however, we do not work with the marginalized ARD 

prior and instead iteratively estimate the prior 

precisions λi’s from the current estimate of u using 

the update formula (20).  

Let us assume an ideal situation in which the 

precisions are estimated from the sharp image, then 

the ARD prior shows correct behavior similarly to 

the normalized prior 2 [39] that compensates for the 

effect of decreasing image variance. This ideal case is 

not achievable in practice, since we do not have a 

correct estimate of the sharp image u at the 

beginning, but it can be regarded as an upper bound. 

As the VB inference makes the approximation of the 

posterior more accurate with every iteration, we 

approach this upper bound.  

D. Blur Prior 

 As stated earlier, we use the same ARD model also 

for the blur prior (9). Analogously to the derivation 

of the image distribution q(u) in (17), the form of blur 

factor q(h) is a Gaussian distribution given by log 

q(h) = −Eu,α,γ,β α(g − Uh)T (g − Uh) + hT Bh . Then 

the mean h is the solution of the linear system  

 𝔼 𝑈𝑇Γ 𝑈 + 𝛼 −1𝐵  ℎ = 𝑈 𝑇Γ 𝑔                          (22) 

  And the covariance is                  

𝑐𝑜𝑣 ℎ = (𝛼 𝔼𝑢  𝑈
𝑇Γ 𝑈 + 𝐵 )−1                (23) 

The distribution q (β) of the blur precision is again a 

Gamma distribution and for the mean values of βi we 

get analogously to (20)  

𝛽𝑖 =
1 + 2𝑎𝛽

𝔼ℎ  ℎ𝑖
2 + 2𝑏𝛽

                    (24) 

State-of-the-art blind deconvolution methods often 

estimate h while enforcing positivity and constant 

energy, i.e. hi ≥ 0 and i hi = 1. Enforcing such 

constraints in our case means to solve the least 

squares objective associated with (22) under these 

constraints. Since the constraints form a convex set, 

we can use, e.g., the alternating direction method of 

multipliers (ADMM) [40], that solves convex 

optimization problems by breaking them into smaller 

pieces, each of which is then easier to handle. 

However, applying such constraints would take us 

outside the VB framework, as q (h) is then no longer 

a Gaussian distribution and cov h is intractable.  

To test the influence of the constraints, we have used 

the proximal algorithm to solve the constrained (22), 

albeit violating the VB framework, but we have 

noticed no improvement. One explanation is that a 

non-negative solution is a local extreme of VB 

approximation which attracts the optimization when 

the initial estimate is also non-negative. Let us 

assume that the PSF is initialized with non-negative 

values, which is always true in practice as PSFs are 
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typically initialized with delta functions. If during 

VB iterations, any hi approaches zero then the 

corresponding precision calculated in (24) grows, 

reaching 1/ (2b) if a → 0. If the hyper parameters are 

sufficiently small (which is our case), this correspond 

to a very tight distribution q(hi) that traps hi at zero 

and prevents further changes.  

The covariance cov h has an additional positive 

influence on the behavior of the PSF precision β. The 

denominator of (24) expands to h2 i + cov hi + 2b. 

From (23) it follows that cov hi is inversely 

proportional to α + βi. We can ignore γ, since it is in 

average around 1 anyway as it captures only local 

nonGaussian errors. We have seen in Fig. 4 that α 

starts small, which implies larger cov hi and thus 

small PSF precision βi. Small βi loosely constrains 

the estimation of the PSF h during initial iterations. 

As α increase later on, cov hi decreases and βi 

increases, which helps to fix the estimated values of 

h. 

E. Algorithm 

All equations in the VB inference are relatively easy 

to solve, except for the calculation of covariance 

matrices cov u in (19) and cov h in (23), which 

involves inverting precision (concentration) matrices. 

Both matrices are large and their inversion is not 

tractable since they are a combination of convolution 

and diagonal matrices. The covariance is important in 

the evaluation of expectation terms E [·]. To tackle 

this problem, we approximate precision matrices by 

diagonal ones. This is different from Tzikas’s work 

[10], where cov h is approximated by a convolution 

matrix. The experimental section demonstrates that 

the diagonal approximation performs better. We 

show the approximation procedure on cov h and 

calculation of u. The approximation of cov u and 

calculation of h is similar. First we approximate the 

covariance matrix cov h by inverting only the main 

diagonal of the precision matrix, i.e.,  

(Diag (αEu U T U + B))−1. 

Here we use the syntax of popular numerical 

computing tools such as MATLAB, Python or R, and 

assume that the operator diag (·) if applied to a 

matrix returns its main diagonal. The covariance cov 

h is required in the evaluation of Eh H T H in (18). 

After some algebraic manipulation, we conclude that 

Eh H T H = H T H +Ch, where Ch is a diagonal 

matrix constructed by convolving γ with cov h. We 

can interpret the main diagonals of cov h and  as 2D 

images and then by slightly abusing the notation 

write Ch = diag γ ∗ (diag(αU T U + Cu + B))−1, 

where the outer operator diag(·) returns a diagonal 

matrix with pixels of the convolution result arranged 

on the main diagonal. The blind deconvolution 

algorithm is summarized in Algorithm 1. 

 The most time consuming steps are 3 and 5, which 

are large linear systems. Fast inversion is not possible 

because the matrices are composed of convolution 

and diagonal ones. We thus use conjugate gradients 

to solve these systems. Steps 10, 11 and 12 update 

precisions and they are calculated pixel-wise. Since 

the covariance’s of u and h are approximated by 

diagonal matrices, the expectation terms in these 

update steps are easy to evaluate and likewise in steps 

7 and 8. There are two important implementation 

details. For the method to be applicable to large blurs 

(20 pixels wide or more), we must use a pyramid 

scheme. The above algorithm first runs on a largely 

down sampled blurred.  
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Algorithm 1 The estimated blur h is then upsampled 

and used as an initialization in the next run of the 

algorithm with the corresponding scale of g. This is 

repeated until the original scale of g is reached. We 

tested various configurations and concluded that 5 

scales with a scale factor of 1.5 is sufficient, which 

was then used in all our experiments. Passing other 

variables (e.g. precisions) between scales except h 

proved superfluous. The second point is to handle 

convolution boundary conditions, which is necessary 

in the case of real images. We solve it naturally by 

forcing precisions γi’s that lie along image 

boundaries to zero. 

 This way the algorithm assumes maximal model 

discrepancy and completely ignores the boundary 

regions. The hyper parameters a (·) and b (·) in (10) 

and (11) are the only user-defined parameters. 

Checking update equations (15) and (16) reveals that 

(aα, bα) and (aν, bν) have a negligible effect since 

both α and ν are scalars and data terms in the update 

equations are dominant. In all our experiments we set 

them thus to zero. On the other hand, (aλ, bλ) and 

(aβ, bβ) are important since both λ and β are 

calculated for every pixel and their update equations 

(20) and (24) are influenced by the hyper parameters.  

We have searched for the best parameters and 

determined that both aλ and aβ can be set to zero but 

bλ and bβ must be in the interval (10−9, 10−6), 

otherwise the algorithm is unstable. In the case of the 

noise model with conventional ARD, α and ν (and 

corresponding hyper parameters aα, bα, aν, bν) are 

not present. Instead, we have new hyper parameters 

aγ, bγ, which we set in all our experiments to 0 and 

10−4, respectively. This corresponds to fixing the 

number of degrees of freedom to zero.  

IV.EXPERIMENTAL RESULTS 

 

Fig1: (a) Original Image (b) Synthetic Blur Image 

 

Fig2: (a) Original Image (b) Blurred Image (c) 

Distorted Image (d) Restored Image 

We considered distortion by 1) small regions 2) large 

regions 3) Gaussian large regions 

 

Fig3: Original images available in database 
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Fig4: Original images and PSFs used in our synthetic 

experiments. 

V.CONCLUSIONS 

We have presented a blind deconvolution algorithm 

using the Variational Bayesian approximation with 

the Automatic Relevance Determination model on 

likelihood and image and blur priors. The derived 

coherent algorithm consists of two linear systems of 

equations that can be efficiently solved with the 

Conjugate Gradients method, and three simple pixel 

wise update equations for noise, image and blur 

precisions. We have shown that the Automatic 

Relevance Determination model correctly favors 

sharp images over the blurred ones, enforces PSF 

non-negativity and most importantly adjusts for 

convolution model discrepancies. The experimental 

section has demonstrated that allowing variable data 

precision is essential for dealing with outliers such as 

saturated regions, occlusions or convolution 

boundary effects. Estimation of the degrees of 

freedom of the noise prior is beneficial only for 

Gaussian noise. For non-Gaussian noise distributions, 

it is more effective to fix the number of degrees of 

freedom to zero.  
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