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Abstract —In this paper the simulink model for speed 

control of switch reluctance motor is carried out using 

different speed controllers. The simulink model is designed 

for PI and Fuzzy logic controller separately and their 

result is compared. The speed controllers applied here are 

based on conventional PI controller and other one is 

Adaptive Neuro based Fuzzy logic controller. The PI 

controller is a special case of the PID controller in which 

the derivative of the error is not used. Fuzzy logic 

controller is an intelligent controller which uses fuzzy logic 

to process the input. In Industrial control FLC has various 

applications, Particularly where conventional control 

design techniques are difficult to apply. The ANFIS has 

theadvantages of expert knowledge of the fuzzy inference 

systemand the learning capability of neural networks. This 

controllerrealizes a good dynamic behavior of the motor, a 

perfect speedtracking with no overshoot and a good 

rejection of impact loadsdisturbance. The results of 

applying the adaptive neuro-fuzzycontroller to a SRM give 

better performance and highrobustness than those obtained 

by the application of aconventional controller (PI). The 

above controller was realizedusing MATLAB/Simulink. 

Index Terms— ANFIS, Torque Control, Switched 

ReluctanceMotor. 

 

I. INTRODUCTION 

Concerns over energy efficient drive, Switched 

ReluctanceMotor (SRM) has attracted the interest in 

fields of Electric Vehicle(EV) due to its robust 

construction, fault tolerant operation, highstarting 

torque without the problem of excessive inrush 

current, andhigh-speed operation. However, SRM 

suffers from some drawbackssuch as high torque 

ripple and acoustic noise which are verycritical for 

EV applications. The research is progressing 

extensivelyfor the mitigation of torque ripple and 

acoustic noise. In indirecttorque control scheme of 

SRM, the torque of the motor is controlledby 

controlling the motor current. Due to high 

nonlinearity in torqueand current relationship, the 

conversion of torque into equivalentcurrent value is 

cumbersome. In the paper [1], the torque is 

directlyproportional to the ideal phase inductance 

profile which increases ordecreases proportionately 

with the angle of overlap. Due tomagnetic saturation, 

the phase inductance varies with the motorcurrent 

which leads to large amount of error in both 

instantaneousand average value of torque. In [2], the 

author had suggested amultiplication factor F to 

compensate for the error of torque and ‗F„should be a 

function of current level. In [3], the author 

havesuggested approximating the torque as 

proportional to the square ofstator current, where the 

multiplying factor is assumed to vary as asinusoidal 

function of rotor position alone. A two 

dimensionallookup table in which the torque value is 

stored as function ofcurrent and rotor position. The 

amount of time taken forcomputation of torque is 

very high [4, 5]. In [6], a Cerebella 

ModelArticulation Controller (CMAC) based torque 

control waspresented. A closed loop torque controller 

based on B-spline neuralnetwork (BSNN) with online 

training was presented in [7].Back-propagation (BP) 

based neural network controllers have beenproposed 

in [8]-[10], but both of [8] and [9] used one-hidden-

layerneural network which is not sufficient for 

estimating thestabilized motor current. In [11, 12], 

look-up tables were generatedoff-line by building an 

SRM model to profile the current for the flattorque 

waveform and stored in the controller.During on-

linerunning, the controller searched the look-up 

tables for the currentcommand. 

 

Another comprehensive controller to maximize 

efficiency and peakoverload capability of SRM by 

using look-up tables for electricvehicle drives has 

been designed. This controller has severallook-up 

tables for different voltages. To calculate the 

controlparameters for a certain torque - 

command/rotor-speed (operatingpoint) and bus 

voltage, three interpolations have to be 

performed.The percentage error depends upon the 

resolution of lookup tables.At low speed, the torque 

ripple is sensitive to the current profile, anda slight 

deviation from the required profile may produce high 

torqueripple. In this paper, ANFIS based Direct 

Control of torque isproposed to minimize the torque 

ripple at low speed for its simple,easy to implement 

and fast dynamics. Computed results show thatthe 

proposed scheme can reduce the torque ripple and 
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provide gooddynamic performance with respect to 

changes in the torquecommands. 

 

Fig.1 shows a typical control diagram for 

SRM driven by asymmetric half bridges. Current 

controller is employed to generate switching signals 

for the asymmetric half bridges according to the 

current reference. The current reference is either 

given by a speed controller or a torque distributer. If 

the current reference comes directly from a speed 

controller, flat top chopping current for each phase is 

employed. Due to the strong nonlinearity, in some 

cases, the flat top chopping current regulation might 

not provide satisfactory performance. Therefore, 

torque sharing control is used to distribute torque 

production between two phases in order to produce 

constant torque [2]–[7]. 

 
Fig..1. Typical SRM control diagram 

 

Both flat top chopping current regulation 

and torque sharingcontrol rely on accurate current 

controllers. Hysteresis control is one of the most 

popular current control schemes in SRMs,due to its 

fast dynamic response and model independency [4]–

[8]. However, hysteresis controller also suffers from 

drawbacks including variable switching frequency 

and very high sampling rate [9]–[11]. Variable 

switching frequency in hysteresis control makes it 

difficult to design the electromagnetic 

interference(EMI) filter and may cause an acoustical 

noise. High-speedADCs have higher sampling rate, 

however, they add additional cost to the SRM drive 

system. 

In order to avoid the drawbacks of the 

hysteresis current controller, fixed frequency PWM 

controllers have been studied[9], [11]–[16]. In [12], 

an open loop PWM controller is used, whereas in [9], 

a proportional-integral (PI) current controller has 

been investigated and a current sampling method for 

digital control have been introduced. A proportional 

(P) controller with an iterative learning control is 

proposed in [17] to achieve accurate current control. 

In [11], [13]–[16], back EMF compensation to the PI 

current controller has been analyzed. In [11],the gains 

of the PI controller are adjusted according to current 

and rotor position. However, a PI controller suffers 

from either slow response or possible overshot. It is 

also difficult to tune thePI controller in SRM 

applications due to the highly nonlinear 

characteristics of the machine. 

Model-based dead-beat flux controller are 

proposed in [18]–[21]. The dead-beat controller 

achieves constant switching frequency and lower 

sampling rate, while maintaining the similar dynamic 

response as hysteresis controller. However, the 

performance of a dead-beat controller relies on an 

accurate model and a large gain, which may degrade 

the performance of the dead-beat controller. 

In [22], a Lyapunov function-based 

controller is proposed to solve model mismatch issue. 

The tracking error is bounded by the parameters of 

the controller. A sliding mode current controller is 

proposed in [23]. Parameters of these controllers are 

carefully selected according to the model mismatch. 

These control methods need to store several look-up 

tables, which increase the storage and computational 

burden of the digital controller. 

A digital PWM current controller for the 

SRM drives is proposed in this paper in order to 

achieve fast response, accurate tracking, immunity to 

noise, model mismatch, and stability. The proposed 

controller takes full advantage of the model 

information. Smaller feedback gain could be chosen 

in order to reduce noise sensibility without degrading 

the performance. Parameter adaption is adopted to 

deal with the model mismatch. Relationships between 

the proposed controller and the previous mentioned 

PI dead-beat controllers are discussed. Both the 

simulation and experimental results are provided to 

verify the performance of the proposed current 

controller. 

 

II. MODEL OF SRM 

By neglecting mutual coupling between phases, the 

phase voltage equation of an SRM can be given as 

  
  (1) 

Where uw is the phase voltage applied on the phase 

winding, Rw is the winding resistance, ψ is the flux 

linkage, θ is the rotor position, and I is the phase 

current. 

Due to its double salient structure and saturation, ψ is 

a nonlinear function of both i and θ. Fig. 2 shows the 
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measured flux linkage profile of the SRM studied in 

this paper. The rotor spins360◦ per electric period. 

The aligned positions are 0◦ and 360◦.The unaligned 

position is 180◦. Fig. 2 could be stored into a lookup 

table when digital control is applied. 

Considering the modeling errors, the real flux linkage 

is represented as 

   
 (2) 

where is the modeled flux linkage profile used in the 

controller, and factor α is a positive number that 

donates the relationship between the modeled flux 

linkage profile and the real one. 

In the ideal case, the modeled flux linkage profile 

exactly matches the real one, and α = 1. But in 

practice, no matter whether ψm is obtained by the 

experimental measurement or by an FEA calculation, 

there may be some mismatch between ψ and ψm. In 

this case, ψm is unknown and α may be variable and 

there is 

  
  (3) 

where𝛼  is the average value of α, Bα ≥ 0 is the 

variation bound of α, and Bα ˙ ≥ 0 is the maximum 

variation rate of α.The values of Bα and Bα ˙ depend 

on the modeling errors of thestudied motor. 

Considering the resistances and voltage drops on 

windings and switches, the phase voltage equation 

could be written as 

   (4) 

where uc donates the converter output voltage, Rc 

donates the equivalent resistance of the converter, Rc 

could be obtained from either experiments or data 

sheets, but it changes according to current, 

temperature, gate source (GS) voltage, etc. vc 

donates the voltage drop on the converter, vm 

donates the voltage drop caused by mutual 

inductance, vn reflects all other voltage drops, and 

noises in the system. Equation (4) could be 

formulated as 

 
  (5) 

where R is the total equivalent resistance and v is the 

total equivalent voltage drop. They are uncertain 

parameters that are not easy to model. The values of 

R and v are both unknown and may be variable, 

which are represented as 

  
  (6) 

where𝑅  donates the average value of R, BR ≥ 0 

donates thevariation bound of R, and Bv˙ ≥ 0 donates 

the maximum variation rate of R. R is also positive. 

𝑣 donates the average value ofv, Bv˙ ≥ 0 donates the 

variation bound of v, and Bv˙ ≥ 0 donatesthe 

maximum variation rate of v. 

 

III.  Proposed Current Controller 

A current controller can either control the current 

directly or control the current indirectly by 

controlling the flux linkage. For a certain position θ, 

ψ is a monotone increasing function of i. For any i1 ≥ 

0, i2 ≥ 0 there is 

  
  (7) 

Therefore, the phase current can be controlled by 

controlling its corresponding flux linkage. The SRM 

model shown in (4) contains unknown parameters, a 

current controller with estimated parameter values 

could be constructed as 

 
  (8) 

where ψm(θ,iref) is the reference flux linkage 

calculated by the reference current iref and rotor 

position θ, 𝛼  is the estimatedvalue of α, 𝑅  is the 

estimated value of R, 𝑣   is the estimatedvalue of v, k 

is a positive constant, and e is the flux linkage 

errorwhich can be expressed as 

 
  (9) 

Substituting (8) into (5), the flux linkage error 

dynamics can be derived as 
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  (10) 

where 𝛼 , 𝑅 and 𝑣  are the estimation errors, ei is the 

currenterror. 

If a Lyapunov candidate is selected as 

 
  (11) 

where kα, kR , and kv are positive constants. Then, 

the derivative of the Lyapunov candidate is 

  
  (12) 

 
Fig. 2.2. Typical waveform of ψm (θ, iref ) and iref 

It can be seen from (12) that if 𝛼   ,𝑅  , and 𝑣  are chosen 

as 

  
 (13) 

Then, (12) becomes 

  (14) 

(A) Constant Parameters 

k, 𝑅 , and α are positive constants, and according to 

(7), eiand e have the same sign. If α, R, v are 

constant, i.e., 

   
 (15) 

𝑉 becomes 

 
Therefore˙ is semi negative definite. This indicates 

that the system is globally asymptotically stable, and 

e is going to converge to zero. If e converges to zero, 

the system is internally stable. The convergence rate 

of e is determined by k and α. Since αis around 1, k 

could be selected to adjust the convergence rate. 

According to (16), a larger k gives a faster 

convergence rate, which means faster dynamic 

response. However, according to(8), k is the feedback 

gain of the error, in this case, a large gain means that 

the controller is more sensitive to noise. Therefore, 

the selection of k is a tradeoff between the dynamic 

response and robustness. According to (10), if e 

converges to zero, forany ψ ˙m(θ,iref) and i, there 

will be 

 
  (17) 

As is known, the adaptive controllers suffer from 

parameter drafting. Since all the estimated parameters 

are bounded, the controller will be stable. However, 

parameters will not necessarily converge to their real 

values unless persistent excitation condition is 

satisfied [24]. For the case of (13), ψ ˙m (θ,iref) andi 

need to be “rich” enough to guarantee the 

convergence. Fig. 3shows a typical waveform of ψm 

(θ,iref) and iref with flat-top current control. It can be 

seen that iref is a constant number andi˙ref is zero, 

while ψm (θ,iref) is a nonlinear function of time. 

The nonlinearity of ψm (θ,iref) will provide sufficient 

frequencies to make ψ ˙m (θ,iref) “rich.” This is 

another reason why flux linkage is selected to be 

controlled instead of current. In this case, there is 

  
 (18) 

where t0 is the beginning of each stroke and te is the 

end of the stroke. Equation (18) indicates that Ψ (t) 

satisfies the exciting condition, which means 

||[𝛼 𝑣 ]||2 is going to converge perstoke [24]. In this 

case, as the controller is active each stroke,the 
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estimation errors are going to converge to zero 

eventually and there will be 

    
 (19) 

However, if the flat-top current control is applied, i 

may not be rich enough to guarantee the convergence 

of 𝑅 . In this case, adead zone should be added to 

prevent parameter drafting of 𝑅 . 

 

(B) Variable Parameters 

Practically, the parameters α, R, and v are not 

constant 

   
 (20) 

Since α, R, and v have their own bounds, the 

adaption law in(13) should be modified by 

   (21) 

This modification does not affect the system stability 

if the real values of α, R, and v do not exceed their 

bounds. At the same time, (22) defines the bounds of 

parameter estimation error 

   (22) 

Combined with (3) and (6), there are 

 (23) 

 (24) 

where B𝛼  , B𝑅  , and B𝑣  are the bounds of 𝛼  , 𝑅 , and 

𝑣 , respectively. According to (14) and (11), there is 

 
 (25) 

Whereki> 0 donates the relationship between e and 

ei. According to (25), if V exceeds αN/2(k + ki𝑅 ) + 

M, 𝑉  will benegative, and V is going to decrease. 

Thus, the control error isbounded by 

 
 (26) 

As shown from (26), for the predefined bounds and 

maximum variation rates of the unknown parameter, 

the control error is limited by k ,kα, kR , and kv. 

(C) Digital Implementation of Proposed Current 

Controller 

In digital implementation, the discrete form of (8) 

and (21)can be reformulated as 

  (27) 

 
Fig. 3. PWM modulation 

WhereT is the digital sampling time, θ(k + 1) = θ(k) + 

ωT, and ω is the electric angular speed of the SRM 
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  (28) 

Where Δψm(k) is defined in (27). BDZ is the error 

dead zone,𝛼 , 𝑅 , and 𝑣  are the estimated average 

values of α, R, and v,respectively. 

 

 

IV.PWM Delay Compensation 

Fig..3 shows the PWM modulation for digital control. 

Theduty ratio is either obtained by uc/UDC for soft 

chopping or0.5 + 0.5(uc/UDC ) for hard chopping. 

UDC is the dc bus voltage. In the kth control period, 

current should be sampled att(k). But in practice, 

especially in a DSP control, if currentis sampled at 

t(k), it will take some time for the controller to 

calculate the duty ratio and the duty ratio for t(k) is 

actuallyloaded into the PWM modulator at t(k + 1). 

This brings one sampling time delay into the control 

loop. In this case, the dutyratio for t(k) should be 

calculated before t(k). Mohamed andEl-Saadany [10] 

proposes a predictive current controller to solve 

 
Fig. 4. Approximation of i(k), θ(k), and θ(k + 1) 

the problem. However, the predictive current 

controller needsaccurate model and increases the 

calculation burden for DSP,especially for nonlinear 

systems such as SRMs. Blaabjerg et al.[9] 

recommends that current should be sampled at t(k − 

1/2),which means i(k) is approximated by 

   
 (29) 

As shown in Fig. 3, there is no switching action at t(k 

− 1/2),EMI noise at that instance can be avoided. 

Furthermore, the duty ratio can be calculated within 

half of the period and delay in thecontrol loop is 

avoided. 

The estimation of (29) is accurate if the average 

current of each kth period stays the same, as the (k − 

1)th period shown in Fig. 3. If average current 

between each period changes, as thekth period shown 

in Fig.4, (29) is not accurate. 

As shown in Fig. 3, with the symmetrical modulation, 

the voltage waveforms of the former half period and 

the latter halfperiod are symmetric. Therefore, the 

flux could be estimatedinstead of current. The flux 

ψm (θ(k),i(k)) could be approximated by 

 
 (30) 

In (30), current is sampled at both t(k - 1/2) and t(k - 

1),which doubles the sampling rate. The ADCs used 

in motor control is capable of working at the 

sampling rate of twice of the PWM frequency 

without increasing any cost. Similar to(29), (30) also 

avoids the EMI noise caused by the switching action, 

provides half control period for duty ratio calculation, 

and avoids the delay in the control loop as well. Since 

the current sampling, and other calculations are 

performed at t(k - 1/2), the rotor position also has to 

be approximated with the information at t(k - 1/2). 

Fig. 4 shows the approximation of ψm(θ(k),i(k)) and 

θ(k + 1) for further use. 

(A) Flux Reference Adjustment 

When implemented in a digital processor, the current 

controller has to meet physical limits. Normally, 

when a phase is turned ON, the phase current is 

expected to rise quickly to the reference value, 

however, the voltage applied on the phase is limited 

by UDC. It is necessary to adjust (θ(k + 1),iref(k + 

1)) 

 
Fig. 5. Procedure of calculating ψadj (θ(k + 1), iref (k 

+ 1)) and ψadj (θ(k), iref (k)). 

so that uc(k) would not exceed UDC 
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  (31) 

Therefore, ψm (θ(k + 1), iref(k + 1)) and ψm 

(θ(k),iref(k))in (27) should be replaced by ψadj (θ(k 

+ 1),iref(k + 1)) and ψadj (θ(k),iref(k)), respectively. 

Fig. 5 shows the procedure of calculating ψadj (θ(k + 

1),iref(k + 1)) and ψadj (θ(k),iref(k))according to 

(31). Fig. 6 shows the procedure of calculating, α 

ˆ(k), R ˆ(k), and v ˆ(k) according to (28). Fig. 7 shows 

the procedure of calculating uc(k) according to (27). 

(B). Relationship With Previously Proposed 

Controllers 

As shown in Fig. 7, the controller of (27) 

consists of two parts: the feedback part and the feed 

forward part. The feedback part is sensitive to noise, 

while the feed forward part is immune to noise. In 

order to enhance the robustness of the controller, 

thefeed forward part should give out most part of uc 

so that less control effort is needed by the feedback 

part. 

The digital controller of (27) has similar 

form with previously proposed controllers. For 

example, all the estimated parameters are taken as its 

real value, and k = 1/T , then (27) becomes 

 (32) 

This is a typical dead-beat controller proposed in 

[18]–[21]. If𝛼 is fixed as Kp · T and only the adaption 

of 𝑣 is active with a 

 
Fig.6. Procedure of calculating e, 𝛼  (k), 𝑅  (k), and 𝑣  

(k) 

 
Fig. 7. Procedure of calculating uc(k) 

gain of Ki, then (27) becomes a PI controller 

   (33) 

From this point of view, the proposed controller 

could be regarded as the improvement of some of the 

existing controllers. 

(D) Parameter Selection 

With the digital controller in (27), the error transfer 

function(10) could be rewritten in discrete domain as 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 07 

March 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 90 

 

 
 (34) 

Since the sampling time T is usually small enough, 

substituting(28) into (34), the error dynamics can be 

obtained as 

 (35) 

where O is small enough bounded items, which could 

be taken as input of the error dynamic. The poles of 

the discrete transfer function of (35) are 

 
  (36) 

To stabilize the system, the poles should be placed 

inside the unit cycle, and hence the limits of the 

parameters are 

   
 (37) 

It can be seen that in (32), k is selected to be 1/T and 

P is selected to be zero, and therefore, the poles are 

placed at zero. Due to the feed forward part in the 

proposed controller, a smaller could be chosen. After 

k is chosen, kα, kR, and kv are selected to ensure the 

stability. 

 

 

V. ANFIS CONTROLLER 

(A) Adaptive Neuro-Fuzzy Inference Systems: 

(ANFIS): 

An adaptive neuro-fuzzy inference system 

or adaptive network-based fuzzy inference system 

(ANFIS) is a kind of artificial neural network that is 

based on Takagi–Sugeno fuzzy inference system. The 

technique was developed in the early 1990s. Since it 

integrates both neural networks and fuzzy logic 

principles, it has potential to capture the benefits of 

both in a single framework. Its inference system 

corresponds to a set of fuzzy IF–THEN rules that 

have learning capability to approximate nonlinear 

functions. Hence, ANFIS is considered to be a 

universal estimator. For using the ANFIS in a more 

efficient and optimal way, one can use the best 

parameters obtained by genetic algorithm. 

The adaptive network based fuzzy inference 

system (ANFIS) is a data driven procedure 

representing a neural network approach for the 

solution of function approximation problems. Data 

driven procedures for the synthesis of ANFIS 

networks are typically based on clustering a training 

set of numerical samples of the unknown function to 

be approximated. Since introduction, ANFIS 

networks have been successfully applied to 

classification tasks, rule-based process control, 

pattern recognition and similar problems. Here a 

fuzzy inference system comprises of the fuzzy model 

proposed by Takagi, Sugeno and Kang to formalize a 

systematic approach to generate fuzzy rules from an 

input output data set. 

(B)ANFIS structure 

For simplicity, it is assumed that the fuzzy inference 

system under consideration has two inputs and one 

output. The rule base contains the fuzzy if-then rules 

of Takagi and Sugeno‟s type as follows: 

If x is A and y is B then z is f(x,y) 

where A and B are the fuzzy sets in the antecedents 

and z = f(x, y) is a crisp function in the consequent. 

Usually f(x, y) is a polynomial for the input variables 

x and y. But it can also be any other function that can 

approximately describe the output of the system 

within the fuzzy region as specified by the 

antecedent. When f(x,y) is a constant, a zero order 

Sugeno fuzzy model is formed which may be 

considered to be a special case of Mamdani fuzzy 

inference system where each rule consequent is 

specified by a fuzzy singleton. If f(x,y) is taken to be 

a first order polynomial a first order Sugenofuzzy 

model is formed. For a first order two rule Sugeno 

fuzzy inference system, the two rules may be stated 

as: 

 
Here type-3 fuzzy inference system proposed by 

Takagi and Sugeno is used. In this inference system 

the output of each rule is a linear combination of the 

input variables added by a constant term. The final 

output is the weighted average of each rule‟s output. 

The corresponding equivalent ANFIS structure is 

shown in Fig. 8. 
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Fig.8. Type-3 ANFIS Structure 

The individual layers of this ANFIS structure are 

described below: 

Layer 1: Every node i in this layer is adaptive with a 

node function 

    
 (38) 

where, x is the input to node i, Ai is the linguistic 

variable associated with this node function and µAi is 

the membership function of Ai. Usually µAi(x) is 

chosen as 

 
  (39) 

  (40) 

where x is the input and {ai, bi, ci} is the premise 

parameter set. 

Layer 2: Each node in this layer is a fixed node which 

calculates the firing strength wi of a rule. The output 

of each node is the product of all the incoming 

signals to it and is given by, 

  (41) 

Layer 3: Every node in this layer is a fixed node. 

Each ith node calculates the ratio of the it rule‟s 

firing strength to the sum of firing strengths of all the 

rules. The output from the ith node is the normalized 

firing strength given by, 

  
 (42) 

Layer 4: Every node in this layer is an adaptive node 

with a node function given by 

 
 (43) 

where𝑤𝑖    is the output of Layer 3 and {pi, qi, ri} is the 

consequent parameter set. 

Layer 5: This layer comprises of only one fixed node 

that calculates the overall output as the summation of 

all incoming signals, i.e. 

  (44) 

 

(D) Learning Algorithm 

In the ANFIS structure, it is observed that given the 

values of premise parameters, the final output can be 

expressed as a linear combination of the consequent 

parameters. The output f in Fig. 8 can be written as 

  (45) 

Where f is linear in the consequent parameters (p1, q1, 

r1, p2, q2, r2). 

In the forward pass of the learning algorithm, 

consequent parameters are identified by the least 

squares estimate. In the backward pass, the error 

signals, which are the derivatives of the squared error 

with respect to each node output, propagate backward 

from the output layer to the input layer. In this 

backward pass, the premise parameters are updated 

by the gradient descent algorithm. 

 

 

 

 

 

VI. SIMULATION RESULTS 
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Fig.9. Matlab/simulink model of Proposed Digital PWM 

controlled SRM Drive with PI Controller. 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

Fig.10. Waveforms of Control error e, α, R, V 

 

Fig.11. Calculated voltage of one phase during the 

simulation at 3000 r/min. 
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Fig.12. Phase current and Reference current with 

Hysteresis current controller at 3000 r/min 

 

Fig.13. Phase current and Reference current with proposed 

current controller at 3000 r/min 

 

Fig.14. Phase current and Reference current with proposed 

current controller at 6000 r/min 

 

 

Fig.15. Waveform of flux linkage at 6000 r/min 

 

Fig.16.  Matlab/simulink model of Proposed Digital PWM 

controlled SRM Drive with Hysteresis current Controller 

 

Fig.17. Phase current and Reference current with 

Hysteresis current controller at 6000 r/min 
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Fig.18. Waveforms Torque and speed with PI controller. 

 

Fig.19. waveform of Torque and speed with ANFIS 

controller. 

VII. CONCLUSION 

The Switch Reluctance motor performance is 

forecasted and by using Matlab/simulink the model is 

simulated. SRM has been designed and implemented 

for speed control by using PI controller and Adaptive 

neuro fuzzy logic controller. We can conclude from 

simulation results that when compared with PI 

controller, the fuzzy logic controller meet the 

required output. This paper present fuzzy logic 

controller to ensure excellent reference tracking of 

switch reluctance motor drive. The fuzzy logic 

controller gives a perfect speed tracking without 

overshoot and enhance the speed regulation. By using 

ANFIS controller,the SRM exhibits good steady-state 

and dynamic performances. TheSRM can produce 

maximum torque quickly while needing shortduration 

overload ability. The SRM response when controlled 

by ANFIS is more advantage than the conventional 

PI controller. 
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