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ABSTRACT: Instant messaging services are quickly becoming the most dominant form of communication among consumers 

around the world. Apple iMessage, for example, handles over 2 billion messages each day, while WhatsApp claims 16 billion 

messages from 400 million international users. To protect user privacy, many of these services typically implement endto-end and 

transport layer conceal data, which are meant to make eavesdropping infeasible even for the service providers themselves. In this 

paper, however, we show that it is possible for an eavesdropper to learn information about user actions, the language of messages, 

and even the length of those messages with greater than 96% accuracy despite the use of state-of-the-art conceal data technologies 

simply by observing the sizes of encrypted packets. While our evaluation focuses on Apple iMessage, the attacks are completely 

generic and we show how they can be applied to many popular messaging services, including WhatsApp, Viber, and Telegram.  
Keywords: privacy; conceal; data routing analysis   

I.INTRODUCTION  
Over the course of the past decade, instant 

messaging services have gone from a niche application used 

on desktop computers to the most prevalent form of 

communication in the world, due in large part to the growth 

of Internet enabled phones and tablets. Messaging services, 

like Apple iMessage and WhatsApp, handle tens of billions 

of messages each day from an international user base of over 

one billion people [13, 14]. Given the volume of messages 

traversing these services and ongoing concerns over 

widespread eavesdropping of Internet communications, it is 

not surprising that privacy has been an important topic for 

both the users and service providers. To protect user 

privacy, these messaging services offer transport layer 

conceal data technologies to protect messages in transit, and 

some services, like iMessage and Telegram, offer end-to-

end conceal data to ensure that not even the providers 

themselves can eavesdrop on the messages [2, 9]. As 

previous experience with Voice-over-IP (e.g., [18, 19]) and 

encrypted HTTP tunnels (e.g., [5, 15]) has shown us, 

however, the use of state-of-the-art conceal data 

technologies is no guarantee of privacy for the underlying 

message content. In this paper, we analyze the network data 

routing of popular encrypted messaging services to (1) 

understand the breadth and depth of their information 

leakage, (2) determine if attacks are generalizable across 

services, and  
(3) calculate the potential costs of protecting against this 

leakage. Specifically, we focus our analysis on the Apple 

iMessage service and show that it is possible to reveal 

information about the device operating system, fine-grained 

user actions, the language of the messages, and even the 

approximate message length with accuracy exceeding 96%, 

 
 
 
 

 
Table 1: Summary of attack results for Apple 

iMessage.  
as shown in the summary provided in Table 1. In 

addition, we demonstrate that these attacks are applicable to 

many other popular messaging services, such as WhatsApp, 

Viber, and Telegram, because they target deterministic 

relationships between user actions and the resultant 

encrypted packets that exist regardless of the underlying 

conceal data methods or network protocols used. Our 

analysis of countermeasures shows that the attacks can be 

completely mitigated by adding random padding to the 

messages, but at a cost of over 300% overhead, which 

translates to at least a terabyte of extra data per day for the 

service providers. Overall, these attacks could impact over a 

billion users across the globe and the high level of accuracy 

that we demonstrate in our experiments means that they 

represent realistic threats to privacy, particularly given 

recent revelations about widespread metadata collection by 

government agencies [4]. 

 

II. BACKGROUND  
Before we begin our analysis, we first provide an overview 

of the iMessage service, and discuss prior work in the 

analysis of encrypted network data routing. Interested 

readers should refer to documentation from projects focused 

on reverse engineering specific portions of the iMessage 

service [6, 7, 8], or the official Apple iOS security white 

paper [2].  
2.1 iMessage Overview  

 
iMessage uses the Apple Push Notification Service (APNS) 

to deliver text messages and attachments to users. When the 

device is first registered with Apple, a client certificate is 

created and stored on the device. Every time the device is 

connected to the Internet, a persistent APNS connection is 

made to Apple over TCP port 5223. The connection appears 

to be a standard TLS tunnel protecting the APNS messages. 

From here, the persistent APNS connection is used to send 

and receive both control messages and user content for the 

iMessage service, as well as other Apple services (e.g., 

FaceTime). If the user has not recently interacted with the 

sender or recipient of a message, then the client initiates a 

new TLS connection with Apple on TCP port 443 and 

receives key information for the opposite party. Unlike 
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earlier TLS connections, this one is authenticated using the 

client certificate generated during the registration process1 . 

Once the keys are established, there are five user actions that 

are observable through the APNS and TLS connections 

made by the iMessage service. These actions include: (1) 

start typing, (2) stop typing, (3) send text, (4) send 

attachment, and (5) read receipt. All of the user actions 

mentioned follow the protocol flow shown in Figure 1, 

except for sending an attachment. The protocol flow for 

attachments is quite similar except that the attachment itself 

is stored in the Microsoft Azure cloud storage system before 

it is retrieved, rather than being sent directly through Apple. 
 
 
 
 
 
 
 

 

Figure 1: High-level operation of iMessage.  
Over the course of our analysis, we observed some 

interesting deviations from this standard protocol. For 

instance, when TCP port 5223 is blocked, the APNS 

message stream shifts to using TCP port 443. Similarly, 

cellular-enabled iOS devices use port 5223 while connected 

to the cellular network, but switch to port 443 when WiFi is 

used. Moreover, if the iOS device began its connection 

using the cellular network, that connection will remain 

active even if the device is subsequently connected to a 

wireless access point. It is important to note that payload 

sizes and general APNS protocol behaviors remain exactly 

the same whether port 5223 or 443 are used, and therefore 

the attacks we present in this paper are equally applicable in 

both cases. 
 
2.2 Related Work  
To date, there have been two primary efforts in 

understanding the operation of the iMessage service and the 

APNS protocol. Frister and Kreichgauer have developed the 

open source Push Proxy project [6], which allows users to 

decode APNS messages into a readable format by 

redirecting those messages through a man-in-the-middle 
 
proxy. In another recent effort, Matthew Green [8] and 

Ashkan Soltani [7] showed that, while iMessage data is 

protected by end-toend conceal data, the keys used to 

perform that conceal data are mediated by an Apple-run 

directory service that could potentially be used by an 

attacker (or Apple themselves) to install their own keys for 

eavesdropping purposes. More broadly, the techniques 

presented in this paper follow from 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Scatter plot of plaintext message lengths versus 

ciphertext lengths for packets containing user content. 
 
a long line of attacks that use only the timing and size of 

encrypted network data routing to reveal surprising amounts 

of information. In the past, data routing analysis methods 

have been applied in identifying web pages [5, 11, 12, 15, 

16], and reconstructing spoken phrases in VoIP [18, 19]. To 

the best of our knowledge, this is the first paper to examine 

the privacy of encrypted instant messaging services, 

particularly those used by mobile devices. We distinguish 

ourselves from earlier work in both the broad impact and 

realistic nature of our attacks. Specifically, we demonstrate 

highly-accurate attacks that could affect nearly a billion 

users across a wide variety of messaging services, whereas 

previous work in other areas of encrypted data routing 

analysis have relatively small impact due to limited user 

base or poor accuracy. When compared to earlier work in 

analyzing iMessage, we focus on an eavesdropping scenario 

that requires no cooperation from service providers and has 

been demonstrated to exist in practice [4]. 

 

III. ANALYZING INFORMATION  

LEAKAGE 
 
In this section, we investigate information leakage about 

devices, users, and messages by analyzing the relationship 

between packet sizes within the persistent APNS connection 

used by iMessage and user actions. For each of these 

categories of leakage, we first provide a general analysis of 

the data to discover trends or distinguishing features, then 

evaluate classification strategies capable of exploiting those 

features. 
 
3.1 Data and Methodology  
To evaluate our classifiers, we collected data for each of the 

five observable user actions (start, stop, text, attachment, 

read) by using scripting techniques that drove the actual 

iMessage user interfaces on OSX and iOS devices. 

Specifically, we used ApplesSript to natively type text, paste 
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images, and send/read messages on a Macbook Pro running 

OSX 10.9.1, and a combination of VNC remote control 

software and AppleScript to control the same actions on a 

jailbroken iPhone 4 (iOS 6.1.4). For each user action, we 

collected 250 packet capture examples on both devices and 

in both directions of communications (i.e., to/from Apple) 

for a total of 5,000 samples. This allows us to simulate an 

adversary that can passively monitor streaming iMessage 

data routing to or from Apple servers (steps 3 and 4 in 

Figure 1, respectively). In addition, we also collected small 

samples of data using devices running iOS 5, iOS 7, and 

OSX Mountain Lion to verify the observed trends. The 

underlying text data is drawn from a set of over one million 

sentences and short phrases in a variety of languages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Distribution of payload lengths for each message 

type separated by operating system without control packets. 

from the Tatoeba parallel translation corpus [17]. Languages 

used in our evaluation include Chinese, English, French, 

German, Russian, and Spanish. For attachment data, we 

randomly generated PNG images of exponentially 

increasing size (64 x 64, 128 x 128, 256 x 256). Throughout 

the remainder of the paper, we simply refer to attachments 

as “image” messages. Although the Tatoeba dataset does not 

contain typical text message shorthand, it is generated 

through a community of non-expert users (i.e., crowd-

sourced) and so actually contains several informal phrases 

that are not found in a typical language translation corpus. In 

fact, the distribution of English message lengths in our data, 

as shown in Table 2, is quite close to those reported in 

recent studies of text messaging behavior by Battestini et al. 

[3], with our data exhibiting a slightly shorter average 

message length and less variability. Each experiment in this 

section used 10-fold cross validation testing, where the data 

for each instance in the test was constructed by sampling 

TCP payload lengths and packet directions (i.e., to/from 

Apple) from the relevant subset of the packet capture files. 

Cross-validation testing was performed such that the classes 

were equally represented in the sampled data (i.e., uniform 

prior probability across all classes). The only preprocessing 

that was performed on the data was to remove duplicate 
 
packets that occur as a result of TCP retransmissions and 

those packets without TCP payloads. Performance of our 

classifiers is reported with respect to overall accuracy, 

which is calculated as the sum of the true positives and true 

negatives over the total number of samples evaluated. 

Where appropriate, we also use confusion matrices that 

show how each of the test instances was classified and use 

absolute error to measure the predictive error in our 

regression analysis.  
3.2 Operating System  
Our first experiment examines the difference in the 

observable packet sizes for the iOS and OSX operating 

systems. The scatterplot of iMessage packet sizes in Figure 

2 shows how iOS appears to more efficiently compress the 

plaintext, while OSX occupies a much larger space. These 

two classes of data are clearly separable, but the figure also 

shows five unique bands of plaintext/ciphertext relationship, 

which hints at leakage of finer-grained information about 

the individual messages (which we examine in Section 3.4). 

Additionally, when we break down the distributions based 

on their direction (i.e., to/from Apple), we see that there is a 

deterministic relationship between the two. That is, as 

messages pass through Apple, 112 bytes of data are 

removed from OSX messages and 64 bytes are removed 

from iOS messages. Aside from the ability to fingerprint the 

OS version, the deterministic nature of these changes 

indicates that it is also possible to correlate and trace 

communications as it passes through Apple on the way to its 

destination, thereby allowing us to develop a 

communications graph. To identify the OS of observed 

devices, we use a binomial na¨ıve Bayes classifier from the 

Weka machine learning library [10] with one class for each 

of the four possible OS, direction combinations. The 

classifier operates on a binary feature vector of packet 

length, direction pairs, where the value for a given 

dimension is set to “true” if that pair was observed and 

“false” otherwise. To determine the number of packet 

observations necessary for accurate classification, we run 

10-fold cross-validation experiments where the 1,024 

instances used for each experiment are created with N = 1, 

2, . . . , 50 packets sampled from the appropriate subset of 

the dataset for each OS, observation point class. The results 

indicate that we are able to accurately classify the OS with 

100% accuracy after observing only five packets regardless 

of the operating system. A cursory analysis of iOS 5 and 7 

indicates that they also produce messages with lengths that 

are unique from both the OSX and iOS 6.1.4 device, which 

indicates that this type of device fingerprinting could be 

refined to reveal specific version information when the size 

of the APNS messages changes between OS versions. 
 
3.3 User Actions  
Recall from our earlier discussion that there are five 

highlevel user actions that we can observe: start, stop, text, 

attachment (image), and read. Figure 3 shows the 
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distribution of payload lengths for each of these actions 

separated by the OS of the sending device after removing 

control packets (i.e., packet sizes that occur within multiple 

classes). Most classes have two distinctive packet lengths – 

one for when the message is sent to Apple and one when it 

is received from Apple. The only classes that overlap 

substantially are the read receipt and start messages in the 

iOS data going to Apple. The stability and deterministic 

nature of the lengths in most classes makes the use of 

probabilistic classifiers unnecessary. Instead of using 

heavyweight machine learning methods, we create a hash-

based lookup table using each 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Scatter plots of plaintext message lengths versus 

payload lengths for three languages in our dataset.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3: Confusion matrix for message type classification 

observed length in the training data as a key and store the 

associated class labels. In addition to creating classes for the

 

five standard message types derived from user actions, we 

also create a class for the payload lengths of identified 

control packets. When a new packet arrives, we check the 

lookup table to retrieve the class label(s) for its payload 

length. If only one label is found, the packet is labeled as 

that message type. In the case where two class labels are 

returned, we choose the class where that payload length 

occurs most frequently in the training data. In an effort to 

focus our evaluation, we assume that the OS has already 

been accurately classified such that we have four separate 

message-type classifiers, one for each combination of OS 

and direction. Each of the classifiers is evaluated using 10-

fold cross validation with instances drawn from the 

respective subsets of the dataset, for a total of 1,250 

instances per classifier. Confusion matrices showing the 

results for OSX and iOS are presented in Table 3. The 

accuracy is surprisingly good for both iOS and OSX given 

such a simple classification strategy. As it turns out, all 

message types can be classified with accuracy exceeding 

99%, except for iOS read messages that are easily confused 

with start messages, as was suggested by Figure 3. 
 
3.4 Message Attributes  
The final experiment in our analysis of information leakage 

examines if it is possible to learn more detailed information 

about the contents of messages, such as their language or 

plaintext length. The foundation for this experiment is built 

upon the observation that Figure 2 (in Section 3.2) shows 

several distinct clusters when comparing plaintext message 

length to payload length. While the clusters Figure 5: 

Language classification accuracy. are most prevalent in the 

OSX data, the iOS data also has a similar set of clusters 

(albeit more compressed). When we separate this data into 

its constituent languages, as in Figure 4, the reason for these 

clusters becomes clear. Essentially, each cluster represents a 

unique character set used in the language (e.g., ASCII, 

Unicode). For languages that use only a single character set, 

like English (ASCII), Russian (Unicode), or Chinese 

(Unicode), there is only one cluster approximating a linear 

relationship between plaintext and payload lengths, with a 

“stair step” effect at AES block boundaries. The other three 

languages all use some mix of ASCII and Unicode 

characters, resulting in an ASCII cluster with better 

plaintext/payload length ratios, and Unicode cluster that 

requires more payload bytes to encode the plaintext 

message. These graphs also help to answer our question 

about the possibility of guessing the message lengths, which 

is supported by the approximately linear relationship that 

appears. To test our ability to classify these languages, we 

use the Weka multinomial na¨ıve Bayes classifier, with raw 

counts of each length, direction pair observed so that we can 

take full advantage of the subtle differences in the 

distribution. As with previous experiments, we assume that 

earlier classifi- cation stages for OS and message type were 
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100% accurate in order to focus specifically on this area of 

leakage.  
 
 
 
 
 
 
 
 
 

 

Figure 5: Language classification accuracy.  
The results from 10-fold cross validation on 1,024 instances 

generated from N = 1, 2, . . . , 50 text message packets are 

shown in Figure 5. Classification of languages in OSX data 

is noticeably better than iOS, as we might have expected due 

to compression. On the OSX data, we achieve an accuracy 

of over 95% after 50 packets are observed. When applied to 

the iOS data, on the other hand, accuracy barely surpasses 

80% at the same number of packets. However, as the 

confusion matrices in Table 4 show, by the time we sample 

100 packets all languages are achieving classification 

accuracies of at least 93% regardless of the dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 4: Confusion matrix for language classification. Given 

that language classification can be achieved with high 

accuracy after a reasonable number of observations, we now 

move on to determining how well we can predict message 

lengths within those languages. For this task, we apply a 

simple linear regression model using the payload length as 

the  explanatory  variable  and  the  message  length  as  the 

dependent variable. The  models are  fitted to the training 

data using least squares estimation. Again, we performed 

10-fold cross validation with 1,024 instances and calculated 

the resultant absolute error. In general, the values are small 
 
– an error of between 2 and 11 characters – when we 

consider that the sentences in the language dataset range 

from two characters to several hundred, with an average 

error of 6.27 characters. This is equivalent to an 18.4% 

average error rate based on the statistics from Table 2. 

Those languages with multiple clusters, like French and 

Spanish, fared the worst since the linear regression model 

could not handle the bimodal behavior of the distribution for 

 
the multiple character sets. For completeness, we also 

applied a regression model to the image transfers to and 

from the Microsoft Azure cloud storage system. The 

regression model was extremely accurate for the 

attachments, with an absolute error of less than 10 bytes. 

 

IV. BEYOND IMESSAGE 
 
Thus far, we have focused our attacks exclusively on Apple 

iMessage, however we note that they rely only on the user’s 

interaction with the messaging service and a deterministic 

relationship between those actions and packet sizes. In 

effect, the attacks target fundamental operations that are 

common to all messaging services. To illustrate this 

concept, we used the same data generation procedures 

described in Section 3.1 to examine the leakage of user 

actions and message information in the WhatsApp, Viber, 

and Telegram messaging services. Figure 6 shows the 

distribution of packet lengths associated with the user 

actions that we have considered throughout this paper for 

those services. Just as with Apple iMessage (c.f., Figure 3), 

these three messaging services clearly allow us to 

differentiate fine-grained activities by examining individual 

packet sizes. Moreover, when we examine the relationship 

between plaintext message lengths and ciphertext length, as 

in Figure 7, there is a clear linear relationship between the 

two. Figures 6 and 7 illustrate two very important concepts 

in our study. First, it shows that the same general strategies 

used to infer user actions, languages, and message lengths 

can be used across many of the most popular messaging 

services regardless of their individual choices in data 

encoding, protocols, and conceal data. Second, it is clear 

that WhatsApp and Viber provide even weaker protection 

against information leakage than iMessage, since there are 

exact oneto-one relationships between packet sizes and 

plaintext message lengths. Specifically, in Section 3.3, we 

mentioned that Apple iMessage data showed a “stair step” 

pattern due to the AES block sizes used, which naturally 

quantizes the output space and adds uncertainty to message 

length predictions, while Viber and WhatsApp allow us to 

exactly predict message length. Telegram, with its use of 

end-to-end conceal data technology, appears to be very 

similar to iMessage in terms of its payload length 

distributions. Therefore, we can expect the accuracy of the 

attacks will be at least as good as what was demonstrated on 

Apple iMessage data routing. To mitigate against such 

privacy failures, it is possible to apply standard padding-

based countermeasures. Apple iMessage and Telegram 

already implement a weak form of countermeasure through 

packet sizes quantized at AES block boundaries. A much 

more effective approach, however, would be to add random 

padding independently to each packet up to the maximum 

observed packet length for each service, thereby destroying 

any relationship to user actions. When implemented on our 
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Apple iMessage data, the random padding methodology 

reduced all of our attacks to an accuracy of 0% at the cost of 

613 bytes (328%) of overhead per message for iOS and 596 

bytes (302%) for OSX. Although the absolute increase in 

size is rather small, we must consider that services like 

iMessage handle upwards of 2 billion messages every day, 

which translates to an additional terabyte of network data 

routing daily. For the more popular WhatsApp service, a 

similar increase would incur at least 4 terabytes of overhead. 

Other countermeasure methods, such as data routing 

morphing [20], may actually provide a more palatable trade-

off between overhead and privacy, though further analysis is 

beyond the scope of this initial study. 

 

V. CONCLUSION 
 
Overall, the attacks that we have demonstrated raise a 

number of very important questions about the level of 

privacy that users can expect from these services. While the 

exact plaintext content cannot be revealed, the results of our 

study indicate that rich metadata can be learned about a user 

and their social network with high accuracy. At the same 

time, it is important to keep in mind that this is a closed-

world study and, while we believe it realistically represents 

a serious privacy threat, there are aspects of realworld usage 

that may impact the results, such as texting shorthand or 

previously unobserved languages. However, in the wake of 

recent reports of widespread metadata gathering [1, 4] and 

given the unusually broad impact of these attacks on an 

international user base, it seems reasonable to assume that 

the issues raised in this paper pose a realistic threat that 

should be taken seriously by messaging services. 
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