

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 377

The One-Sender-Multiple-Receiver Technique and Downlink Packet

Schedulingby Simultaneous Multiple Packet Transmission

[1]

Boddupelli Sravanthi(15861A0401) [2]Putta Laxmi(15861A0408)
 [3]Puttala Mounika (15861A0409)

[4]Sandupatla Anila (15861A0412) [5]Erra Nagamani(15861A0403)

Students of Dept. Electronics & Communication Engineering
Mother Theressa College Of Engineering and Technology, Peddapalli,India

E-Mail:putta.laxmi00@gmail.com
1

Abstract—In this paper, we consider using simultaneous Multiple Packet Transmission (MPT) to improve

the downlink performance of wireless networks. With MPT, the sender can send two compatible packets

simultaneously to two distinct receivers and can double the throughput in the ideal case. We formalize the

problem of finding a schedule to send out buffered packets in minimum time as finding a maximum matching

problem in a graph. Since maximum matching algorithms are relatively complex and may not meet the

timing requirements of real-time applications, we give a fast approximation algorithm that is capable of

finding a matching at least 3/4 of the size of a maximum matching in OðjEjÞ time, where jEj is the number

of edges in the graph. We also give analytical bounds for maximum allowable arrival rate, which measures

the speedup of the downlink after enhanced with MPT, and our results show that the maximum arrival rate

increases significantly even with a very small compatibility probability. We also use an approximate

analytical model and simulations to study the average packet delay, and our results show that packet delay

can be greatly reduced even with a very small compatibility probability

1 INTRODUCTION

WIRELESS access networks have been more

and more widely used in recent years, since

compared to the wired networks, wireless

networks are easier to install and use. Due

to the tremendous practical interests, much

research effort has been devoted to wireless

access networks and great improvements have

been achieved in the physical layer by adopting

newer and faster signal processing techniques,

for example, the data rate in 802.11 wireless

Local Area Network (LAN) has increased from 1

Mbps in the early version of 802.11b to 54 Mbps

in 802.11a [8]. We have noted that in addition

to increasing the point to point capacity,

new signal processing techniques have also

made other novel transmission schemes

possible, which can greatly improve the

performance of wireless networks. In this

paper,we study a novel Multiple-Input,

Multiple-Output (MIMO) technique called

Multiple Packet Transmission (MPT) [1], with

which the sender can send more than one

packet to distinct users simultaneously (Fig. 1).

an Access Point (AP), which is connected to

the wired network, and several users, which

communicate with the AP through wireless

channels. In wireless LANs, the most common

type of traffic is the downlink traffic, i.e., from

the AP to the users when the users are

browsing the Internet and downloading data.

In today’s wireless LAN, the AP can send one

packet to one user at a time. However, if the

AP has two antennas and if MPT is used, the

AP can send two packets to two users

whenever possible, thus doubling the

throughout of the downlink in the ideal

case.MPT is feasible for the downlink

because it is not difficult to equip the AP

with two antennas, in fact, many wireless

routers today have two antennas. Another

advan- tage of MPT that makes it very

commercially appealing is that although MPT

needs new hardware at the sender, it does

not need any new hardware at the receiver.

This means that to use MPT in a wireless

LAN, we can simply replace the AP and

upgrade software protocols in the user devices

without having to change their wireless cards

and, thus, incurring minimum cost.

In this paper, we study problems related to

MPT and provide our solutions. We formalize

the problem of sending out buffered packets in

minimum time as finding a maximum matching in

a graph. Since maximum matching algorithms are

relatively complex and may not meet the speed

of real-time applications, we consider using

approximation algorithms

Traditionally, in wireless networks, it is

assumed that one device can send to only one

other device at a time. However, this

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 378

restriction is no longer true if the sender has

more than one antenna. By processing the data

according to the channel state, the sender can

make the data for one user appear as zero at

other users such that it can send distinct packets

to distinct users simultaneously. We call it

MPT and will explain the details of it in Section

2. For now, we want to point out the profound

impact of MPT technique on wireless LANs. A

wireless LAN is usually composed of

orthogonal.

To perform MPT, the sender needs four

more complex multipliers. It also needs to

know the channel coefficient vectors of the

receivers and run algorithms to smartly pair

up the receivers. However, the receivers need

no additional hardware and can receive the

signal as if the sender is only sending to it. It is

also possible to send to more than two

receivers at the same time if the sender has

more than two antennas. In this paper, we focus

on the more practical two- antenna case. Also

note that MPT requires wireless channels to be

slowly changing as compared to the data rate,

which is often true in a wireless LAN where the

wireless devices are stationary for most of the

time.

3 MAC LAYER MODIFICATIONS

In this section, we describe the modifications

to the MAC layer protocol, in particular, 802.11,

to support MPT. We say two users U1 and U2

are compatible if they can receive at the same

time. If U1 and U2 are compatible, sometimes

we also say that the packets destined for U1

and U2 are compatible.

The AP keeps the record for the channel

coefficient vectors of all nodes that have been

reported to it previously. If, based on the past

channel coefficient vectors, U1 and U2 are

likely to be compatible and there are two

packets that should be sent to them, the AP

sends out a Require To Send (RTS) packet,

which contains, in addition to the traditional

RTS contents, a bit field indicating that the

packet about to send is an MPT packet. If U1

appears earlier than U2 in the destination field,

upon receiving the RTS packet, U1 will

 Fig. 2. Four packets and different

schedules.

first reply a Clear To Send (CTS) packet

containing the traditional CTS contents plus

its latest channel measure- ments. After a short

fixed amount of time, U2 will also reply a CTS

packet. After receiving the two CTS packets,

the AP will update their channel coefficient

vectors. It will then decide whether U1 and

U2 are still compatible, and if so, the AP will

send two packets to them. If in the rare case that

the channels have changed significantly such

that they are no longer compatible, the AP can

choose to send to only one node. Therefore,

before sending the data packets, the AP first

sends 2 bits in which bit i is “1” means the

packet for Ui will be sent for 1 i 2. After

the data packet is sent, U1 and U2 can reply

an acknowledgment packet in turn.

In this paper, we consider matching user

packets of the same size. As measurement study

[13] shows, typical packets in a wireless LAN

are of two sizes, the data packets of size around

1,500 bytes and the acknowledgment packets of

size around 40 bytes. Because MPT involves

the overhead of RTS/CTS packet exchange, it

is most efficient for the data packets. In this

paper, for simplicity, we consider the case

when the data rates of the users are the same.

When the data rates are the same, all data

packets takes roughly the same amount of time

to transmit, which will be referred to as a time

slot. We do not make any assumption about

the compat- ibilities of users and treat them as

arbitrary.

4 SCHEDULING ALGORITHMS FOR

ACCESS POINTS

While the idea of MPT is simple, the AP will

encounter the problem of how to match the

packets with each other to send them out as

fast as possible. For example, suppose in the

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 379

buffer of the AP there are four packets destined

for four users denoted as v1 , v2 , v3 , and v4 ,

respectively. Assume packet vi is compatible

with viþ1 for 1 i 3, as shown at the top

of Fig. 2, where there is an edge between

two packets if they are compatible.

 If we match v2 with v3 , the four packets have

to be sent in three time slots since v1 and v4

are not compatible. However, a better choice is

to match v2 with v1 and match v3 with v4 and

send the four packets in only two time slots.

When the number of packets grows, the

problem of finding the best matching strategy

will become more difficult. In this section, we

describe algorithms that solve this problem.

4.1 Algorithm for Optimal

Schedule

We call a schedule by which packets can be

sent out in minimum time an optimal schedule.

Clearly, in an optimal schedule, the maximum

number of packets is sent out in pairs;

therefore, the problem of finding an optimal

schedule is equivalent to finding the maximum

number of compatible pairs among the packets.

To solve this problem, as shown in Fig. 2, we

draw a graph G, where each vertex represents

a packet and two vertices are adjacent if the

two packets are compatible. In a graph, a

matching M is defined as a set of vertex disjoint

edges, that is, no edge in M has a common

vertex with another edge in M . Therefore,

the problem reduces to finding a maximum

matching in G. For example, the second

matching in Fig. 2 is a maximum matching

while the first one is not. Maximum

matching in a graph can be found in

polynomial time by algorithms such as the

Edmonds’ Blossom Algorithm, which takes

OðN 4 Þ time, where N is the number of vertices

in the graph [10], [2].

Before continuing our discussion, we first

give the definitions of some terms. Let M

be a matching in a graph G. We call edges

in M the “matching edges.” If a vertex is

incident to an edge in M , we say it is

“M-saturated” or simply “saturated;”

otherwise, it is “M-unsaturated”

(unsaturated) or “M-free” (free) or “sin- gle.”

An M -augmenting path is defined as a path

with edges alternating between edges in M and

edges not in M , and with both ends being

unsaturated vertices. For example, with

regard to the first matching in Fig. 2, v1

v2 v3 v4 is an augmenting path. It is well

known in graph theory that the size of a

matching can be incremented by one if and only

if there can be found an augmenting path.

The buffer of the AP may store many packets,

as a result, the graph can be quite large.

However, the size of the graph can be reduced

by taking advantage of the fact that vertices that

represent packets for the same user have

exactly the same set of neighbors in the graph.

More specifically, in the graph, we say vertices

u and v belong to the same equivalent group, or

simply the same group, if the packets they

represent are for the same user. Vertices that

belong to the same group have the same

neighbors and are not adjacent to each other.

Let A ¼ fa1 ; a2 ; a3 g and B ¼ fb1 ; b2 ; b3 g be

two groups of vertices and suppose ai is

matched to bi for

1 i 3. We have the

following lemma:

Lemma 1. If there is an augmenting path

traversing all three matching edges between A

and B, there must exist an augmenting path

traversing only one matching edge between A

and B.

As in the figure, suppose an augmenting path

traversing all three matching edges

between A and B is x a1 b1 c d b2 a2

e f a3 b3 y. However, if x is adjacent to a1

, it must also be adjacent to a3 since a1 and a3

belong to the same group, thus there is a

shorter augmenting path traversing only the last

matching edge between A and B, which is x

a3 b3 y. (Note that the same proof also holds

if in the augmenting path, the segment

between, say, b1 and b2 , is longer.) tu

As a result of this lemma, if there exists an

augmenting path, there must also exist an

augmenting path traversing no more than two

matching edges between any two groups of

vertices. This is because if the path traverses

more than two matching edges between two

groups of vertices, as we have shown in the

lemma, there must be a shortcut by which we

need only to traverse the last of the first three

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 380

M

matching edges, and we can keep on finding

such shortcuts and reducing the number of

traversed matching edges until it is less than 3.

Therefore, for any two groups of vertices, only

two matching edges between them need to be

kept and other redundant matching edges can

be removed. After that, there will be Oðn2 Þ

saturated vertices left, where n is the number

of users. Also note that for the purpose of

finding augmenting paths, only one of the

unsaturated vertices belonging to each group

needs to be considered. Therefore, the graph we

work on contains Oðn2 Þ number of vertices,

which does not depend on the size of the

buffer.

4.2 Practical Considerations

Although the optimal schedule can be found

for a given set of packets by the maximum

matching algorithm, in practice, the packets do

not arrive all at once but arrive one by one. It is

not feasible to run the maximum matching

algorithm every time a new packet arrives due

to the relatively high complexity of the

algorithm. Therefore, after a new packet

arrives, we can match it according to the

following simple strategy: A new vertex is

matched if and only if it can find an

unsaturated neighbor. In this way, we always

maintain a maximal matching, where a

matching M is maximal in G if no edge not

belonging to M is vertex disjoint with all edges

in M . For example, the two matchings in

Fig. 2 are all maximal matchings. The

maximum matching algorithm can be called

only once a while to augment the existing

maximal matching.

Another problem is that the packets do not

stay in the buffer forever and must be sent out.

We will have to make the decisions of which

packet(s) should be sent out once the AP has

gained access to the media and there is a

delicate tradeoff between throughput and

delay. To improve the throughput, we should

always send out packets in pairs; however,

this policy favors the packets that can be

matched over the packets that cannot be

matched and will increase the delay of the

latter. To prevent excessive delay of the single

packets, in practice, we can keep a time stamp

for each packet and if the packet has stayed in

the buffer for a time longer than a threshold, it

will be sent out the next time the AP has

gained access to the media. If there are multiple

such packets, the AP can choose a packet

randomly.

The threshold can be determined adaptively

based on the measured delays of the packets

that were sent out in pairs. Finally, although

maximum matching can be found in

polynomial time, maximum matching

algorithms are in general complex [11] and

may not meet the timing requirements of

real-time applications, considering that the

processors in the AP are usually cheap and not

powerful. Therefore, in some cases, a fast

approximation algorithm that is capable of

finding a “fairly good” matching may be useful,

which will be discussed next.

4.3 A Linear Time 3/4 Approximation

Algorithm for Finding Maximum Matching

The simplest and most well-known

approximation algorithm for maximum

matching simply returns a maximal matching. It

is known that this simple algorithm has

OðjEjÞ time complexity, where jEj is the

number of edges in the graph and has a

performance ratio of 1/2, which means that

the matching it finds has a size at least half of

M where M denotes the maximum

matching. In this section, we give a new

OðjEjÞ approximation algorithm for maximum

match- ing with an improved performance ratio

of 3/4. To the best of our knowledge, it is the

first linear time approximation algorithm for

maximum matching with 3/4 ratio.

The idea of our algorithm is to eliminate all

augmenting paths of length no more than 5. Note

that any M -augmenting path must have i edges

in M and i þ 1 edges not in M for some

integer i 0. Therefore, if the shortest M -

augmenting

path has length at least 7, jM j > 3=4, since to

increment the j j size of the matching by one,

the “trade ratio” is at least 3/4, i.e., the best we

can do is to take out three edges in M and add

in four edges not in M .

A maximal matching does not have augmenting

paths of length 1, which is why the size of a

maximal matching is at least a half of the size

of a maximum matching. In our algorithm, we

will start with a maximal matching and then

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 381

eliminate augmenting paths of length 3 and then

of length 5. As can be seen, the algorithms

themselves are simple and straightforward.

However, it is interesting and somewhat

surprising that they can be implemented to run in

linear time.

4.3.1 Eliminating Augmenting Paths of

Length 3

We start with a maximal matching denoted by

S and the output of our algorithm is denoted by

M . For each vertex, a list is used to store its

neighbors. An array is used to store the

matching, that is, the ith element in the array

is the vertex matched to the ith vertex. Note that

with this array, it takes constant time to

augment the matching with fixed length

augmenting paths or to check whether a

particular vertex is saturated or not.

The algorithm is summarized in Table 1.

Initially, let M ¼ S. We will check edges in S

from the first to the last to augment M . When

checking edge ðu; vÞ, we check whether both u

and v are adjacent to some distinct

unsaturated vertices. If there are such vertices,

say, u is adjacent to x and v is adjacent to y, there

is an M -augmenting path of length 3 involving

ðu; vÞ, which is x u v y. We can eliminate

this augmenting path and augment M by

removing ðu; vÞ from M and adding ðu; xÞ and

ðv; yÞ to M . We call ðu; xÞ and ðv; yÞ the new

matching edges. To find x and y, we can

first search all neighbors of u and let x be

the first M -free neighbor of u. We will

temporarily assign x to u and mark

TABLE 1 Finding Augmenting Paths of Length 3

as M -saturated. Clearly, if we cannot find

an M -free neighbor of u, we can quit

checking ðu; vÞ and go on to check the next

edge in S. Otherwise, we search all

neighbors of v and let y be the first M -free

neighbor of v. If such y is found, the

augmenting path is found. If otherwise, that

is, if we cannot find an M -free neighbor of v, we

cannot simply quit checking edge ðu; vÞ since v

may be adjacent to x, which has been

temporarily assigned to u, while u may be

adjacent to some other M -free vertices.

Therefore, if v is adjacent to x, we will “assign”

x to v and search the neighbors of u that have

not been previously searched. By doing this,

we make sure that at the time when checking

ðu; vÞ, if there is a length-3 augmenting

path involving ðu; vÞ, it can be found. The

algorithm terminates when all edges in S have

been checked this way.

Next, we prove the correctness and derive the

complexity of this algorithm. It is important to

note that if the matching is always augmented

according to augmenting paths, the following

two facts always hold. First, all saturated

vertices will remain saturated after each

augmentation. Second, as a result of the first

fact, if a vertex is unsaturated after an

augmentation, it must be unsaturated before the

augmenta- tion, and therefore, throughout the

process M remains a maximal matching.

Lemma 2. The new matching edges need not to

be checked because there cannot be

augmenting paths of length 3 involving them.

Proof. To see this, suppose x u v y is a length-

3 augment- ing path, as shown in Fig. 4.

If there is a length-3 augmenting path

involving one of the new matching edges,

say, ðx; uÞ, let it be s x u t, as shown in the

right part of Fig. 4. Note that s and x are not

saturated before the matching is augmented

according to x u v y, which contradicts

the fact that the matching is always maximal.

The left part of Fig. 4 shows this situation.

tu

Corollary 1. When the algorithm terminates, there

is no length-3 augmenting path.

 Proof. By contradiction, if there is still a length-3

augment- ing path, let it be x u v y, where u

and v are saturated. By Lemma 2, ðu; vÞ cannot

be a new matching edge; therefore, it is in S.

But, this cannot happen since if such an

augmenting path exists after the algorithm

terminates, it must also exist when ðu; vÞ was

checked and should have been found.

tu

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 382

Fig. 4. Augmenting M according to x u v

y. s and x are both unsaturated, which

contradicts the fact that M is a maximal

matching.

Fig. 5. Inner vertices and outer vertices.

Lemma 3. The algorithm runs in OðjEjÞ time,

where jEj is the number of edges.

Proof. Note that when checking edge ðu; vÞ,

the edges incident to u and v were checked

at most once. Since the edges in S are vertex

disjoint, the algorithm checks an edge in G

no more than twice. tu

Combining the above discussions, we have

Theorem 1.

Theorem 1. The algorithm in Table 1 eliminates

all length-3 augmenting paths in OðjEjÞ time.

4.3.2 Eliminating Augmenting Paths of

Length 5

After eliminating augmenting paths of length

3, we search for augmenting paths of length 5.

We first check all edges in the current

matching to construct a set T . A vertex v is

added to set T if v is matched to some vertex

u and u is adjacent to at least one

unsaturated vertex. We call v an “outer

vertex” and u an “inner vertex,” as shown in

Fig. 5. Note that v can be both an outer vertex

and an inner vertex when v and u are both

adjacent to the same unsaturated vertex and

are not adjacent to any other unsaturated

vertices. Clearly, to find augmenting paths of

length 5 is to find adjacent outer vertices.

Also note that T can be constructed in

OðjEjÞ time.

The algorithm is summarized in Table 2 and

works as follows: We check the vertices in T from

the first to the last. When checking vertex v, let u

be the inner vertex matched to v. We first

obtain or update lðuÞ, which is the list of

unsaturated neighbors of u: If lðuÞ has not been

established earlier, we search the neighbor

list of u to get lðuÞ; otherwise, we check the

vertex in lðuÞ (in this case, there can only be

one vertex in lðuÞ, for reasons to be seen shortly)

and remove it from lðuÞ if it has been matched.

After getting lðuÞ, if lðuÞ is empty, we quit

checking v, remove v from T , and go on to the

next vertex in T .

6 CONCLUSIONS

In this paper, we have considered using MPT to

improve the downlink performance of the

wireless LANs. With MPT, the AP can send two

compatible packets simultaneously to two

distinct users. We have formalized the problem

of finding a minimum time schedule as a

matching problem and have given a practical

linear time algorithm that finds a matching of at

least 3/4 the size of a maximum matching. We

studied the performance of wireless LAN after

it was enhanced with MPT. We gave analytical

bounds for maximum allowable arrival rate,

which measures the speedup of the downlink,

and our results show that the maximum arrival

rate increases significantly even with a very

small compatibility probabil- ity. We also used

an approximate analytical model and

simulations to study the average packet

delay, and our results show that packet delay

can be greatly reduced even with a very small

compatibility probability.

REFERENCES

[1] D. Tse and P. Viswanath, Fundamentals of

Wireless Communication. Cambridge Univ.

Press, May 2005.

[2] D.B. West, Introduction to Graph Theory.

Prentice-Hall, 1996.

 [3] T. Lang, V. Naware, and P.

Venkitasubramaniam, “Signal Processing in

Random Access,” IEEE Signal Processing

Magazine, vol. 21, no. 5, pp. 29-39, Sept. 2004.

International Journal of Research
Available at https://edupediapublications.org/journals

Special Issue on Conference Papers

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 06
March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 383

 [4] G. Dimic, N.D. Sidiropoulos, and R. Zhang,

“Medium Access Control—Physical Cross-Layer

Design,” IEEE Signal Processing Magazine, vol. 21,

no. 5, pp. 40-50, Sept. 2004.

 [5] Q. Liu, S. Zhou, and G.B. Giannakis,

“Cross-Layer Scheduling with Prescribed QoS

Guarantees in Adaptive Wireless Networks,”

IEEE J. Selected Areas in Comm., vol. 23, no. 5, pp.

1056-1066, May 2005.

[6] V. Kawadia and P.R. Kumar, “Principles and

Protocols for Power Control in Wireless Ad Hoc

Networks,” IEEE J. Selected Areas in Comm., vol.

23, no. 1, pp. 76-88, Jan. 2005.

[7] A. Czygrinow, M. Hanckowiak, and E.

Szymanska, “A Fast Distributed Algorithm for

Approximating the Maximum Match- ing,”

Proc. 12th Ann. European Symp. Algorithms

(ESA ’04), pp. 252-263, 2004.

[8] http://grouper.ieee.org/groups/802/11/,

2008.

[9] W. Xiang, T. Pratt, and X. Wang, “A Software

Radio Testbed for Two-Transmitter Two-

Receiver Space-Time Coding OFDM Wire- less

LAN,” IEEE Comm. Magazine, vol. 42, no. 6, pp.

S20-S28, June 2004.

[10] J. Edmonds, “Paths, Trees, and lowers,”

Canadian J. Math., vol. 17, pp. 449-467, 1965.

