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Abstract—In this paper, we consider using simultaneous Multiple Packet Transmission (MPT) to improve 

the downlink performance of wireless  networks. With MPT, the sender can send two compatible packets 

simultaneously to two distinct receivers and can double the throughput in the ideal case. We formalize the 

problem of finding a schedule to send out buffered packets in minimum time as finding a maximum  matching  

problem  in a graph.  Since  maximum  matching  algorithms  are  relatively complex  and  may not meet  the 

timing requirements of real-time  applications, we give a fast approximation algorithm that is capable of 

finding a matching  at least  3/4 of the size  of a maximum  matching  in OðjEjÞ time, where  jEj is the number 

of edges in the graph.  We also  give analytical bounds for maximum allowable arrival rate,  which measures 

the speedup of the downlink after enhanced with MPT, and our results show that the maximum  arrival rate  

increases significantly even  with a very small compatibility probability. We also  use  an approximate 

analytical model and simulations to study the average packet delay, and our results show that packet delay 

can be greatly reduced even  with a very small compatibility probability 

1    INTRODUCTION 

WIRELESS  access  networks have  been  more  

and  more widely used  in  recent  years,  since  

compared to  the wired  networks,  wireless 

networks  are  easier   to  install and  use.  Due  

to the  tremendous practical interests, much 

research effort has been devoted to wireless 

access networks and great improvements have 

been achieved in the physical layer by adopting 

newer and  faster signal  processing techniques, 

for  example, the  data  rate  in  802.11 wireless 

Local Area Network (LAN) has increased from 1 

Mbps in the early  version of 802.11b to 54 Mbps  

in 802.11a [8]. We have noted   that   in  addition  

to  increasing  the  point   to  point capacity, 

new  signal  processing techniques have  also 

made other novel transmission schemes 

possible, which can greatly improve the 

performance of wireless networks. In this 

paper,we study a novel  Multiple-Input, 

Multiple-Output (MIMO) technique called  

Multiple Packet  Transmission (MPT)  [1], with  

which  the  sender can  send  more  than  one  

packet  to distinct users  simultaneously (Fig. 1). 

an  Access  Point   (AP),  which   is  connected  to  

the  wired network, and  several  users,  which  

communicate with  the AP through wireless 

channels. In wireless LANs,  the  most common 

type  of traffic is the downlink traffic, i.e., from 

the AP to the  users  when the  users  are  

browsing the  Internet and  downloading data.  

In  today’s  wireless LAN,  the  AP can send  one 

packet  to one user  at a time.  However, if the 

AP has two  antennas and  if MPT is used,  the 

AP can send two packets  to two users  

whenever possible, thus  doubling the 

throughout of the downlink in the  ideal  

case.MPT  is  feasible   for  the   downlink  

because   it  is  not difficult  to equip  the  AP 

with  two  antennas, in fact, many wireless 

routers today  have  two  antennas. Another 

advan- tage  of MPT that  makes  it very  

commercially appealing is that  although MPT  

needs  new  hardware at  the  sender, it does   

not  need   any  new   hardware at  the  receiver.   

This means that  to use  MPT in a wireless 

LAN,  we  can simply replace  the AP and  

upgrade software protocols in the user devices  

without having to change  their  wireless cards  

and, thus,  incurring minimum cost. 

In  this  paper, we  study problems related to  

MPT  and provide our solutions. We formalize 

the problem of sending out buffered packets  in 

minimum time as finding a maximum matching in 

a graph. Since maximum matching algorithms are 

relatively complex and  may not meet the speed  

of real-time applications, we  consider using  

approximation algorithms 

Traditionally, in  wireless networks, it  is  

assumed that one  device  can  send  to  only  one  

other  device  at  a  time. However, this 
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restriction is no longer  true  if the sender has 

more than  one antenna. By processing the data  

according to the channel state, the sender can 

make  the data  for one user appear as zero  at 

other  users  such  that  it can send  distinct packets   

to  distinct users  simultaneously. We call  it  

MPT and  will explain  the  details  of it in Section  

2. For now,  we want  to point  out  the  profound 

impact  of MPT technique on wireless LANs. A 

wireless LAN is usually composed of 

orthogonal. 

To perform MPT, the  sender needs  four  

more  complex multipliers. It also  needs  to  

know  the  channel  coefficient vectors  of the 

receivers and  run  algorithms to smartly pair 

up the receivers. However, the receivers need  

no additional hardware and  can receive  the 

signal  as if the sender is only sending to it. It is 

also  possible  to send  to more  than  two 

receivers at the same  time  if the sender has 

more  than  two antennas. In this paper, we focus 

on the more practical two- antenna case. Also 

note that MPT requires wireless channels to be 

slowly changing as compared to the data rate, 

which  is often true  in a wireless LAN where the 

wireless devices  are stationary for most  of the 

time. 

3    MAC LAYER MODIFICATIONS 

In this  section,  we  describe the  modifications 

to the  MAC layer protocol, in particular, 802.11, 

to support MPT. We say two users  U1 and U2 

are compatible if they can receive at the same  

time.  If U1 and  U2 are compatible, sometimes 

we also say that  the packets  destined for U1 

and  U2 are compatible. 

The  AP  keeps   the  record  for  the  channel  

coefficient vectors  of all nodes  that have been 

reported to it previously. If, based  on the past  

channel coefficient  vectors,  U1  and  U2 are  

likely  to be compatible and  there  are  two  

packets  that should be sent to them,  the AP 

sends  out a Require  To Send (RTS) packet,  

which  contains, in addition to the traditional 

RTS contents, a bit field indicating that  the 

packet  about  to send  is an MPT packet.  If U1 

appears earlier  than  U2 in the destination field,  

upon receiving the  RTS packet,   U1  will 

 

             Fig. 2. Four packets and  different 

schedules. 

first  reply   a  Clear  To  Send  (CTS)  packet   

containing the traditional CTS contents plus  

its  latest  channel measure- ments.  After a short  

fixed amount of time, U2 will also reply a CTS 

packet.  After  receiving the two  CTS packets,  

the AP will  update their  channel coefficient  

vectors.  It  will  then decide  whether U1 and  

U2 are still compatible, and  if so, the AP will 

send  two packets  to them.  If in the rare case that 

the channels have  changed significantly such  

that  they  are  no longer  compatible, the  AP can  

choose  to send  to only  one node.  Therefore, 

before  sending the  data  packets,  the  AP first 

sends  2 bits in which  bit i is “1” means the 

packet  for Ui will  be sent  for 1     i     2. After  

the  data  packet  is sent,  U1 and  U2 can reply  

an acknowledgment packet  in turn. 

In this  paper, we consider matching user  

packets  of the same size. As measurement study 

[13] shows, typical packets in a wireless LAN 

are of two sizes, the data  packets  of size around 

1,500 bytes and  the acknowledgment packets  of 

size around 40 bytes.  Because  MPT  involves 

the  overhead  of RTS/CTS  packet  exchange, it 

is most  efficient  for the  data packets.  In this  

paper, for simplicity, we  consider the  case 

when the data rates of the users are the same. 

When the data rates  are the same,  all data  

packets  takes  roughly the same amount of time 

to transmit, which will be referred to as a time 

slot.  We  do  not  make  any  assumption about  

the  compat- ibilities of users  and  treat  them  as 

arbitrary. 

4    SCHEDULING  ALGORITHMS  FOR  

ACCESS POINTS 

While the idea  of MPT is simple,  the AP will 

encounter the problem of how  to  match  the  

packets  with  each  other  to send  them  out  as 

fast as possible. For example, suppose in the 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

Special Issue on Conference Papers 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05  Issue 06 
March 2018 

   

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 379   

buffer of the AP there  are four packets  destined 

for four users  denoted as  v1 , v2 , v3 , and  v4 , 

respectively. Assume packet  vi  is compatible 

with  viþ1  for 1     i     3, as shown at the  top  

of  Fig.  2,  where there   is  an  edge   between 

two packets  if they  are  compatible. 

 If we match  v2  with  v3 , the four  packets  have  

to be sent in three  time slots since v1 and v4  

are not compatible. However, a better  choice is 

to match v2 with v1 and match  v3 with v4 and 

send  the four packets  in only two time slots. 

When the number of packets  grows,  the 

problem of finding the best matching strategy 

will become more  difficult.  In this  section,  we  

describe algorithms that solve  this  problem. 

 

4.1    Algorithm for Optimal 

Schedule 

We  call  a  schedule by  which  packets   can  be  

sent  out  in minimum time  an optimal schedule. 

Clearly,  in an optimal schedule, the  maximum 

number of packets  is sent  out  in pairs; 

therefore, the problem of finding an optimal 

schedule is equivalent to finding the maximum 

number of compatible pairs among the packets.  

To solve this problem, as shown in Fig. 2, we 

draw a graph G, where each  vertex  represents 

a packet  and  two  vertices  are adjacent if the 

two  packets  are compatible. In a graph, a 

matching M is defined as a set of vertex  disjoint  

edges,  that  is, no edge  in M has  a common 

vertex   with   another edge   in  M .  Therefore,  

the  problem reduces to finding a maximum 

matching in G. For example, the second  

matching in Fig. 2 is a maximum matching 

while the  first  one  is  not.  Maximum 

matching in  a  graph  can be  found in  

polynomial time  by  algorithms such  as  the 

Edmonds’ Blossom   Algorithm, which   takes   

OðN 4 Þ   time, where N is the number of vertices  

in the graph [10], [2]. 

Before continuing our discussion, we first 

give the definitions  of  some   terms.   Let  M   

be  a  matching  in  a graph G. We  call  edges  

in  M  the  “matching edges.”  If a vertex   is   

incident  to   an   edge   in   M ,  we   say   it   is 

“M-saturated”  or   simply  “saturated;”  

otherwise,  it  is “M-unsaturated” 

(unsaturated) or  “M-free”  (free)  or  “sin- gle.”  

An  M -augmenting path   is  defined as  a  path   

with edges  alternating between edges  in M and  

edges  not in M , and   with   both   ends   being   

unsaturated  vertices.   For example,  with   

regard  to  the   first   matching  in   Fig.  2, v1   

v2   v3   v4  is an  augmenting path.  It is well  

known in graph theory that the size of a 

matching can be incremented by one if and only 

if there can be found an augmenting path. 

The buffer of the AP may store many  packets,  

as a result, the graph can be quite  large. 

However, the size of the graph can be reduced 

by taking  advantage of the fact that vertices that  

represent packets  for  the  same  user  have  

exactly  the same set of neighbors in the graph. 

More specifically,  in the graph, we say vertices  

u and v belong to the same equivalent group,  or  

simply   the   same   group,  if  the   packets   they 

represent are for the same  user.  Vertices  that  

belong  to the same group have the same 

neighbors and are not adjacent to each  other.  

Let A ¼ fa1 ; a2 ; a3 g and  B ¼ fb1 ; b2 ; b3 g be 

two groups of  vertices   and   suppose ai   is  

matched to  bi    for 

1     i     3. We have  the 

following lemma: 

Lemma 1. If there is an augmenting  path 

traversing  all three matching edges between A 

and B, there must exist an augmenting path 

traversing only one matching edge between A 

and B. 

As in the figure,  suppose an augmenting path  

traversing all   three    matching  edges    

between  A  and    B   is x   a1   b1   c  d   b2   a2   

e   f  a3   b3   y. However, if  x  is adjacent to a1 

, it must  also be adjacent to a3  since a1  and a3   

belong   to  the  same   group, thus   there   is  a  

shorter augmenting path  traversing only the last 

matching edge between A and  B, which  is x   

a3   b3   y. (Note  that  the same  proof  also  holds   

if  in  the  augmenting path,   the segment 

between, say, b1 and  b2 , is longer.)                     tu 

As a result  of this  lemma,  if there  exists  an 

augmenting path,  there  must  also  exist  an  

augmenting path  traversing no more  than  two 

matching edges  between any two groups of 

vertices.  This is because  if the  path  traverses 

more  than two matching edges  between two 

groups of vertices,  as we have  shown in  the  

lemma,   there   must   be  a  shortcut  by which  we  

need  only  to  traverse the  last  of the  first  three 
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M   

matching edges,  and  we can keep on finding 

such shortcuts and  reducing the number of 

traversed matching edges  until it is less than  3. 

Therefore, for any  two  groups of vertices, only 

two matching edges between them need to be 

kept and other   redundant  matching edges   can  

be  removed.  After that,  there  will  be Oðn2 Þ  

saturated vertices  left, where n is the  number 

of  users.   Also  note  that  for  the  purpose  of 

finding augmenting paths, only one of the 

unsaturated vertices  belonging to  each  group 

needs  to  be  considered. Therefore, the graph we 

work  on contains Oðn2 Þ number of vertices,  

which  does  not depend on the size of the 

buffer. 

4.2    Practical Considerations 

Although the optimal schedule can be found 

for a given  set of packets  by the maximum 

matching algorithm, in practice, the packets  do 

not arrive  all at once but arrive  one by one. It is  

not  feasible  to  run   the  maximum matching 

algorithm every  time  a new  packet  arrives  due  

to the  relatively high complexity of the  

algorithm. Therefore, after  a new  packet 

arrives,  we can match  it according to the  

following simple strategy: A new  vertex  is 

matched if and  only if it can find an 

unsaturated neighbor. In this way, we always 

maintain a maximal matching, where a 

matching M is maximal in G if no edge  not 

belonging to M is vertex  disjoint  with  all edges 

in  M .  For  example, the  two  matchings in  

Fig.  2  are  all maximal matchings. The 

maximum matching algorithm can be called 

only once a while to augment the existing  

maximal matching. 

Another problem is that  the  packets  do  not  

stay  in the buffer  forever  and  must  be sent  out.  

We will have  to make the decisions of which  

packet(s)  should be sent out once the AP has  

gained access  to the  media and  there  is a 

delicate tradeoff between throughput  and  

delay.  To  improve the throughput, we  should 

always send  out  packets  in  pairs; however, 

this policy favors the packets  that can be 

matched over  the  packets  that  cannot  be 

matched and  will  increase the  delay  of the  

latter.  To prevent excessive  delay  of the single 

packets, in practice, we can keep a time stamp 

for each packet  and  if the packet  has stayed in 

the buffer  for a time longer  than  a threshold, it 

will be sent out the next time the AP has 

gained access to the media.  If there are multiple 

such packets, the AP can choose a packet 

randomly.  

The threshold can be determined adaptively 

based on the measured delays of the packets  

that were  sent out in pairs. Finally,  although 

maximum matching can  be  found in 

polynomial time, maximum matching 

algorithms are in general complex  [11] and  

may not meet the timing requirements  of  

real-time applications, considering that the 

processors in the AP are usually cheap and not 

powerful. Therefore, in  some  cases,  a  fast  

approximation algorithm that  is capable of 

finding a “fairly  good”  matching may  be useful,  

which  will be discussed next. 

 

4.3    A Linear Time  3/4 Approximation 

Algorithm for Finding Maximum Matching 

The simplest and most well-known 

approximation algorithm for maximum 

matching simply  returns a maximal matching. It  

is  known that   this  simple   algorithm  has  

OðjEjÞ  time complexity, where jEj is the 

number of edges  in the graph and  has  a 

performance ratio  of 1/2, which  means that  

the matching it finds  has  a size  at least  half  of 

M    where M  denotes the  maximum 

matching. In this  section,  we give  a new  

OðjEjÞ approximation algorithm for maximum 

match- ing with an improved performance ratio 

of 3/4. To the best of our  knowledge, it  is  the  

first  linear   time  approximation algorithm for 

maximum matching with 3/4 ratio. 

The idea  of our  algorithm is to eliminate all 

augmenting paths of length  no more than 5. Note 

that any M -augmenting path  must  have  i edges  

in M and  i þ 1 edges  not in M for some 

integer i     0. Therefore, if the shortest M -

augmenting 

path  has length  at least 7, jM  j  > 3=4, since to 

increment the j      j size of the matching by one, 

the “trade ratio”  is at least 3/4, i.e., the best we 

can do is to take  out  three  edges  in M and add  

in four edges  not in M . 

A maximal matching does not have augmenting 

paths of length  1, which  is why  the size of a 

maximal matching is at least  a  half  of  the  size  

of  a  maximum matching. In  our algorithm, we 

will start  with  a maximal matching and  then 
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eliminate augmenting paths of length  3 and then 

of length  5. As can be seen,  the  algorithms 

themselves are  simple  and straightforward. 

However, it is interesting and  somewhat 

surprising that they can be implemented to run in 

linear time. 

4.3.1   Eliminating Augmenting  Paths of 

Length  3 

We start  with  a maximal matching denoted by 

S and  the output of our algorithm is denoted by 

M . For each vertex,  a list is used  to store  its 

neighbors. An array  is used  to store the  

matching, that  is,  the  ith  element in  the  array  

is  the vertex matched to the ith vertex. Note that 

with this array,  it takes  constant time  to  

augment the  matching with  fixed length  

augmenting paths or to check  whether a 

particular vertex  is saturated or not. 

The  algorithm is  summarized in  Table  1. 

Initially,   let M ¼ S. We will check edges  in S 

from the first to the last to augment M . When  

checking  edge  ðu; vÞ, we check whether both   u  

and   v  are  adjacent to  some   distinct 

unsaturated vertices.  If there are such vertices,  

say, u is adjacent to x and v is adjacent to y, there 

is an M -augmenting path  of length  3 involving 

ðu; vÞ, which  is x   u   v  y. We can eliminate 

this augmenting path  and  augment M by 

removing ðu; vÞ from M and  adding ðu; xÞ and  

ðv; yÞ to M . We call ðu; xÞ and  ðv; yÞ the  new  

matching edges.   To  find  x  and   y, we  can  

first search   all  neighbors of  u  and   let  x  be  

the  first  M -free neighbor of u. We will 

temporarily assign  x to u and  mark   

TABLE 1 Finding Augmenting  Paths of Length  3 

 

as   M -saturated.  Clearly,   if  we   cannot   find   

an   M -free neighbor of  u,  we  can  quit  

checking   ðu; vÞ  and  go  on  to check   the   next   

edge   in   S.  Otherwise,  we   search   all 

neighbors of v and  let y be the  first  M -free  

neighbor of v. If  such   y  is  found,  the   

augmenting  path   is  found.  If otherwise, that 

is, if we cannot  find an M -free neighbor of v, we 

cannot  simply  quit  checking  edge  ðu; vÞ since  v 

may  be adjacent to  x, which  has  been  

temporarily assigned to  u, while   u  may  be  

adjacent to  some  other   M -free  vertices. 

Therefore, if v is adjacent to x, we will “assign” 

x to v and search  the  neighbors of  u  that  have  

not  been  previously searched. By doing  this, 

we make sure that at the time when checking   

ðu; vÞ,  if  there   is  a  length-3   augmenting 

path involving ðu; vÞ, it can be found. The 

algorithm terminates when all edges  in S have  

been  checked  this  way. 

Next, we prove the correctness and derive  the 

complexity of this algorithm. It is important to 

note that if the matching is always augmented  

according to  augmenting paths, the following 

two facts always hold.  First, all saturated 

vertices will remain saturated after each 

augmentation. Second, as a result   of the  first  

fact,  if a  vertex  is  unsaturated after  an 

augmentation, it must  be unsaturated before the 

augmenta- tion,  and  therefore, throughout  the  

process   M  remains a maximal matching. 

Lemma 2.  The new  matching  edges need not  to  

be checked because there cannot be 

augmenting  paths of length 3 involving them. 

Proof.  To see this, suppose x   u   v  y is a length-

3  augment- ing  path,   as  shown  in  Fig.  4.  

If  there   is  a  length-3 augmenting path   

involving one  of  the  new   matching edges, 

say, ðx; uÞ, let it be s   x   u   t, as shown in the 

right part of Fig. 4. Note that s and x are not 

saturated before the matching is augmented 

according to  x   u   v   y, which contradicts 

the fact that the matching is always maximal. 

The left part  of Fig. 4 shows  this situation.                     

tu 

Corollary 1. When the algorithm terminates, there 

is no length-3 augmenting path. 

    Proof.  By contradiction, if there  is still a length-3  

augment- ing path,  let it be x   u   v  y, where u 

and  v are saturated. By  Lemma   2,  ðu; vÞ  cannot   

be  a  new  matching  edge; therefore, it is in S. 

But, this cannot  happen since if such an 

augmenting path  exists after the algorithm 

terminates, it must  also  exist  when ðu; vÞ  was  

checked  and  should have  been  found.                                                           

tu 
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Fig.  4.  Augmenting   M   according  to  x   u   v   

y.  s  and   x  are   both unsaturated, which 

contradicts the fact that M is a maximal 

matching. 

 

Fig. 5. Inner vertices and  outer  vertices. 

Lemma 3. The algorithm runs in OðjEjÞ time, 

where jEj is the number of edges. 

Proof.   Note   that   when  checking   edge   ðu; vÞ,  

the   edges incident to u and  v were  checked  

at most  once. Since the edges  in  S are  vertex  

disjoint,  the  algorithm checks  an edge  in G 

no more  than  twice.                                           tu 

Combining the above  discussions, we have  

Theorem 1. 

Theorem 1. The algorithm  in  Table 1 eliminates 

all length-3 augmenting paths in OðjEjÞ time. 

4.3.2   Eliminating Augmenting  Paths of 

Length  5 

After  eliminating augmenting paths of length  

3, we search for augmenting paths of length  5. 

We first check all edges  in the  current 

matching to  construct a  set  T . A  vertex  v is 

added to set  T  if v is matched to some  vertex  

u and  u is adjacent to  at  least  one  

unsaturated vertex.  We  call  v an “outer 

vertex”  and  u an “inner  vertex,”  as shown in 

Fig. 5. Note  that  v can be both  an outer  vertex  

and  an inner  vertex when v and  u are  both    

adjacent to  the  same  unsaturated vertex   and   

are   not   adjacent  to   any   other   unsaturated 

vertices.  Clearly,  to find  augmenting paths of 

length  5 is to find   adjacent  outer   vertices.   

Also   note   that   T   can   be constructed in    

OðjEjÞ time. 

The  algorithm is summarized in  Table  2 and  

works  as follows: We check the vertices  in T from 

the first to the last. When  checking  vertex  v, let u 

be the  inner  vertex  matched to  v. We  first  

obtain   or  update lðuÞ, which   is  the  list  of 

unsaturated neighbors of u: If lðuÞ has not been 

established earlier,   we   search   the   neighbor  

list   of  u  to   get   lðuÞ; otherwise, we  check  the  

vertex  in  lðuÞ (in  this  case,  there can only be 

one vertex in lðuÞ, for reasons to be seen shortly) 

and remove it from lðuÞ if it has been matched.  

After getting lðuÞ, if lðuÞ is empty, we quit  

checking  v, remove v from  T , and  go on to the 

next vertex  in T .  

6    CONCLUSIONS 

In this paper, we have considered using  MPT to 

improve the downlink performance of the 

wireless LANs. With MPT, the AP can send  two 

compatible packets  simultaneously to two 

distinct users.  We have formalized the problem 

of finding a minimum time  schedule as a 

matching problem and  have given a practical 

linear time algorithm that finds a matching of at 

least 3/4 the size of a maximum matching. We 

studied the performance of wireless LAN after 

it was enhanced with MPT. We gave  analytical 

bounds for maximum allowable arrival rate,  

which  measures the speedup of the downlink, 

and our results show that the maximum arrival 

rate increases significantly even  with  a very 

small  compatibility probabil- ity.  We  also  used   

an  approximate  analytical model   and 

simulations to  study the  average packet   

delay,   and   our results show  that  packet  delay  

can be greatly reduced even with a very small 

compatibility probability. 
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