

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 358

Realization of Building Blocks of Floating Point Butterfly

Architecture
Bharathi.R

& Dr.M.Ramana Reddy

1PG Scholar, RGMCET, Nandyal, Kurnool, AP, India.
2Professor,Dept of ECE, RGMCET, Nandyal, Kurnool, AP

Abstract: Fast Fourier transform (FFT)

coprocessor, having a noteworthy crash on the

performance of communication systems. The FFT function

consists of uninterrupted multiply add operations over

complex statistics, dubbed as butterfly units. By applying

floating-point (FP) arithmetic to FFT architectures,

expressly butterfly units, has become more popular

recently. It off-load compute-intensive errands from

general-purpose processors by dismissing FP (e.g., scaling

and overflow, underflow etc). However, the key downside

of FP butterfly is its slowness in contrast with its fixed-

point equal. This reveals the spur to develop a high-speed

FP butterfly architecture to moderate FP slowness. This

brief presents fast FP butterfly unit using a devised FP

fused-dot-product-add (FDPA) unit, based on carry select

adder (CSA) in existing. This brief proposes a fused

floating-point operations and applies them to the

implementation of fast Fourier transform (FFT)

processors. The fused operations are a two-term dot

product and an add-subtract unit, FP fused-dot product-

add (FDPA) unit, based on binary signed-digit (BSD)

representation and compared with CSA representation. In

this brief different blocks used in floating point Butterfly

Architecture are designed. Simulation results are observed

using Cadence tool.

Index Terms— Binary-signed digit (BSD)

representation, butterfly unit, complex number system, fast

Fourier transform (FFT), floating-point (FP).

I. INTRODUCTION

Fixed point Representation.

A fixed-point representation of a number may be

thought to consist of 3 parts: the sign field, integer field,

and fractional field. One way to store a number using a 32-

bit format is to reserve 1 bit for the sign, 15 bits for the

integer part and 16 bits for the fractional part. A number

whose representation exceeds 32 bits would have to be

stored inexactly. On a computer, 0 is used to represent +

and 1 is used to represent

Example. The 32-bit string 1 | 000000000101011 |

1010000000000000

represents (−101011.101)2 = −43.625.

The fixed point notation, although not without virtues,

is usually inadequate for numerical analysis as it does not

allow enough numbers and accuracy.

Floating Point Representation.

FLOATING-POINT arithmetic provides a wide

dynamic range, freeing special purpose processor designers

from the scaling and overflow/underflow concerns that

arise with fixed-point arithmetic. Use of the IEEE-754

standard 32-bit floating-point format also facilitates using

the fast Fourier transform (FFT) processors as

coprocessors in collaboration with general purpose

processors.

Fast Fourier transform (FFT) circuitry consists of

several consecutive multipliers and adders over complex

numbers; hence an appropriate number representation must

be chosen wisely. Most of the FFT architectures have been

using fixed-point arithmetic, until recently that FFTs based

on floating-point (FP) operations grow. Floating-point

arithmetic provides a wide dynamic range, freeing special

purpose processor designers from the scaling and

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 359

overflow/underflow concerns that arise with fixed-point

arithmetic. Use of the IEEE-754 standard 32-bit floating-

point format also facilitates using the fast Fourier

transform (FFT) processors as coprocessors in

collaboration with general purpose processors. This

offloads compute-intensive tasks from the processors and

leads to higher performance.

The rest of the paper deals with fused dot product

unit and blocks of floating point used in the butterfly

architecture. In this brief different blocks used in floating

point Butterfly Architecture are designed.

II. TRADITIONAL FUSED DOT

PRODUCT UNIT

The floating-point dot product unit can be simply

implemented by using two floating-point multipliers and a

floating-point adder. However, such a discrete version

requires large area, power consumption and latency.

Moreover, since rounding is performed three times (after

each of the multiplications and after the addition), the

accuracy is decreased. In order to reduce the area and

latency, and increase the accuracy, the floating-point fused

dot product unit is introduced. It shares the common logic

such as exponent compare, significand addition, exponent

adjust and sign logic so that the area, power consumption

and latency are reduced. Also, the floating-point fused dot

product unit performs only a single rounding so that the

accuracy increases. The steps to execute the floating-point

fused dot product are

1) Four floating-point numbers are unpacked into their

signs, exponents and significands.

2) Two multiplier trees are used to produce two pairs

of sums and carries (a total of four numbers). In parallel,

two sums of exponents are computed and compared to

determine the greater product and the difference is

computed. Also, the operation (addition or subtraction) is

selected using the sign bits and op code.

 3) One sum and carry pair is aligned based on the

exponent difference result and inverted if the operation is

subtraction. The two pairs of significands are passed to a

4:2 reduction tree. Carry save adders are used to form the

reduction tree, which reduces the four significands to two.

4) The two significands are summed and

complemented if the sum is negative. The significand

comparison result is passed to the sign logic so that the

sign is determined.

All the significants in the design of Floating point

butterfly are represented in Carry Select Adder (CSA)

format and the corresponding carry limited (which avoids

carry propagation from one stage to next stage) adder is

designed. CSA adder is designed using eight full adders

and five 2:1 multiplexers. The block diagram of 4 bit CSA

designed is as shown in the figure 1.

Fig.1. Block Diagram of CSA

Fused dot product unit blocks are designed using the

CSA adder in the conventional system and compared with

the proposed system.

III. PROPOSED BUTTERFLY

ARCHITECTURE

In this section we presents a butterfly architecture

using redundant Floating Point arithmetic, which is useful

for FP FFT coprocessors and contributes to the digital

signal processing applications and also in Orthogonal

frequency division multiplexing applications. Although

there are other existing algorithms works on the use of

redundant Floating point number systems, which are not

optimized and which requires more delay. In butterfly

architecture in which both redundant FP multiplier and

adder are required. The novelties FDPA and BSD adder

techniques used in the proposed design include the

following.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 360

Fig.2.

FFT butterfly architecture

1) All the significants in the design of Floating point

butterfly are represented in binary signed digit (BSD)

format and the corresponding carry limited (which avoids

carry propagation from one stage to next stage) adder is

designed.

2) Design of the FP constant multipliers for operands with

BSD significant.

The different blocks designed in the project are FP

multiplier with BSD adder.

In the FP multiplier Partial products are generated using

2:1 mux.

Proposed Redundant Floating-Point Multiplier:

The proposed multiplier, is similar to that of other

parallel multipliers, consists of two major steps, namely,

partial product generation (PPG) and Partial product

reduction (PPR). However, contrary to the conventional

multipliers, the proposed multiplier keeps the product in

redundant format and hence there is no need for the final

carry-propagating adder. There is no carry propagation

from one stage to the next stage. The exponents of the

input operands are taken care of in the same way as is done

in the conventional FP multipliers, however,

normalization, deletion and rounding are left to be done in

the next block of the butterfly architecture (i.e., three

operand adder).

1.Partial Product Generation: The Partial product

generator step of the proposed multiplier is completely

different from that of the conventional multiplier one

because of the representation of the input operand bits (B,

W , Br ,W r).Moreover, given that Wre and Wim are

constants, the multiplications (over significant) can be

computed through a series of shifters ,adders.

2. Partial Product Reduction: The main advantage

of the PPR step is the proposed in this section in which the

carry-limited addition over the operands represented in

BSD format. This carry-limited addition circuitry is shown

in fig.4 (two-digit slice). Since each PP(PPi) is(n+1)-

digit(n,...,0)which is either B (n−1,...,0) or 2B(n,...,1),the

length of the final product may be more than2n.This is

possible by use of BSD adders in the intermediate stages.

Fig.3: Generation of the ith PP

The generated partial products are then reduced using

partial production and then these are added using BSD

adder.

Fig.4: BSD adder (two-digit slice)

Proposed redundant FP multiplier is then added using the BSD

adder. Basic block diagram how the BSD adder is used in the

floating point addition is as shown in the figure. The blocks used

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 361

in this are separately designed and are compared with the existing

blocks.

Barrel Shifter.

A barrel shifter is a digital circuit that can shift a

data word by a specified number of bits. It can be

implemented as a sequence of multiplexers. In this

implementation, the output of one MUX is connected to

the input of the next MUX in a way that depends on the

shift distance. The number of multiplexers required is

n*log2(n), for an n bit word. Four common word sizes and

the number of multiplexers needed are listed below:

 64-bit — 64 * log2(64) = 64 * 6 = 384

 32-bit — 32 * log2(32) = 32 * 5 = 160

 16-bit — 16 * log2(16) = 16 * 4 = 64

 8-bit — 8 * log2(8) = 8 * 3 = 24

Basically, a barrel shifter works to shift data by

incremental stages which avoids extra clocks to the register

and reduces the time spent shifting or rotating data (the

specified number of bits are moved/shifted/rotated the

desired number of bit positions in a single clock cycle). A

barrel shifter is commonly used in computer-intensive

applications, such as Digital Signal Processing (DSP), and

is useful for most applications that shift data left or right - a

normal style for C programming code. Rotation (right) is

similar to shifting in that it moves bits to the left. With

rotation, however, bits which "fall off" the left side get

tacked back on the right side as lower order bits, while in

shifting the empty space in the lower order bits after

shifting is filled with zeros. Data shifting is required in

many key computer operations from address decoding to

computer arithmetic. Full barrel shifters are often on the

critical path, which has led most research to be directed

toward speed optimizations. With the advent of mobile

computing, power has become as important as speed for

circuit designs. In this project we present a range of 32-bit

barrel shifters that vary at the gate, architecture, and

environment levels.

Fig.5 Design specification of circuit

Barrel shifter functionality.

The Barrel shifter component is applicable for cases where

an efficient logical shift or rotate with a selectable shift

amount is required. The component supports either shift or

rotate operations depending on the ROTATION parameter.

When the ROTATION parameter is set to 1, the barrel

shifter performs rotation and when it is set to 0, a logical

shift operation is performed, shifting logical 0 in. the

DIRECTION parameter determines if the barrel shifter

performs a left or right shift. Setting the DIRECTION

parameter to 0 would result in a left shift and setting it to 2

would result in a right shift.

IV. EXPERIMENTAL RESULTS

Circuit Diagram for CSA Adder

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 362

Block Diagram CSA adder

CSA Adder output

Circuit Diagram For BSD Adder

Block diagram For BSD adder

BSD Adder output

Comparison table.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 363

V. CONCLUSION

Different blocks like FP multiplier and adder used in

the floating point Butterfly Architecture are designed.

Simulation and Synthesis of the design is observed using

Cadence tool. The results of the proposed multiplier with

BSD adder is compared with the blocks of FP multiplier

when it used CSA adder which show much better

performance.

REFERENCES

[1] E.E. Swartzlander, Jr., and H. H. Saleh, ―FFT

implementation with fused floating-point operations,‖

IEEE Trans. Comput., vol. 61, no. 2, pp. 284–288, Feb.

2012.

[2] J. Sohn and E. E. Swartzlander, Jr., ―Improved

architectures for a floating-point fused dot product unit,‖ in

Proc. IEEE 21st Symp. Comput. Arithmetic, Apr. 2013,

pp. 41–48.

[3] IEEE Standard for Floating-Point Arithmetic, IEEE

Standard 754-2008, Aug. 2008, pp. 1–58.

[4] B. Parhami, Computer Arithmetic: Algorithms and

Hardware Designs, 2nd ed. New York, NY, USA: Oxford

Univ. Press, 2010.

[5] J. W. Cooley and J. W. Tukey, ―An algorithm for the

machine calculation of complex Fourier series,‖ Math.

Comput., vol. 19, no. 90, pp. 297–301, Apr. 1965.

[6] A. F. Tenca, ―Multi-operand floating-point addition,‖

in Proc. 19th IEEE Symp. Comput. Arithmetic, Jun. 2009,

pp. 161–168.

[7] Y. Tao, G. Deyuan, F. Xiaoya, and R. Xianglong,

―Three-operand floating-point adder,‖ in Proc. 12th IEEE

Int. Conf. Comput. Inf. Technol., Oct. 2012, pp. 192–196.

[8] A. M. Nielsen, D. W. Matula, C. N. Lyu, and G. Even,

―An IEEE compliant floating-point adder that conforms

with the pipeline packetforwarding paradigm,‖ IEEE

Trans. Comput., vol. 49, no. 1, pp. 33–47, Jan. 2000.

[9] P. Kornerup, ―Correcting the normalization shift of

redundant binary representations,‖ IEEE Trans. Comput.,

vol. 58, no. 10, pp. 1435–1439, Oct. 2009. [10] 90 nm

CMOS090 Design Platform, STMicroelectronics, Geneva,

Switzerland, 2007.

[11] J. H. Min, S.-W. Kim, and E. E. Swartzlander, Jr., ―A

floating-point fused FFT butterfly arithmetic unit with

merged multiple-constant multipliers,‖ in Proc. 45th

Asilomar Conf. Signals, Syst. Comput., Nov. 2011, pp.

520–524.

IEEE Standard for Verilog Hardware Description

Language, IEEE 1364-1995. [10]. IEEE Standard for

Verilog Language, IEEE 1364-2001.

[12]. http://www.xilinx.com/FPGA_series[Online] [13].

Lecture notes - Chapter 7 - Floating Point

Arithmetic[Online]

http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.fl

pt.html

[14]. The FFT Demystified, Engineering Productivity

Tools Ltd., [Online]: Available:

http://www.engineeringproductivitytools.com/

[15]. IEEE 754 Standard - Binary Floating Point Number

Calculator Convert a 32 Bit Word to Decimal Value

[Online]

http://www.ajdesigner.com/fl_ieee_754_word/ieee_32_bit

_word.php.

DESIGN

Adders

used

Power Delay

CSA

Adder

8 Full

Adders

and 5

2:1

mux

195.2E-6

10.08E-9

BSD

Adder

4 full

adders

and 5

inverter

s

367.5E-9

609.9E-12

http://www.engineeringproductivitytools.com/

