Effect Of Steel And Concrete Due Toearthquake, Wind, Selfweight \& Imposed Loads On A Strcture Upto Cellar+G+4 Floors

SURESHKUMAR.B

Abstract

The business complex to be planned is CELLAR $+G+4$ Floors each floor having a stature of 3.3 mts with arrangement of lift on stair case. The unmistakable traverse of 40' in meters 12.192, the dirt condition is hard morrum at a profundity of 6^{\prime} in meters 1.82 from characteristic ground level Here the task demonstrates the impact of steel and cement because of EARTHQUAKE LOADS ,WIND LOADS ,SELF WEIGHT,AND IMPOSED LOADS ON STRUCTURE UPTO CELLAR $+G+4$ The investigation of the structure is finished by taking the mixes of burdens like (LIVELOAD+DEADLOAD,LIVELOAD+DEADLOAD+EAR THQUAKELAOD,LIVELOAD+DEADLOAD+WINDLOAD,L IVELOAD + DEADLOAD + WINDLOAD $+E A R T H Q U A K E L O A$ D)The outlines are finished by taking 25load blends.The examination, plan \&detailing are finished with the assistance of "STRUDS" programming The investigation and outline of the business building is done physically and again cross checked with studs programming The principle feature of this task is demonstrates the variety in constructional amounts (solid, steel) in different individuals from the business building like shafts ,sections ,pieces ,footings, the venture has additionally given definite illustration of different auxiliary individuals, for example, pillars ,segments ,chunks ,\&footings The venture additionally demonstrates the different constructional amounts by thinking about different sorts of load mixes (i.e.., $D L+L L, D L+L L+W L, D L+L L+W L+E Q L$, $D L+L L+E Q L)$ here each heap mix demonstrates the diverse constructional amounts by applying distinctive kinds of burdens in structures With the assistance of studs programming the yields are properly shown as DXF FORMAT.

1. INTRODUCTION

Studs is a perfect programming answer for the use of basic architects for the examination of $2 \mathrm{~d} \& 3 \mathrm{~d}$ auxiliary and the outline of various r.c.c/steel segments, for example, chunks, pillars, segments, footings and trusses with configuration running on windows 95/98/2000/xp/nt vista and windows 7 stages. Studs have an in-constructed graphical information generator to show the geometry of building structure. The fundamental approach is to make 2 d story designs (plane lattices) and furnish segments area with the assistance of which the program consequently produces 2 d plane casings and 3d space outline. Fitting material and segment properties can be made or appointed from stud's libraries. Standard limit condition and diverse sorts of burdens would then be able to be connected. At each progression of the demonstrating procedure, you will get graphical confirmation of your advance. You never need to stress over committing an error as the erasing or altering of any piece of the geometry is conceivable utilizing accessible menu orders. Prompt visual criticism gives an additional level of affirmation that the model you developed concur with your expectations. At the point when your structure geometry is finished, studs perform investigation utilizing firmness lattice technique and limited component strategy for most extreme arrangement, precision, speed and dependability. Documentation is dependably an imperative piece of

Investigation and outline and the windows clients interface upgrade the outcomes and streamline the exertion. Studs gave coordinate amazing printing and plotting of both content and illustrations information to record your model and results. Our undertaking essentially manages the investigation and plan of G+ 4 businesses working with basement and lift arrangement and stair case. The dirt or ground condition is considered as hard morrum surface. The investigation and outline of the business building is done physically and is additionally cross checked with the assistance of studs programming. In manual examination and outline of the business constructing the accompanying burden blends are considered: DEAD LOAD+LIVE LOAD DEAD LOAD+LIVE
LOAD+WINDLOADDEADLOAD+LIVELOAD+EAR THQUAKELOAD DEAD LOAD+LIVE LOAD+WIND LOAD+EARTH QUAKE LOAD With the assistance of programming the examination and configuration is improved the situation 25 distinctive load mixes. For the plan reason the accompanying is - codes are utilized: IS 456-2000 IS 875-1987 PART-1 IS 875-1987 PART-2 IS 8751987 PART-3 IS 1893-2002 With the assistance of studs programming the basic illustrations of each auxiliary part are produced in dxf organize. The manual exercises are contrasted and that of the product's yield and all outcomes are appropriately shown

2. LITERATURE REVIEW

JHON SMEATON (1793): Discovered a more present day technique for creating pressure driven lime for bond. He utilized limestone containing mud that was let go until the point that it transformed into clinker, which was then ground it into powder. He utilized this material in the noteworthy modifying of the Eddy stone Lighthouse in Cornwall, England.

Smeaton's variant (the third) of the Eddy stone Lighthouse, finished in 1759 。

Following 126 years, it flopped because of disintegration of the stone whereupon it stood. JOSEPH ASPDIN (1824): an Englishman imagined Portland bond by consuming finely ground chalk and mud in a furnace until the point that the carbon dioxide was expelled. It was named "Portland" concrete since it looked like the brilliant building stones found in Portland, England. It's broadly trusted that Asp commotion was the first to warm alumina and silica materials to the point of verification, bringing about combination. Amid verification, materials progress toward becoming glass-like. Asp commotion refined his strategy via precisely proportioning limestone and dirt, pounding them, and after that consuming the blend into clinker, which was then ground into completed bond.
e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04
February 2018

Ovens: - In the beginning of Portland bond generation, ovens were vertical and stationary.IN 1885 ENGLISH ENGINEER: Developed a more effective furnace that was level, marginally tilted, and could turn. The rotating furnace gave better temperature control and completed a superior occupation of blending materials. By 1890, rotating ovens overwhelmed the market. GEORGE BARTHOLOMEW (1891): Poured the main solid road in the U.S., regardless it exists today. The solid utilized for this road tried at around $8,000 \mathrm{psi}$, which is about double the quality of present day concrete utilized as a part of private development.

The Ingalls Building in Cincinnati, Ohio
THOMAS EDISON (1909): Received a patent for the first long kiln. This kiln, installed at the Edison Portland cementWorksin,NewJersey, was 150 feetlong.Thiswasabou t70feetlonger than the kilns in use at the time.

RISORGIMENTO (1911): the Bridge was built in Rome. It spans 328 feet.

Rome's Risorgimento Bridge
ASTM (1913): The principal heap of prepared blend was conveyed in Baltimore, Maryland. After four years, the National Bureau of Standards (now the National Bureau of Standards and Technology) and the American Society for Testing and Materials (now ASTM International) setUp a standard recipe for Portland bond. MATTE TRUCCO (1915): assembled the five-story FiatLingottiAuto works in Turin utilizing strengthened cement. The building had a car test track on the rooftop

The Fiat-LingottiAuto works in Turin, Italy

EUGENE FREYSSINET (1921): Was a French engineer and pioneer in the use of reinforced- concrete construction. He built two gigantic parabolic-arched airship hangars at Orly Airport in Paris. In 1928, he was granted a patent for pre-stressed concrete.

The parabolic-arched airship hangar at Orly Airport in Paris, France

Airship hangar construction
IN 1930: Air-entraining operators were produced that incredibly expanded solid's protection from solidifying and enhanced its workability. Air entrainment was an essential advancement in enhancing the sturdiness of current cement. Air entrainment is the utilization of specialists that, when added to concrete amid blending, make numerous air bubbles that are to a great degree little and firmly dispersed, and the vast majority of them stay in the solidified cement. Concrete solidifies through a substance procedure called hydration. For hydration to happen, concrete must have a base water-to-bond proportion of 25 sections of water to 100 sections of bond. EDUEADO TORROJA (1930): the Spanish specialist planned a low-ascent arch for the market at Algeciras, with a $31 / 2$-inch thickness that spread over 150 feet. Steel links were utilized to shape a pressure ring. At about a similar time, Italian Pier Luigi Nervi started constructing shelters for the Italian Air Force, appeared in the photograph beneath

Cast-in-place hangars for the Italian Air Force
In 1935, the Hoover Dam: was finished in the wake of pouring roughly $3,250,000$ yards of cement, with an extra $1,110,000$ yards utilized as a part of the power plant and other dam-related structures. Remember this was under 20 years after a standard equation for bond was built up.

Fantastic Coulee Dam:-IN 1942The Grand Coulee Dam in Washington: is the biggest solid structure at any point fabricated. It contains 12 million yards of cement. Exhuming required the expulsion of more than 22 million cubic yards of soil and stone. To decrease the measure of trucking, a transport line 2 miles in length
was built. At establishment areas, grout was drawn into openings bored 660 to 880 feet profound (in rock) keeping in mind the end goal to fill any gaps that may debilitate the ground underneath the dam. To dodge exhuming breakdown from the heaviness of the overburden, 3 -inch channels were embedded into the earth through which chilled fluid from a refrigerating plant was pumped.

The Grand Coulee Dam
DANIEL BERNOULLI, WITH JOHANN (JEAN) BERNOULLI (1667- 1748): is additionally credited with defining the hypothesis of virtual work, giving an instrument utilizing balance of powers and similarity of geometry to take care of basic issues

DANIEL BERNOULLI (1700-1782): Specifically, he built up the Euler-Bernoulli bar condition with Daniel Bernoulli and in around 1750 - the principal hypothesis basic most basic building plan. JEAN BERNOULLI (1717):wrote to Pierre Varignon clarifying the standard of virtual work, while in 1726 Daniel Bernoulli composed of the "arrangement of powers".

3. MANUAL ANALYSIS

SLAB LOADS:-Slab Load on Terrace Floor:

Live load $=1.5 \mathrm{kn} / \mathrm{m} 2($ FROM IS 875 PART-2 $)$
Dead load = thickness of slab density of cement
Dead load $=0.15$ X $25=3.75 \mathrm{kn} / \mathrm{m} 2$
Floor complete load $=20 \mathrm{X} 0.05=1.02 \mathrm{kn} / \mathrm{m} 2$
Add up to stack $=4.77+1.5=6.27 \mathrm{kn} / \mathrm{m} 2$

Slab Load on First Floor:-

Live load for all floor $=4 \mathrm{kn} / \mathrm{m} 2$
Live load $=4 \mathrm{kn} / \mathrm{m} 2$ (FOR COMMERCIAL BUILDING)(From IS875 PART-2)

Dead load $=0.15 \mathrm{X} 25=3.75 \mathrm{kn} / \mathrm{m} 2$
Floor completes stack $=1.02 \mathrm{kn} / \mathrm{m} 2$
Add up to stack $=4.77+4=8.77 \mathrm{kn} / \mathrm{m} 2$

Section Load on second Floor:-

Live load $=4 \mathrm{kn} / \mathrm{m} 2$
Dead load $=0.15 \mathrm{X} 25=3.75 \mathrm{~kb} / \mathrm{m} 2$
Floor completes stack $=20.40 \mathrm{X} 0.05=1.02 \mathrm{kn} / \mathrm{m} 2$

Add up to stack $=4.77+4=8.77 \mathrm{kn} / \mathrm{m} 2$

Piece Load on third Floor:-

Live load $=4 \mathrm{kn} / \mathrm{m} 2$
Dead load $=0.15 \mathrm{X} 25=3.75 \mathrm{kn} / \mathrm{m} 2$
Floor completes stack $=20.40 \mathrm{X} 0.05=1.02 \mathrm{kn} / \mathrm{m} 2$
Add up to stack $=4.77+4=8.77 \mathrm{kn} / \mathrm{m} 2$

Piece Load On4th Floor:-

Live load $=4 \mathrm{kn} / \mathrm{m} 2$

Dead load $=0.15 \mathrm{X} 25=3.75 \mathrm{kn} / \mathrm{m} 2$
Floor completes stack $=20.40 \mathrm{X} 0.05=1.02 \mathrm{kn} / \mathrm{m} 2$
Add up to stack $=4.77+4=8.77 \mathrm{kn} / \mathrm{m} 2$
Chunk Load on Cellar:-
Live load $=4 \mathrm{kn} / \mathrm{m} 2$
Dead load $=0.15 \mathrm{X} 25=3.75 \mathrm{kn} / \mathrm{m} 2$
Floor completes stack $=20.40 \mathrm{X} 0.05=1.02 \mathrm{kn} / \mathrm{m} 2$
Add up to stack $=4.77+4=8.77 \mathrm{kn} / \mathrm{m} 2$.
SELF WEIGHT OF BEAM LOADS:- Bar Load on Terrace:-

Load on Parapet divider $=0.115 \mathrm{X} 1 \mathrm{X} 19=2.185 \mathrm{kn} / \mathrm{m}$
Self weight of Beam $=0.23 \times 0.3 \mathrm{X} 25=1.725 \mathrm{kn} / \mathrm{m}$
Piece stack $=4.77+1.5=6.27 \mathrm{kn} / \mathrm{m}$
Add up to $\operatorname{stack}=10.18 \mathrm{kn} / \mathrm{m}$.
Load on First Floor:-
Divider parcel $=0.23 \mathrm{X} 2.85 \mathrm{X} 19=12.45 \mathrm{kn} / \mathrm{m}$
Self weight of bar $=0.23 \mathrm{X} 0.45 \mathrm{X} 25=2.58 \mathrm{kn} / \mathrm{m}$
Piece stack $=8.77 \mathrm{kn} / \mathrm{m}$
Add up to stack $=23.8 \mathrm{kn} / \mathrm{m}$.
Load on second Floor:-
Divider partition $=0.23 \mathrm{X} 2.85 \mathrm{X} 19=12.45 \mathrm{kn} / \mathrm{m}$
Self weight of pillar $=0.23 \times 0.45 \mathrm{X} 25=2.58 \mathrm{kn} / \mathrm{m}$
Section stack $=8.77 \mathrm{kn} / \mathrm{m}$
Add up to stack $=23.8 \mathrm{kn} / \mathrm{m}$.
Load on third Floor:-
Divider partition $=0.23 \mathrm{X} 2.85 \mathrm{X} 19=12.45 \mathrm{kn} / \mathrm{m}$
Self weight of pillar $=0.23 \mathrm{X} 0.45 \mathrm{X} 25=2.58 \mathrm{kn} / \mathrm{m}$
Section stack $=8.77 \mathrm{kn} / \mathrm{m}$

International Journal of Research
Available at https：／／edupediapublications．org／iournals
e－ISSN：2348－6848
p－ISSN：2348－795X
Volume 05 Issue 04
February 2018

Add up to stack $=23.8 \mathrm{kn} / \mathrm{m}$

Load on fourth Floor：－

Divider partition $=0.23 \mathrm{X} 2.85 \mathrm{X} 19=12.45 \mathrm{kn} / \mathrm{m}$
Self weight of pillar $=0.23 \mathrm{X} 0.45 \mathrm{X} 25=2.58 \mathrm{kn} / \mathrm{m}$
Section stack $=8.77 \mathrm{kn} / \mathrm{m}$

Add up to stack $=23.8 \mathrm{kn} / \mathrm{m}$
Load on Cellar：－
In basement there is no divider introduce

Self weight of bar $=023 \mathrm{X} 0.45 \mathrm{X} 25=2.58 \mathrm{kn} / \mathrm{m}$
Piece stack $=8.77 \mathrm{kn} / \mathrm{m}$
Add up to stack $=11.35 \mathrm{kn} / \mathrm{m}$ ．

Load on Plinth Area：－

$[$ Slab stack $=0]$ Live load $=0$ Dead load $=0$
Floor complete $=0$ \｛here every one of the heaps Droves to the soils $\}$

Plinth pillar $=0.23 \mathrm{X} 0.23 \mathrm{X} 25=1.32 \mathrm{kn} / \mathrm{m}$
Divider partition $=0.23 \mathrm{X} 2.85 \mathrm{X} 19=12.45 \mathrm{kn} / \mathrm{m}$
Add up to stack $=12.45+1.32=13.77 \mathrm{kn} / \mathrm{m}$ Say $14 \mathrm{kn} / \mathrm{m}$ ．

4．DESIGN OF DOG LEGGED STAIR CASE

Size of stair case $=7^{\prime}$＇X6＇
Going length $=2.13 \times 0.50$
Landing $=4^{\prime}$
Accept tread $=300 \mathrm{~mm}$
Rise $=150 \mathrm{~mm}$ ，story tallness $=3.3 \mathrm{~m}$
Consequently tallness of each flight $=3300 / 2=1650 \mathrm{~mm}$
No of rises required $=1650 / 150=11$
Treads $=$ no of rises $-1=12-1=11$ ．
Genuine ascent of each ascent $=1650 / 12=137.50 \mathrm{~mm}$
Give the bearing flight a chance to be 150 mm ．

Successful Horizontal Span：－

$2.63+0.60+0.15 / 2=3.305 \mathrm{~m}$
Accept thickness of midsection section $=150 \mathrm{~mm}$
Heap of midriff section $=0.15 \mathrm{X} 25=3.75 \mathrm{kn} / \mathrm{m} 2$
Floor completes $=1 \mathrm{kn} / \mathrm{m} 2$
Add up to stack $=4.75 \mathrm{kn} / \mathrm{m} 2$ ．

Comparing per sq．m length on design $=\sqrt{ }\left(\mathrm{R}^{\wedge} \wedge 2+\mathrm{T}^{\wedge} 2\right) / T=$ $\sqrt{ }(\llbracket 150 \rrbracket \wedge 2+\llbracket 300 \rrbracket \wedge 2) / 300 \mathrm{X} 4.75=5.31 \mathrm{kn} / \mathrm{m}$

Dead Load of Steps $=137.50 / 2=68.75 \mathrm{~mm}=$ $0.06875 \mathrm{X} 25=1.718$

Floor completes $=1 \mathrm{kn} / \mathrm{m} 2$
Live load $=4 \mathrm{kn} / \mathrm{m} 2$

Add up to stack $=12.028$ ．
Greatest Bending Moment per meter width of stair $=\mathrm{M}$ $=\left(w l^{\wedge} 2\right) / 8$
$\mathrm{M}=12.028 \mathrm{X} \llbracket 3.305 \rrbracket \wedge 2 / 8=16.422 \mathrm{kn} / \mathrm{m}$

Factorial Moment $\mathrm{Mu}=1.5 \mathrm{XM}$
$\mathrm{Mu}=1.5 \mathrm{X} 16.422=\mathrm{Mu}=24.634 \mathrm{kn} / \mathrm{m}$.
Figuring Depth By Using Grade Of Steel：－
$\mathrm{Mu}=0.138 \mathrm{XfckXbd}^{\wedge} 2$
$24.634 \mathrm{X} \llbracket 10 \rrbracket \wedge 6=0.138 \mathrm{X} 20 \mathrm{X} 1000 \mathrm{Xd}^{\wedge} 2$
$d=\sqrt{ }(24.634 X \llbracket 10 \rrbracket \wedge 6) / 0.138 X 20 X 1000$
$\mathrm{d}=94.47 \mathrm{~mm}$
Roughly d $=100 \mathrm{~mm}$ ．
Figuring Area Of Steel：－
$\mathrm{Mu}=0.87 \mathrm{XfyXAstXd}(1-\mathrm{Ast} / \mathrm{bXd}$ Xfy／fck）
24．634X 【 $10 』 \wedge 6=0.87 \mathrm{X} 415 \mathrm{XAstX} 100(1-$ Ast／1000X100 X415／20）$=36105$ Ast -7.49 Ast』＾2 24.634 X 【 $10 \rrbracket \wedge 6=07.49$ Ast』＾2－36105Ast＋ 24.634 X 『10』 $\wedge 6=0$ Ast $=822.69 \mathrm{~mm} 2$ ．

5．EARTH QUAKE ANALYSIS

For first floor：－

For section stack $=260.04$

Shaft stack $=619.437$

Chunk stack $=568.6$

Divider stack $=1975.04$

Add up to LOAD $=3423.117$
Lumped mass $=$ Total dead load + live stack
$\sum \mathrm{W}=3423.117+605.186=4028.308$
$\mathrm{Vb}=\mathrm{C} \alpha \mathrm{h} \sum \mathrm{w}$
$\mathrm{Vb}=0.62 \times 0.04 \times 4028.308$
$\mathrm{Vb}=99.902$

For second floor：－

For segment stack $=260.04$
Pillar stack $=619.437$
Section stack $=568.6$

Divider stack $=1975.04$
Add up to LOAD＝3423．117

Lumped mass $=$ Total dead load＋live stack
$\sum \mathrm{W}=3423.117+605.186=4028.308$
$\mathrm{Vb}=\mathrm{C} \alpha \mathrm{h} \sum \mathrm{w}$
$\mathrm{Vb}=0.62 \times 0.04 \times 4028.308$
$\mathrm{Vb}=99.902$

For Third Floor：－

For section stack $=260.04$
Shaft stack $=619.437$
Chunk stack $=568.6$

Divider stack $=1975.04$
Add up to $\mathrm{LOAD}=3423.117$

Lumped mass $=$ Total dead load＋live stack
$\sum \mathrm{W}=3423.117+605.186=4028.308$
$\mathrm{Vb}=\mathrm{C} \alpha \mathrm{h} \sum \mathrm{w}$
$\mathrm{Vb}=0.62 \times 0.04 \times 4028.308$
$\mathrm{Vb}=99.902$

For Fourth Floor（For Terrace）：－

For segment stack $=260.04$
Pillar stack $=619.437$
Piece stack $=568.6$

Divider stack $=1975.04$

Add up to LOAD＝3423．117

Lumped mass $=$ Total dead load＋live stack
$\sum \mathrm{W}=3423.117+226.92=3650.037$
$\mathrm{Vb}=\mathrm{C} \alpha \mathrm{h} \sum \mathrm{w}$
$\mathrm{Vb}=0.62 \times 0.04 \times 3650.037$
$\mathrm{Vb}=90.520$

For Ground Floor：－

For section stack $=260.04$
Bar stack $=619.437$

Piece stack $=568.6$
Divider stack $=1975.04$
Add up to $\mathrm{LOAD}=3423.117$

Lumped mass $=$ Total dead load＋live stack
$\sum \mathrm{W}=3423.117+605.186=4028.308$
$\mathrm{Vb}=\mathrm{C} \alpha \mathrm{h} \sum \mathrm{w}$
$\mathrm{Vb}=0.62 \times 0.04 \times 4028.308$
$\mathrm{Vb}=99.902$

For Cellar：－

There is no divider．．．
For section stack $=260.04$
Pillar stack $=619.437$
Section stack $=568.6$
Add up to $\mathrm{LOAD}=1448.077$
Lumped mass $=$ Total dead load + live stack
$\sum \mathrm{W}=1448.077+605.186=2053.263$
$\mathrm{Vb}=\mathrm{C} \alpha \mathrm{h} \sum \mathrm{w}$
$\mathrm{Vb}=0.62 \times 0.04 \times 2053.263$
$\mathrm{Vb}=50.9220$
$\mathrm{Qi}=(\mathrm{Vb} . \mathrm{WiHi}) /\left(\sum_{\mathrm{C}}(\mathrm{i}=1)^{\wedge} \mathrm{nWiHi} 2\right) \sum \mathrm{Wihi}=4028.308 \mathrm{X} 7$ 『 ．6】＾2＋4028．308X10 【．9】＾2＋4028．308X14 【．2】 $\wedge^{\wedge} 2+3650.037 \mathrm{X} 17.5^{\wedge} 2+4028.308 \mathrm{X} 20.8^{\wedge} 2+2053.263 \mathrm{X} 24$ ． $1^{\wedge} 2=5576731.314$
$\mathrm{Q} 1=(\mathrm{Vb} . \mathrm{WiHi}) /\left(\sum \mathrm{WiHi} 2\right)=99.902 \mathrm{X} 4028.308 \mathrm{X} 7.6 / 55767$ $31.314=4.168$
$\mathrm{Q} 2=(\mathrm{Vb} . \mathrm{WiHi}) /\left(\mathrm{KWiHi}^{2}\right)=\left(99.902 \mathrm{X} 4028.308 \mathrm{X} 10.9^{\wedge} 2\right) /$ $5576731.314=8.573$
$\mathrm{Q} 3=(\mathrm{Vb} . \mathrm{WiHi}) /\left(\sum \mathrm{WiHi}\right)=\left(99.902 \mathrm{X} 4028.308 \mathrm{X} 14.2^{\wedge} 2\right) /$ $5576731.314=14.557$
$\mathrm{Q} 4=(\mathrm{Vb} . \mathrm{WiHi}) /\left(\mathrm{EWiHi}^{2}\right)=\left(99.902 \mathrm{X} 4028.308 \mathrm{X} 17.5^{\wedge} 2\right) /$ $5576731.314=22.10$

Q5＝（Vb．WiHi）$/\left(\sum_{\text {WiHi2 }}\right)=\left(99.902 \mathrm{X} 4028.308 \mathrm{X} 20.8^{\wedge} 2\right) /$ $5576731.314=31.22$
$\mathrm{Q} 6=(\mathrm{Vb} . \mathrm{WiHi}) /\left(\sum \mathrm{WiHi} 2\right)=\left(99.902 \mathrm{X} 3650.037 \mathrm{X} 24.1^{\wedge} 2\right) /$ $5576731.314=34.41$

CG4 EARTHQUAKE LOAD REPORT：As per IS：1893（Part 1）－2002

Ahx $=(\mathrm{z} / 2) \cdot(\mathrm{I} / \mathrm{R}) \cdot(\mathrm{Sax} / \mathrm{g})$
$=(0.10 / 2) .(1.00 / 3.00) .(1.93)$
$=0.03$

Base shear in X Direction Vbx = Ahx x W
$\mathrm{Vbx}=0.03 \times 14293.64$
$\mathrm{Vbx}=459.88 \mathrm{Kn}$

Ahy $\quad=(\mathrm{z} / 2) \cdot(\mathrm{I} / \mathrm{R}) \cdot(\mathrm{Say} / \mathrm{g})$
$=(0.10 / 2) .(1.00 / 3 \cdot 00) \cdot(1.93)$
$=0.03$

Base shear in Y Direction Vby = Ahy xW
Vby $\quad=0.03 \times 14293.64$
Vby $=459.88 \mathrm{Kn}$

6. WIND LOAD COEFFFICIENTS

WIND LOAD CAN BE CALCULATED AS PER IS 875 PART-3 CLAUSE NO (5.3.1):-Vz = VBXK1XK2XK3 For Hyderabad
$\mathrm{Vb}=444 \mathrm{~m} / \mathrm{s}(\mathrm{AS}$ PER CLAUSE NO 5.2)(APPENDIX A)
$\mathrm{K} 1=1.0, \mathrm{~K} 2=\mathrm{cat} 3, \operatorname{clas} \mathrm{~A}=0.91, \mathrm{~K} 3=1.0$,
$\mathrm{Vz}=\mathrm{VbxK} 1 \mathrm{xK} 2 \mathrm{xK} 3=44 \mathrm{X} 1.0 \mathrm{X} 0.91 \mathrm{X} 1.0=40.4$
\rightarrow DESIGN WIND PRESSURE (AS PER CLAUSE NO 5.4)
$\mathrm{Pz}=0.6 \mathrm{Xz}^{\wedge} 2=0.6 \mathrm{X} 40.04^{\wedge} 2=961.92 \mathrm{~N} / \mathrm{m} 2$
$h / w=12.192 / 12.192=1$
$h / w=12.192 / 18.288=0.66$
$1<1 / \mathrm{w}<3 / 2$.

Wind angle	A	B	C	D Localcpe
θ°	0.7	-0.2	-0.5	-0.5
90°	-0.5	-0.5	0.7	-0.2

Case (i):-
$\mathrm{FA}=0.7 \mathrm{X} 961.92 \mathrm{XA}=673.344$
$\mathrm{FB}=-0.2 \mathrm{X} 961.92 \mathrm{XA}=-192.384$
$\mathrm{FC}=-0.5 \mathrm{X} 961.92 \mathrm{XA}=-480.96$
$\mathrm{FD}=-0.5 \mathrm{X} 961.92 \mathrm{XA}=-480.96$

Case (ii):-
$F A=-0.5 X 961.92 X A=-480.96$
$\mathrm{FB}=-0.5 \mathrm{X} 961.92 \mathrm{XA}=-480.96$
$\mathrm{FC}=0.7 \mathrm{X} 961.92 \mathrm{XA}=673.344$
$F D=-0.2 X 961.92 X A=-192.384$

Case (iii):-
$F A=-0.2 X 961.92 X A=-192.384$
$\mathrm{FB}=0.7 \mathrm{X} 961.92 \mathrm{XA}=673.344$
$F C=-0.5 X 961.92 X A=-480.96$
$\mathrm{FD}=-0.5 \mathrm{X} 961.92 \mathrm{XA}=-480.96$
Case (iv):-
$\mathrm{FA}=-0.5 \mathrm{X} 961.92 \mathrm{XA}=-480.96$
$\mathrm{FB}=-0.5 \mathrm{X} 961.92 \mathrm{XA}=-480.96$
$\mathrm{FC}=-0.2 \mathrm{X} 961.92 \mathrm{XA}=-192.384$
$\mathrm{FD}=0.7 \mathrm{X} 961.92 \mathrm{XA}=-673.34$

7. ANALYSIS RESULTS OF THE STRUCTURE

Concrete Summary Table

Concrete Grade	Quantity $/ \mathrm{m}^{3}$	Cost $/ \mathrm{m}^{3}$	Amount (Rs.)
M20	35.779	1515.83	54235.57

8. CALCULATING INDIVIDUAL AND OVERALL QUANTITES OF THE STRUCTURE

Footing steel quantities in kgs:-

NO .OF FLOOR S	$\begin{aligned} & \hline \text { FLOOR } \\ & \text { HIEGHT } \end{aligned}$	LOAD COMBINATI ON (LD)	$\begin{aligned} & \text { LOAD } \\ & \text { COMBINATI } \\ & \text { ON (LDE) } \end{aligned}$	$\begin{aligned} & \hline \text { LOAD } \\ & \text { COMBINATION } \\ & \text { (LDW) } \end{aligned}$	LOAD COMBINA TION (LDEW)
CG	@ 1.82 4.82 7.82	$\begin{aligned} & 229.92 \\ & 229.87 \\ & 229.87 \end{aligned}$	$\begin{aligned} & 238.739 \\ & 238.739 \\ & 238.739 \end{aligned}$	$\begin{aligned} & \hline 228.0 \\ & 228.0 \\ & 228.0 \end{aligned}$	$\begin{aligned} & 238.738 \\ & 238.738 \\ & 238.738 \end{aligned}$
CG1	$\begin{gathered} \text { @ } 1.82 \\ 4.82 \\ 7.82 \\ 10.82 \end{gathered}$	$\begin{aligned} & 228.377 \\ & 228.377 \\ & 228.377 \\ & 228.377 \end{aligned}$	$\begin{aligned} & 374.099 \\ & 374.099 \\ & 374.099 \\ & 374.099 \end{aligned}$	$\begin{aligned} & 227.538 \\ & 227.538 \\ & 227.538 \\ & 227.538 \end{aligned}$	$\begin{aligned} & 374.099 \\ & 374.099 \\ & 374.099 \\ & 374.099 \end{aligned}$
CG2	$\begin{gathered} \hline \text { @ } 1.82 \\ 4.82 \\ 7.82 \\ 10.82 \\ 13.82 \end{gathered}$	$\begin{aligned} & \hline 379.844 \\ & 379.844 \\ & 379.844 \\ & 379.844 \\ & 379.844 \end{aligned}$	$\begin{aligned} & \hline 384.444 \\ & 384.444 \\ & 384.444 \\ & 384.444 \\ & 384.444 \end{aligned}$	$\begin{aligned} & 357.01 \\ & 357.01 \\ & 357.01 \\ & 357.01 \\ & 357.01 \end{aligned}$	$\begin{array}{\|l\|} \hline 368.106 \\ 368.106 \\ 368.106 \\ 368.106 \\ 368.106 \end{array}$
CG3	$\begin{gathered} \text { @ } 1.82 \\ 4.82 \\ 7.82 \\ 10.82 \\ 13.82 \\ 16.82 \end{gathered}$	$\begin{aligned} & 461.239 \\ & 461.239 \\ & 461.239 \\ & 461.239 \\ & 461.239 \\ & 461.239 \\ & \hline \end{aligned}$	$\begin{aligned} & 509.491 \\ & 509.491 \\ & 509.491 \\ & 509.491 \\ & 509.491 \\ & 509.491 \end{aligned}$	$\begin{aligned} & 461.239 \\ & 461.239 \\ & 461.239 \\ & 461.239 \\ & 461.239 \\ & 461.239 \end{aligned}$	$\begin{aligned} & 545.516 \\ & 545.516 \\ & 545.516 \\ & 545.516 \\ & 545.516 \\ & 545.516 \end{aligned}$

CG4	@ 1.82	810.074	816.156	816.156	763.032
	4.82	810.074	816.156	816.156	763.032
	7.82	810.074	816.156	816.156	763.032
	10.82	810.074	816.156	816.156	763.032
	13.82	810.074	816.156	816.156	763.032
	16.82	810.074	816.156	816.156	763.032
	19.82	810.074	816.156	816.156	763.032

9. GRAPHICAL VALUES FOR BOTH INDIVIDUAL AND OVERALL

Column steel quantities in tonnes:-

no. of floors	load combi nation (ld)	load combina tion (lde)	load combina tion (ldw)	load combi nation (ldwe)
cg	2.175	2.738	2.199	2.738
cg 1	3.657	3.980	3.494	3.980
cg 2	5.845	7.409	5.845	6.512
cg 3	9.326	11.442	9.326	12.23 5
cg 4	10.72	16.843	10.503	14.43 6

Slab steel quantities in tonnes:-
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { n0 .0f } \\ \text { floors }\end{array} \begin{array}{c}\text { load } \\ \text { combina } \\ \text { tion (ld) }\end{array} \begin{array}{c}\text { load } \\ \text { combina } \\ \text { tion } \\ \text { (lde) }\end{array} \quad \begin{array}{c}\text { load } \\ \text { combina } \\ \text { tion } \\ \text { (ldw) }\end{array} \begin{array}{c}\text { load } \\ \text { com } \\ \text { bina } \\ \text { tion } \\ \text { (ldw } \\ \text { e) }\end{array}\right\}$

10. FLOOR WISE CONCRETE QTY IN M3/SFT:

Cellar ground floor:-

conc grade	floor name	concrete qty in $\mathrm{m} 3 / \mathrm{sft}$
m 20		$470.546 / 4800=0$. $098 \mathrm{~m} 3 / \mathrm{sft}$

cellar+ground+ 1 floor:-

CONC GRADE	FLOOR NAME	CONCRETE QTY IN M3/SFT
M20	CG1	$708.972 / 7200=0.984$ $6 \mathrm{M} 3 / \mathrm{SFT}$

Floor wise steel qty in kg/sft:-
Cellar+ground floor

steel grade	floor name	steel qty in $\mathrm{kg} / \mathrm{sft}$
fe 415	cg	$32465.506 / 4800$ $=6.436 \mathrm{~kg} / \mathrm{sft}$

Cellar+ground+ 1 floor:-

steel grade	floor name	steel qty in $\mathrm{kg} / \mathrm{sft}$
fe 415	cg 1	$54181.358 / 7200$ $=7.525 \mathrm{~kg} / \mathrm{sft}$

11. OVERALL CONCRETE QTY IN

M3/SFT:-Total concrete qty for load combination (l.d) =total concrete qty /total site area:-

conc grade	load combinatio n	concrete qty in $\mathrm{m} 3 / \mathrm{sft}$
m 20	$1 . \mathrm{d}$	$1301.383 / 4800=$ $0.271 \mathrm{~m} 3 / \mathrm{stt}$

Steel qty for load combination (1.d)=total steel qty /total site area:-

steel grade	load combinatio n	steel qty in $\mathrm{kg} / \mathrm{sft}$
fe 415	l.d	$94742.815 / 1680$ $0=5.73 \mathrm{~kg} / \mathrm{sft}$

12. REQUIRED CONCRETE QTY FOR EACH ELEMENT AS PER DESIGN:-

floor level	member details	concret qty in m^{3}
	footing	152.742

cg	columns	39.624
	beams	159.348
	slabs	118.832
total		

13. REQUIRED STEEL QTY FOR EACH ELEMENT AS PER DESIGN:-

floor level	member details	steel qty in $\mathrm{kg} / \mathrm{m} 3$
cg	footing	2806.244
	columns	9853.14
	beams	14058.298
	slabs	5747.8245
total		32465.506
floor level	member details	steel qty in kg/m3
cg1	footings	4816.452
	columns	15113.6
	beams	25576.273
	slabs	8675.033
total		54181.358

14. GRAPH OF CONCRETE REQUIRED FOR BEAMS FOR L.D
CASE FOR VARIOUS FLOORS

Graph of concrete required for beams for l.d.e case for various floors

Graph of concrete required for beams for l.d.w case for various floors:-

Graph of concrete required for beams for l.d.w.e case for various floors:-

Where

1.d \rightarrow live load and dead load
l.d.e $\rightarrow \quad$ live load dead load and earthquake load
l.d.w \rightarrow live load, dead load, and wind load
l.d.w. \rightarrow live load, dead load, wind load and earthquake load.

15. CONCLUSION

The utilization of cement for shafts for the heap case L.D, L.D,E, L.D.W, L.D.W.E, can be anticipated with a straight line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ where m
and x changes for stack cases There is a chunk would not be produced the results of EARTHQUAKE LOAD and WIND LOAD as it would be composed without that impact.

floor level	member details	concrete qty in m^{3} with $\%$
cg	footings	$152.742(43.42)$
	columns	$39.624(11.26)$
	beams	$159.348(45.3)$
total		$\mathbf{3 5 1 . 1 1 4 \quad (\mathbf { 9 9 . 9 8 6 })}$

floor level	member details	concret qty in m^{3} with \%
cg 1	footings	$266.46(50.20)$
	columns	$51.8(9.76)$
	beams	$212.464(40.03)$
total		$\mathbf{5 3 0 . 7 2 4}(\mathbf{9 9 . 9 9)}$

floor level	member details	steel qty in kgs with \%
cg2	footing	$7493.445(11.358)$
	columns	$25613.3(38.32)$
	beams	$32865.631(49.81)$
total		$\mathbf{6 5 9 7 2 . 3 7 6 (9 9 . 9 8)}$

floor level	member details	steel qty in kgs with \%
$\operatorname{cg} 3$	footing	$11864.91(12.20)$
	columns	$42330.78(43.53)$
	beams	$43035.767(44.26)$
total		$\mathbf{9 7 2 3 1 . 4 5 7}(\mathbf{9 9 . 9 9)}$

floor level	member details	steel qty in kgs with\%
cg4	footing	$22437.926(18.55)$
	columns	$46507.3(38.467)$
	beams	$57954.63(42.97)$
total		$\mathbf{1 2 0 8 9 9 . 8 5 6 (9 9 . 9 9)}$

16. FUTURE SCOPE OF PROJECT

The venture can be intended for most noticeably awful load mix. Stair case configuration has not done in the product so new programming can be intended for the plan of stair case. Same undertaking should be possible for various soil conditions.

The same task should be possible by considering shear divider for the structure (i.e., no segments exhibit). This task should be possible for various evaluations of bond. The same task should be possible for various evaluations of steel blends like for ex: rather than M20 we can do a similar venture with M25, M30.

17. BIBILOGRAPHY

\square IS C0DE 456-2000
\square IS CODE 875 PART-1
\square IS CODE 875 PART-2
\square IS CODE 875 PART-3
\square IS CODE 875 PART-4
IS CODE 875 PART-5
\square IS CODE 1893-2002

1. Analysis of structures by VAZRANI AND RATHWANI Vol 1 and 2
2. Analysis of structures by BHAVIKATTI Vol 1 and 2
3. Theory of structures by B.C PUNMIA
4. Design of fortified solid structures by RAMAMRUTHAM
5. Reinforced solid structures by B.C. PUNMIA
6. Design of steel structures by S.K.DUGGAL.

