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Abstract: SCBDA (Semi-trust control Based data 

acquisition) systems are used for controlling and 

monitoring industrial processes. We propose a 

methodology to systematically identify potential process-

related threats in SCBDA. Process-related threats take 

place when an attacker gains user access rights and 

performs actions, which look legitimate, but which are 

intended to disrupt the SCBDA process. To detect such 

threats, we propose a semi-automated approach of log 

processing. We conduct experiments on a real-life water 

treatment facility. A preliminary case study suggests that 

our approach is effective in detecting anomalous events 

that might alter the regular process workflow.  
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INTRODUCTION 

SCBDA systems can be found in critical 

infrastructures such as power plants and power grid 

systems, water, oil and gas distribution systems, 

building monitoring (e.g., airports, railway 

stations), production systems for food, cars, ships 

and other products. Although failures in the 

security or safety of critical infrastructures could 

impact people and produce damages to industrial 

facilities, recent reports state that current critical 

infrastructures are not sufficiently protected against 

cyber threats. For example, according to Rental, 

around 2,700 organizations dealing with critical 

infrastructures in the U.S. detected 13 million 

cybercrime incidents, suffered $288 million of 

monetary loss and experienced around 150,000 h 

of system downtime in 2005.  

Also, in a security study of 291 utility and 

energy companies in the U.S., 67% of the 

companies report that they are not using state of the 

art security technologies. Besides, 76% of the 

companies report that they suffered one or more 

data breaches during the past 12 months. The 

increasing number of security incidents in SCBDA 

facilities is mainly due to the combination of 

technological and organizational weaknesses. In 

the past, SCBDA facilities were separated from 

public networks, used proprietary software 

architectures and communication protocols. Built 

on the ―security by obscurity‖ paradigm, the 

systems were less vulnerable to cyber attacks. 

Although keeping a segment of communication 

proprietary, SCBDA vendors nowadays 

increasingly use common communication protocols 

and commercial off-the-shelf software. Also, it is 

common to deploy remote connection mechanisms 

to ease the management during off-duty hours and 

achieve nearly unmanned operation. Unfortunately, 

the stakeholders seldom enforce strong security 

policies. User credentials are often shared among 

users to ease day-to-day operations and are seldom 

updated, resulting in a lack of accountability. An 

example of such practice is the incident in 

Australia when a disgruntled (former) employee 

used valid credentials to cause a havoc. 

Due to these reasons, SCBDA facilities 

became more vulnerable to internal and external 

cyber attacks. Although companies reluctantly 

disclose incidents, there are several published cases 

where safety and security of SCBDA were 

seriously endangered. 

Like a ―regular‖ computer system, a 

SCBDA system is susceptible to threats exploiting 

software vulnerabilities (e.g., protocol 

implementation, OS vulnerabilities). However, a 

SCBDA system is also prone to process-related 

threats. These threats take place when an attacker 

uses valid credentials and performs legitimate 

actions, which can disrupt the industrial 

process(es). Process-related threats also include 

situations when system users make an operational 

mistake, for example, when a user inputs a wrong 

value (e.g., a highly oversized value) for a given 

device parameter and causes the failure of the 

process. In general, process-related threat scenarios 

do not include any exploit of a software 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 07 

March 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 893 

implementation vulnerability (e.g., protocol 

implementation).  

Sometimes system- and process-related 

threats can be part of the same attack scenario. For 

example, an attacker can first subvert the access 

control mechanism to gain control over an 

engineering work station. This action would use a 

system-related threat (e.g., exploiting an OS 

vulnerability). Then, an attacker could use a valid 

SCBDA control application to perform undesirable 

actions for the process (e.g., overload pipe system). 

This part of the attack is performed as a process-

related threat scenario. Traditional security 

countermeasures, such as intrusion detection 

systems, cannot detect, let alone mitigate, process-

related threats. This is because typical intrusion 

detection systems look for patterns of the behavior 

known to be malicious (e.g., known payload 

transfers, TCP header format) or look for 

anomalies in terms of statistical distributions (e.g., 

by statistically modeling the content of data 

packets). The anomalies generated by process-

related threats are typically not reflected in 

communication patterns/data (e.g., injection of 

executable code to exploit a buffer overflow sent 

within network traffic data) and can only be 

detected by analyzing data passed through the 

system at a higher semantic level.  

To understand the higher semantic level 

from network data, a protocol parser has to be 

used, such as in Bro. Similarly, for host-based 

analyses, understanding the specific SCBDA 

application is crucial. Other approaches for 

monitoring SCBDA behavior include the usage of 

field measurements or centralized SCBDA events 

as information resources. Field measurements 

represent raw values coming from field devices. 

Aggregated field measurements can provide 

information about the current status of the process. 

However, we argue that the field measurement 

values are too low level to extract user actions and 

to evaluate the semantics of the performed actions. 

SCBDA event logs provide a complete high-level 

view on the industrial process that is continuous 

over time and captures information about user 

activities, system changes in the field as well as 

system status updates.  

Problem Even a SCBDA system used in a 

small installation generates thousands of 

potentially alarming log entries per day. Thus, the 

size (and high dimensionality) of logs make 

manual inspection practically infeasible. This is a 

relevant and challenging problem to tackle. It is 

relevant because process-related threats affect the 

security and safety of critical infrastructures, which 

in turn could endanger human life. It is challenging 

because in the past the analysis of system logs has 

been applied to other security domains, but failed 

to deliver convincing results. We propose a semi-

automated approach of log processing for the 

detection of undesirable events that relate to user 

actions. We acknowledge that the success of a log 

mining approach depends on the context in which 

it is applied. Therefore, we perform an extensive 

analysis of the problem context. In Fig. 1, we show 

the main steps of the our approach. We group the 

steps by two means of obtaining context 

information: (1) system analysis and (2) analysis 

by a focus group. The system analysis implies the 

inspection of available documentation and 

processing of logs. The focus group analysis 

implies sessions with the stakeholders where we 

obtain deeper insights about the SCBDA process. 

Focus groups consist of process engineers who are 

aware of the semantic implications of specific 

actions, but typically cannot provide useful 

information for automatic extraction of log entries. 

This is due to the fact that engineers do not 

perform extensive analysis of system outputs and 

are not experts in data mining. On the other hand, 

by performing the system analysis, we cannot infer 

semantic information that is implied in log entries, 

thus the stakeholders’ knowledge is invaluable. 

 

 

Fig. 1 Steps for mining SCBDA logs 
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A sequence of actions in Fig. 1 represents 

the chronological order of the steps that we 

perform. In steps 1 and 2, we systematically 

identify process deviations caused by user activity. 

For this, we adapt two methodologies from the 

domain of hazard identification (PHEA and 

HAZOP). We then use the stakeholders knowledge 

to identify which of the analyzed deviations 

represent a legitimate threat to the process (step 3). 

In steps 4 and 5, we perform log transformation 

and generalization to extract a subset of log 

attributes suitable for log mining. Also, we discuss 

the requirements of the mining algorithm that is 

useful for our context. In steps 6 and 7, we include 

the stakeholders in the mining process. This 

implies leveraging the stakeholders’ knowledge 

about the process to improve the semantics of the 

mined events. The stakeholders analyze the output 

of the mining process and verify anomalies. 

Finally, the anomalies are checked for the 

consistency with the threats identified in step 3. 

Also, this step is used to revise the list of potential 

threats and perhaps introduce new threats. To 

support the proposed analysis, we build a tool that 

can perform the log processing in search for 

process-related threats. Our tool leverages a well-

known data mining algorithm to enumerate (in) 

frequent patterns within a given set. Despite being 

quite simple and straightforward, our benchmarks 

show that the chosen algorithm is effective in 

detecting previously overlooked behavioral 

anomalies. 

 

RELATED WORK 

 
Traditional methodologies for addressing 

safety problems in process control systems (e.g., 

FMEA, FTA, HAZOP) do not consider security 

threats. By introducing a special set of guidewords, 

Winter et al. show how HAZOP can be extended to 

identify security threats. Srivantakul et al. combine 

HAZOP study with UML use case diagrams to 

identify potential misuse scenarios in computer 

systems. We take a similar approach to combine 

PHEA study with HAZOP and analyze user 

(engineer) behavior in a SCBDA environment.  

To detect anomalous behavior in SCBDA 

systems, authors use approaches based on 

inspecting network traffic, validating protocol 

specifications  and analyzing data readings. 

Process-related attacks typically cannot be detected 

by observing network traffic or protocol 

specifications in the system. We argue that to 

detect such attacks one needs to analyze data 

passing through the system  and include a semantic 

understanding of user actions.  

Use periodical snapshots of power load 

readings in a power grid system to detect if a 

specific load snapshot significantly varies from 

expected proportions. This approach is efficient 

because it reflects the situation in the process in a 

case of an attack. However, data readings (such as 

power loads) give a low-level view on the process 

and do not provide user traceability data.  

Authors discuss the difficulties in 

processing logs with unstructured format. Authors 

present an approach for failure prediction in an 

enterprise telephony system. Authors propose to 

use context knowledge for efficient process 

visualization and failure prediction. Several 

researches explore pattern mining of various logs 

for security purposes. These authors use pattern 

mining on burst of alarms to build episode rules. 

However, pattern mining can sometimes produce 

irrelevant and redundant patterns. We use pattern 

mining algorithms to extract the most and the least 

frequent event patterns from SCBDA log.  

 Authors propose to combine various log resources 

in a process control environment to detect 

intrusions. The detection is operator-assisted. To 

the best of our knowledge, only Bald celli et al. 

analyze SCBDA logs to detect unusual behavior. 

There, the authors use case-base reasoning to find 

sequences of events that do not match sequences of 

normal behavior (from the database of known 

cases). The authors analyze sequences of log 

events that originate from a simulated test bed 

environment. In contrast, we analyze individual 

logs from a real SCBDA facility. 

 

SYSTEM ARCHITECTURE 

 

Despite the fact that there are different 

vendors, the system architectures in various 

SCBDA systems are similar and the terminology is 

interchangeable. Figure 3 shows a typical SCBDA 

layered architecture.  

 

Layer 1 consists of physical field devices, 

PLCs (programmable logic controllers) and RTUs 

(remote terminal units). The PLCs and RTUs are 

responsible for controlling the industrial process, 

receiving signals from the field devices and 

sending notifications to upper layers.  

 

Layer 2 consists of SCBDA servers 

responsible for processing data from Layer 1 and 

presenting process changes to Layer 3. 

Connectivity Servers aggregate events received by 
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PLCs and RTUs and forward them to SCBDA 

users in the control room.  

 

 
 

Fig. 2 SCBDA system layered 

architecture 

 

The Domain Controller in Layer 2 holds 

local DNS and authentication data for user access. 

The Aspect Server is responsible for implementing 

the logic required to automate the industrial 

process. For example, an Aspect Directory in the 

Aspect Server holds information about working 

ranges of the field devices, the device topology, 

user access rights, etc. Besides, the Aspect Server 

collects and stores data from the Connectivity 

Servers into audit and event logs. The various 

clients in Layer 3 represent SCBDA users. 

 

INPUT DATA FOR ANALYSIS 

 

Input data for analysis The initial, raw, 

data set consists of 11 attributes. The given 

attributes can be grouped in four semantic groups:  

– time (Timestamp),  

– type of action (Type of action, Aspect of 

action),  

– action details (Message description, 

Start value, End value),  

– user (Username, User full name),  

– location (Object path, Source, SCBDA 

node)  

 

Often the raw data set consists of features 

that are redundant, irrelevant or can even misguide 

mining results. This is why we need to perform 

data preprocessing, analyze the current feature set 

and select a suitable subset of attributes. 

 

 
 

 
Fig. 3 Log translation: a mapping log entries into 

item sets and items, b mapping item sets into 

patterns 

 

1. Attribute subset selection :- 

 

Common approaches for attribute 

selection exploit class labels to estimate 

information gain of specific attribute (e.g., decision 

tree induction). Unfortunately, our data set does not 

consist of class labels (i.e., labels for normal and 

undesirable behavior), thus we cannot perform the 

―traditional‖ attribute evaluation. However, some 

approaches may evaluate attributes independently. 

For example, principal component analysis (PCA) 

searches for k n-dimensional orthogonal vectors 

that can be used to represent the data. The original 

data is thus projected into a much smaller space 

and represented through principal components. The 

principal components are sorted in the order of 

decreasing ―significance‖. Finally, the 

dimensionality reduction is performed by 

discarding weaker components, thus those with low 

variance. By performing the PCA on our data, we 

discard two low variable attributes (Start Value, 

End Value) since they only had one value in the 

whole data set. Also, we identify two redundant 

attributes (Username and User full name). Thus, 

we discard one of them As expected, the attribute 

Timestamp showed the highest variance.  

We aggregate this attribute in three 

working shifts. We describe the details of this 
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aggregation. Now, we try to understand the 

behavior of the remaining attributes. Due to the 

fact that the highly variable attributes can produce 

over fitting, we try to lower the number of distinct 

values in the most variable attributes (in our 

context, the ones over 150 distinct values- Object 

path, Source, Message description). The attribute 

Object path represents structured text. , we describe 

the details of generalizing the values of this 

attribute. The attribute Source represents an ID of 

the field or network device and consists of around 

350 different values. This attribute is highly 

variable, but does not contribute to the data mining 

process due to fact that it uniquely identifies a 

device. For example, a credit card number almost 

uniquely identifies a customer and thus does not 

represent a useful attribute to generalize customers 

behavior thus to be used in the data mining. Thus, 

we omit this attribute from the analysis.  

Similar to this, authors perform de-

parameterization of data by replacing IP addresses, 

memory locations and digits by tokens. The 

attribute Message description represents 

unstructured text and consists of 280 values. We 

perform an in-depth analysis of values to determine 

means of aggregation. We conclude that a portion 

of values represents redundant data to other 

attributes (e.g., information in Message 

description: ―Action A on source B is 

acknowledged by C‖ is repeated already in the 

same entry by the attributes Type of action: A, 

Source: B, User: C). The rest of messages are 

presented in an inconsistent way and provide 

information which, at this moment, we cannot 

parse and aggregate in a meaningful way. An 

alternative approach would be unsupervised 

clustering of messages.  

Such clustering, however, does not 

guarantee semantic similarity of messages. We 

believe that the remaining attributes can 

compensate the information loss from this attribute. 

On the other hand, we are sure that such highly 

variable attribute does not contribute to the data 

generalization. Thus, we do not consider this 

attribute during the analysis. Our final set consists 

of 6 nominal attributes: Working shift, Aspect of 

action, Type of action, Object path, User account 

and SCBDA node. Some attributes are not 

applicable for all entries. As a result, every entry 

uses between 3 and 6 attributes.  

A SCBDA node represents a computer 

that sends event details to the log. In our case, there 

are 8 different nodes. All nodes in the network 

have a dedicated and predefined role that typically 

does not change (e.g., there are 2 engineering 

workstations, 4 operator workstations and 2 

connectivity servers). The attribute Type of action 

takes one out of 12 nominal values. This attribute 

describes the general type of action, such as: 

operator action, configuration change, process 

simple event, network message, etc. For types of 

action, which are performed by users, the attribute 

Aspect of action is applicable. This attribute takes 

one out of 6 nominal values in the log and details 

the character of the user action, such as: change of 

workplace layout, change in workplace profile, etc. 

The attribute Object path provides information 

about the location of the device, which is the object 

of the performed action (e.g., plant1/control 

module/production/cleaning/access settings/groups 

of devices/tanks). The attribute User account 

represents the username of the signed on user. 

Table 4 represents a sample of the analyzed log. 

Some events in the log are more severe than others. 

The severity of a SCBDA event depends on the 

combination of attribute values. Thus, a correct 

evaluation of specific attribute values can help to 

detect events that are undesirable for the normal 

process flow. For example, the value Audit Event 

Acknowledge of the attribute Type of action is 

semantically less important than the value Aspect 

Directory. This is because the first value implies an 

action where an operator acknowledged an alarm 

while the latter value implies that a new action was 

performed on the main configuration directory. 

Leveraging the stakeholders’ knowledge about the 

process and the semantics of nominal attribute 

values can help to distinguish critical and 

noncritical events in the complete log.  

 

2. Data set validation :- 

 

Our stakeholders argue that, at the time of 

logging, there were no known security incidents. 

We investigate the ways of validating this claim. 

We argue that due to size and high dimensionality 

of the log, manual inspection is infeasible. Thus, a 

(semi) automated approach is required. Typically, 

common log analysis tools imply the usage of 

predefined rule sets, which filter events out of logs. 

For example, various rule sets for analyzing logs, 

such as sys log and ssh log, are maintained. 

Unfortunately, such rule set for analyzing SCBDA 

system logs does not exist. Thus, we cannot 

perform a reliable log analysis to establish the 

ground truth. An alternative approach for 

establishing the ground truth would imply the log 

capture in a controlled environment.  

In reality, this means either (1) performing 

the log capture in a lab setup or (2) performing the 
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log capture in a constrained real environment (e.g., 

by reducing the number of process components to 

the ones that are validated to be correctly working). 

We argue that neither of the cases can compare to 

the actual real data. We acknowledge that, lacking 

the notion of the ground truth, we cannot perform 

an extensive discussion about false negatives. We 

are aware of this shortcoming in our approach. 

Nevertheless, the primary goal of our approach is 

to help operators uncover security-related events 

from real data, which would be overlooked 

otherwise. 

 

LIMITATIONS OF THE APPROACH 

 

We now describe the limitations of our approach.  

 

Firstly, there is a threat scenario in which 

the SCBDA logs could be corrupted. For example, 

attacks performed on the devices in the field can 

produce erroneous input data for the SCBDA 

application and cause the generation of logs (and 

automated actions), which do not reflect the real 

situation in the field. Also, an attacker might 

manage to gain higher privileges (e.g., by 

exploiting a system-related vulnerability) and then 

prevent recording or erase some log entries. These 

attacks cannot be detected by observing SCBDA 

logs, since the log no longer represents a consistent 

data resource. For detecting these kinds of attacks, 

a complementary analysis of network data or field 

measurement is necessary.  

 

Secondly, an important limitation of our 

approach is the possibility for an attacker to evade 

the detection by repeating the same command a 

number of times. To overcome this, we propose to 

enlarge the ―knowledge window‖ and so learn what 

are normal patterns of behavior over a longer 

period of time. Since our current log capture is 

limited, we could not have implemented this yet. 

This also applies to the limitation of the currently 

manually set output threshold.  

 

Thirdly, our approach for introducing the 

process knowledge highly depends (and thus can 

be biased) on the stakeholder’s knowledge about 

the specific process. We acknowledge that we 

cannot do anything to overcome this fact (because 

attribute values are nominative and thus human 

readable only). Finally, our approach cannot 

provide reasoning to the operator about the 

character of a suspicious event (e.g., ―This event is 

suspicious because user A never worked from node 

B‖).  

 

Generally, all anomaly based approaches 

have the same limitation. This is because the model 

of normal (i.e., expected) behavior is typically 

described by a combination of attributes (i.e., 

implicitly). By inferring rules from the model, this 

limitation can be partly addressed. For example, by 

applying the algorithm for mining association rules 

to the identified patterns, we can compile rules 

whose interpretation is more readable to humans. 

 

 

 

 

CONCLUSION AND FUTURE WORK 

 

We analyze process-related threats that 

occur in the computer systems used in critical 

infrastructures. Such threats take place when an 

attacker manages to gain valid user credentials and 

performs actions to alter/disrupt a targeted 

industrial process, or when a legitimate user makes 

an operational mistake and causes a process failure. 

Currently, no control (e.g., monitoring tools) is 

available to mitigate process-related threats. To 

detect process-related threats, logs could be 

analyzed. These logs hold critical information for 

incident identification, such as user activities and 

process status. However, system logs are rarely 

processed due to (1) the large number of entries 

generated daily by systems and (2) a general lack 

of the security skills and resources (time). We 

propose an analysis tool that extracts non-frequent 

patterns, which are expected to be the result of an 

anomalous events such a undesirable user actions. 

We benchmarked the tool with real logs from a 

water treatment facility. Although no real security 

incident occurred in the log we took into account, 

at least five events were labeled by the 

stakeholders as anomalous. We believe that 

SCBDA logs represent an interesting data resource 

which gives a new perspective on SCBDA 

behavior. We argue that the analysis of SCBDA 

log represents a complement to the traditional 

security mitigation strategies.  

 

As future work, we aim at expanding our 

tool to address anomalous sequences of actions, 

rather than single events/operations. 
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