

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 78

A Research Analysis of Leveled Fully Homomorphic Encryption

from Bootstrappable Encryption Generically

Prof.Dr.G.Manoj Someswar

1
, D.Narasimha Raju

2

1.Research Supervisor, Dr.APJ Abdul Kalam Technical University, Lucknow,U.P., India

2.Research scholar, Dr.APJ Abdul Kalam Technical University, Lucknow,U.P., India

 Abstract

We propose the principal completely homomorphic encryption plot, tackling a focal open issue in

cryptography. Such a plan enables one to figure subjective capacities over encoded information without the

decoding key { i.e., given encryptions E(m1); : ; E(mt) of m1; : ; mt, one can proficiently process a smaller

cipher text that scrambles f(m1; : ; mt) for any effectively calculable capacity f. This issue was postured by

Rivest et al. in 1978.

Completely homomorphic encryption has various applications. For instance, it empowers private inquiries to

an internet searcher { the client presents a scrambled inquiry and the web index figures a concise encoded

reply while never taking a gander at the question free. It additionally empowers looking on encoded

information { a client stores scrambled files on a remote file server and can later have the server recover just

files that (when decoded) fulfil some boolean requirement, despite the fact that the server can't unscramble

the files all alone. All the more comprehensively, completely homomorphic encryption enhances the efficiency

of secure multiparty calculation.

Our development starts with a to some degree homomorphic boost rappable" encryption plot that works

when the capacity f is the plan's own unscrambling capacity. We at that point demonstrate how, through

recursive self-implanting, boots trappable encryption gives completely homomorphic encryption. The

development makes utilization of difficult issues on perfect cross sections.

Keywords: Security of the Abstract Scheme, Bootstrappable Encryption, Computational Complexity and

Security, KDM-Secure Boots trappable Encryption, The Ideal Coset

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 79

INTRODUCTION

Bootstrappable Encryption

Assume we have an encryption scheme E that

compactly evaluates some set of circuits CE. We

want to use E to construct a homomorphic

encryption scheme that can handle arbitrary

circuits. In this Chapter we prove a fundamental

result: that if CE contains (slight augmentations of)

E's own decryption circuit DE { i.e., if E compactly

evaluates" its (augmented) decryption circuit {

then we can use E to construct an efficient scheme

that handles circuits of arbitrary depth.

A bit more specifically, for any integer d, we use E

to construct a scheme E
(d)

 that can compactly

evaluate circuits of depth up to d. The decryption

circuit for E
(d)

 is still DE; the secret key and

ciphertexts are the same size as in E. The public

key in E
(d)

 consists of d + 1 public keys from E,

together with a chain of encrypted E secret keys {

the first E secret key encrypted under the second E

public key, and so on. In short, the family of

schemes fE
(d)

 g is leveled fully homomorphic. We

base the semantic security of E
(d)

 on that of E

using a hybrid argument; as usual with hybrid

arguments, the reduction loses a factor linear in d.

In Chapter 4.3, we describe how one can obtain a

fully homomorphic encryption scheme (where the

public key size does not depend on the maximum

number of levels we want to evaluate) by

assuming key-dependent-message (KDM)

security, specifically circular-security { i.e., that

one can safely encrypt a E secret key under its

associated public key.

Since this critical property of E { that it can

compactly evaluate (slight augmentations of) its

own decryption circuit { is self-referential and

universal, we give it the obvious name:

bootstrappability. Why should bootstrappability be

such a powerful feature? At a high level, the

reason is that bootstrappability allows us

periodically to refresh" ciphertexts associated to

interior nodes in a circuit; we can refresh for an

arbitrary number of levels in the circuit, and thus

can evaluate circuits of arbitrary depth. To refresh"

a ciphertext that encrypts a plaintext ¼ under E

public key pki, we re-encrypt it under pki+1 and

then homomorphically apply the decryption circuit

to the result, using the secret key ski that is

encrypted under pki+1, thereby obtaining an

encryption of ¼ under pki+1. Homomorphically

evaluating the decryption circuit decrypts the inner

ciphertext under pki, but within homomorphic

encryption under pki+1. The implicit decryption

refreshes" the ciphertext, but the plaintext is never

revealed; the plaintext is always covered by at

least one layer of encryption. Now that the

ciphertext is refreshed, we can continue" correctly

evaluating the circuit.[1]

To see how this works mathematically, begin by

considering the following algorithm, called

Recrypt. For simplicity, suppose the plaintext

space P is f0; 1g and DE is a boolean circuit in CE.

Let (sk1; pk1) and (sk2; pk2) be two E key-pairs.

Let Ã1 be an encryption of 1/4 2 P under pk1. Let

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 80

sk1j be an encryption of the j-th bit of the first

secret key sk1 under the second public key pk2.

Recrypt takes as these things as input, and outputs

an encryption of ¼ under pk2.

Recrypt(pk2; DE ; hsk1ji; Ã1).

R
Set Ã1j Ã EncryptE (pk2; Ã1j) where Ã1j is the j-th bit of Ã1 Set Ã2 Ã

EvaluateE(pk2; DE; hhsk1ji; hÃ1jii) Output Ã2

Above, the Evaluate algorithm takes in all of the

bits of sk1 and all of the bits of Ã1, each encrypted

under pk2. Then, E is used to evaluate the

decryption circuit homomorphically. The output Ã2

is thus an encryption under pk2 of DecryptE(sk1;

Ã1) ! ¼. The Recrypt algorithm implies a proxy

one-way re-encryption scheme [19]. Roughly

speaking, a one-way proxy re-encryption scheme

allows the owner of sk1 to generate a tag that

enables an untrusted proxy to convert an

encryption of ¼ under pk1 to an encryption of ¼

under pk2, but not the reverse. In our case, the tag

is hsk1ji, the encrypted secret key.[2] Strictly

speaking, the security model for proxy re-

encryption typically requires the security of the

delegator's secret key, even against a collusion of

delegatee's who also get to see the delegating tags.

However, this requirement seems unnecessary,

since a delegatee will be able to decrypt

ciphertexts directed to the delegator anyway. In the

Recrypt algorithm above, the plaintext ¼ is doubly

encrypted at one point { under both pk1 and pk2.

Depending on the encryption scheme E, however,

this double encryption might be overkill. Suppose

WeakEncryptE is an algorithm such that the image

of WeakEncryptE (pk; ¼) is always a subset of the

image of EncryptE (pk; ¼). Then we can replace

the first step of RecryptE with:

R
Set Ã1j Ã WeakEncryptE (pk2; Ã1j) where Ã1j is the j-th bit of Ã1

Let us call this relaxation Recrypt

0
E. The main

point of this relaxation is that WeakEncrypt does

not need to be semantically secure for Recrypt
0

E to

be a secure one-way proxy re-encryption scheme,

or for Recrypt
0

E to be useful toward bootstrapping

(as we will see below). Thus, depending on E,

WeakEncryptE can be very simple { e.g., for some

schemes, and in particular for the ideal-lattice-

based scheme that we describe later,

WeakEncryptE might leave the input bits" entirely

unmodified. This will unfortunately not help us

much in terms of making the encryption scheme

boots trappable; essentially, it will add one circuit

level to what E can evaluate. However, it will

affect the eventual computational complexity of

our scheme, since it will require less computation

to apply the decryption circuit homo-morphically

to cipher texts in which the outer encryption is

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 81

weak.[3] Another way of viewing this relaxation is

that we only need to be able to evaluate non-

uniform decryption circuits, where the ciphertext

is hard-wired" into the circuit (making this circuit

simpler than the normal" decryption circuit that

takes the ciphertext (and secret key) as input.

To be bootstrappable, E needs to be able to

compactly evaluate not only its decryption circuit,

which merely allows recryptions of the same

plaintext, but also slightly augmented versions of

it, so that we can perform binary operations on

plaintexts and make actual progress through a

circuit.

Let DE be E's decryption circuit, which takes a

secret key and ciphertext as input, each formatted

as an element of P
`(¸)

, where P is the plaintext

space. Let ¡ be a set of gates with inputs and output

in P, which includes the trivial gate (input and

output are the same). We call a circuit composed

of multiple copiesof DE connected by a single g

gate (the number of copies equals the number of

inputs to g) a g-augmented decryption circuit." We

denote the set of g-augmented decryption circuits,

g 2 ¡, by DE(¡).

As before, let CE denote the set of circuits that E

can compactly evaluate. We say that E is

bootstrappable with respect to ¡ if DE (¡) µ CE :For

example, if ¡ includes the trivial gate and NAND,

E is bootstrappable with respect to ¡ if CE contains

DE and the circuit formed by joining two copies of

DE with a NAND gate. Remarkably, as we will

show, if there is a scheme E that can compactly

evaluate only these two circuits, then there is a

scheme that is leveled fully homomorphic.[4]

We could relax the bootstrappability definition

slightly to say that E only needs to be able to

homomorphically evaluate its (augmented)

decryption circuit when the input ciphertext is

weakly encrypted, similar to the relaxation

Recrypt
0
E above. But, this makes the definition of

bootstrappable more cumbersome; we will

continue with the definition above, and remind the

reader occasionally that the relaxation can be used.

From the informal description above, it should

already be somewhat clear how to use a

bootstrappable encryption scheme to construct a

leveled fully homomorphic one; below, we give a

more formal description. Let E be bootstrappable

with respect to a set of gates For any integer d ¸ 1,

we use E to construct a scheme E
(d)

 = (KeyGenE(d)

; EncryptE(d) ; EvaluateE(d) ; DecryptE(d)) that

can handle all circuits of depth d with gates in ¡.

Note that in the description below we encrypt the

secret keys in reverse order; the only reason is that

this ordering simplifies our description of the

recursion in Evaluate. When we refer to the level

of a wire in C, we mean the level of the gate for

which the wire is an input. We use the notation

DE(¡; ±) to refer to the set of circuits that equal a

±-depth circuit with gates in ¡ augmented by DE

(copies of DE become inputs to the ±-depth

circuit).

KeyGenE(d) (¸; d). Takes as input a security

parameter ¸ and a positive integer d. For ‘=’(¸) as

it sets:

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 82

 R

for i 2 [0; d] (ski; pki) Ã KeyGenE(¸)

R

; skij) for i 2 [1; d]; j 2 [1; `]

skij Ã EncryptE(pki¡1

where ski1; : : : ; ski` is the representation of ski as elements of P. It outputs the secret key

sk
(d)

 Ã sk0 and the public key pk
(d)

 Ã (hpkii; hskiji). Let E
(±)

 refer to the sub-system that uses sk
(±)

 Ã

sk0 and pk
(±)

 Ã (hpkiii2[0;±]; hskijii2[1;±]) for ± · d.

EncryptE(d) (pk
(d)

; ¼). Takes as input a public key pk
(d)

 and a plaintext ¼ 2 P. It outputs a

R

ciphertext Ã Ã EncryptE (pkd; ¼).

DecryptE(d) (sk
(d)

; Ã). Takes as input a secret key sk
(d)

 and a ciphertext Ã (which should be an encryption under pk0).

It outputs DecryptE(sk0; Ã).

EvaluateE(±) (pk
(±)

; C±; ª±). Takes as input a public key pk
(±)

, a circuit C± of depth at most with gates in ¡, and a tuple

of input ciphertexts ª± (where each input ciphertext should be under pk±). We assume that each wire in C± connects

gates at consecutive levels; if not, add trivial gates to make it so. If ± = 0, it outputs ª0 and terminates. Otherwise, it

does the following:

² Sets (C±

y
¡1; ª

y
±¡1) Ã AugmentE(±) (pk

(±)
; C±; ª±).

² Sets (C±¡1; ª±¡1) Ã ReduceE(±¡1) (pk

(±¡1)
; C±

y
¡1; ª

y
±¡1).

² Runs EvaluateE(±¡1) (pk

(±¡1)
; C±¡1; ª±¡1).

AugmentE(±) (pk
(±)

; C±; ª±). Takes as input a public key pk
(±)

, a circuit C± of depth at most ± with gates in ¡, and a

tuple of input ciphertexts ª± (where each input ciphertext should be under pk±). It augments C± with DE ; call the

resulting circuit C±
y
¡1. Let ª

y
±¡1 be the tuple of ciphertexts formed by replacing each input ciphertext Ã 2 ª± by the

tuple hhsk±ji; hÃjii, where Ãj Ã WeakEncryptE(±¡1) (pk
(±¡1)

; Ãj) and the Ãj's form the properly-formatted

representation of Ã as elements of P. It outputs (C±
y
¡1; ª

y
±¡1).

ReduceE(±) (pk
(±)

; C±
y
; ª

y
±). Takes as input a public key pk

(±)
, a tuple of input ciphertexts ª

y
± (where each input

ciphertext should be in the image of EncryptE(±)), and a circuit C±
y
 2 DE(¡; ± + 1). It sets C± to be the sub-circuit of

C±
y
 consisting of the first ± levels. It sets ª± to be the induced input ciphertexts of C±, where the ciphertext Ã±

(w)

associated to wire w at level ± is set to EvaluateE (pk±; C±
(w)

; ª
(
±

w)
), where C±

(w)
 is the sub-circuit of C±

y
 with output

wire w, and ª
(
±

w)
 are the input ciphertexts for C±

(w)
. It outputs (C±; ª±).

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 83

High-level review of the Evaluate algorithm. We

are given a circuit Cd of, say, d levels with gates in

¡. For each input wire w of Cd, there is an

associated input ciphertext Ãwencrypted under pkd.

We are also given an encryption scheme E that

compactly evaluates circuits in DE (¡).

Note that we have not assumed that E can evaluate

gates in ¡; we have only assumed it can evaluate

gates in ¡ that are augmented by the decryption

circuit. So, our first step is to augment Cd by

placing copies of DE at the leaves of Cd (as in

Augment), thereby constructing Cd
y
¡1. Now, what

are the input ciphertexts for our new circuit Cd
y
¡1?

Reconsider the algorithm Recrypt
0

E. In Recrypt
0

E,

we begin with a ciphertext Ã1 encrypt-ing ¼ under

pk1 for the single wire w, and an empty" circuit C1

(since Recrypt
0

E doesn't actually evaluate any

gates, it just generates a new encryption of the

same plaintext). Our next step was to augment C1

with the decryption circuit DE to obtain C2 Ã DE.

The input ciphertexts ª2 to C2 included the

encrypted secret key bits, and the weakly

encrypted bits of Ã1. We then showed that the

ciphertext generated by Ã2 Ã EvaluateE(pk2; C2;

ª2), which is also associated to wire w, also

encrypts ¼, but now under pk2.

In the full scheme above, the ciphertexts that we

associate to the decryption circuit that was

attached to wire w are analogous to the ones we

used in Recrypt
0
E: the encrypted secret key (skd

under pkd¡1), and the re-encryption ciphertexts of

Ãw under pkd¡1. By the correctness of Recrypt, the

ciphertext now associated to w (after performing

EvaluateE) should encrypt the same plaintext as

Ãw, but now under pkd¡1.

The Reduce step simply performs this Evaluate up

to the wire w, and one level beyond. We know that

Evaluate can correctly continue one level beyond

the wire w, because (by assumption) E can

evaluate not just the decryption circuit attached to

w, but can evaluate a circuit containing one ¡-gate

above w. Reduce outputs Cd¡1 and ciphertexts

associated to Cd¡1's input wires. We have made

progress, since Cd¡1 is one level shallower than Cd.

We perform this entire process d ¡ 1 more times to

obtain the final output ciphertexts.

we said that Evaluate takes as input ciphertexts

that are \fresh" outputs of Encrypt. However, we

note EvaluateE(±) also operates correctly on

ciphertexts output by Evaluate. (For ± < d above,

this is precisely what EvaluateE(±) does.)

Correctness, Computational Complexity

and Security of the Generic Construction

Here we state and prove some theorems regarding

the generic construction. Regarding correctness,

we have the following theorem.[5]

Let E be bootstrappable with respect to a set of

gates ¡. Then E
(d)

 com-pactly evaluates all circuits

of depth d with gates in ¡ { i.e., if ¡ is a universal

set of gates, the family E
(d)

 is leveled fully

homomorphic. Proof. (Theorem 4.2.1) First, we

define a convenient notation: let D(±; w; C; ª)

denote the plaintext value for wire w in circuit C

induced by the decryptions (under sk±) of the

ciphertexts ª associated to C's input wires. If C is

empty (has no gates), then the input wires are the

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 84

same as the output wires, and D(±; w; C; ª) just

denotes the decryption of the single ciphertext Ã 2

ª associated to w. To prove correctness, it succes to

show that

D(d; wout; Cd; ªd) = D(0; wout; C0; ª0) (1)

for every output wire wout of C0 (at level 0). First, when (C±
y
¡1; ª

y
±¡1) Ã AugmentE(±) (pk

(±)
; C±; ª±), we claim that

D(±; w; C±; ª±) = D(±¡1; w; C±
y
¡1; ª

y
±¡1) for any wire w at level at most ±¡1. This follows from the correctness of

Recrypt (generalized beyond a boolean plaintext space and boolean circuits), and the fact that circuits C± and C±
y
¡1

are identical up to level ± ¡ 1.

Next, when (C±; ª±) Ã ReduceE(±) (pk

(±)
; C±

y
; ª

y
±), we have D(±; w; C±

y
; ª

y
±) = D(±; w; C±; ª±) for any wire at level at

most ±. This follows from the correctness of EvaluateE over circuits in D (¡), and the fact that circuits C
y
 and C are

identical up to level ±.

E ± ±

Note that ¡ is arbitrary. For example, each gate in ¡

could be a circuit of (ANDs, ORs, NOTs) of depth

m and fan-in 2; for this value of ¡, It implies the

scheme correctly evaluates boolean circuits up to

depth d ¢ m.

We need to check that the computational

complexity of EvaluateE(d) is reasonable { e.g.,

that recursive applications of Augment do not

increase the effective circuit size exponentially.

For a circuit C of depth at most d and size s

(defined here as the number of wires), the

computational complexity of applying

EvaluateE(d) to C is dominated by at most s ¢ ` ¢ d

applications of WeakEncryptE and at most s ¢ d

applications of EvaluateE to circuits in DE (¡),

where ` is as in this research paper. Proof: There is

a pre-processing step to ensure that all wires in the

circuit connect gates at consecutive levels; clearly,

this step increases the number of wires in the

circuit by at most a multiplicative factor of d. It

remains to prove that, for the pre-processed circuit,

the computational complexity is dominated by at

most s
0
 ¢ ` applications of Encrypt and at most s

0

applications of EvaluateE to circuits in DE (¡),

where s
0
 is the size of the pre-processed circuit.

The complexity of AugmentE(±) (pk
(±)

; C±; ª±) is

dominated by replacing each ciphertext A2 ª± by

the ciphertexts hhsk±ji; hÃjii; generating the hÃji's

involves jW±j ¢ ` applications of WeakEncryptE ,

where W± is the set of wires at level ±. Summing

over all ±, there are at most s
0
 ¢ ` applications of

WeakEncryptE.

The complexity of ReduceE(±) (pk
(±)

; C±
y
; ª

y
±) is

dominated by the evaluation of C±
(w)

 for each w 2

W±, which involves jW±j applications of EvaluateE

to circuits in DE (¡). Summing over all ±, there are

at most s
0
 such applications. The theorem follows.

Finally, assuming the semantic security of E, we prove the semantic security of E
(d)

. Theorem 4.2.3. Let A be an

algorithm that (t; ²)-breaks the semantic security of E
(d)

. Then, there is an algorithm B that (t
0
; ²

0
)-breaks the

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 85

semantic security of E for t
0
 ¼ t ¢ ` and ²

0
 ¸ ²=`(d + 1), for ` as in. Proof. (Theorem 4.2.3) Let (E)

`
 be equivalent to E,

but with plaintext space P
·`
, where Encrypt(E)` involves up to ` invocations of E and a concatenation of the results.

We use a hybrid argument to show that B (t
00

; ²
00

)-breaks the semantic security of (E)
`
 for t

00
 ¼ t and ²

00
 ¸ ²=(d + 1),

from which the result follows.For k 2 [0; d], let Game k denote a game against E
(d)

 in which everything is exactly as

in the real-world game, except that for all i 2 [1; k] the challenger sets

(ski
0

R

R

; skij
0
)

; pki
0
) Ã KeyGenE (¸) and skij Ã EncryptE(pki¡1

In other words, for i 2 [1; k], skij is the encryption (under pki¡1) of the j-th bit of a random secret key sk
0
i unrelated to

ski. Game d + 1 is identical to Game d, except that the challenger ignores b and (¼0; ¼1), generates a random

plaintext ¼ of the appropriate length, and encrypts ¼ to construct the challenge ciphertext. Let ²k denote the

adversary's advantage in Game k.

Since Game 0 is identical to the real world attack,

the adversary's advantage is ² by assumption. Also,

²d+1 = 0, since the challenge is independent of b.

Consequently, for some k 2 [0; d], it must hold that

j²k ¡ ²k+1j ¸ ²=(d + 1); ¯x this value of k. B uses A to

break (E)
`
 as follows. B receives from the

challenger a public key pk. B generates the secret

and public values exactly as in Game k, except that

it replaces its 0 0
R

original value of

pkk with pk. Also, if k < d, it generates a dummy

key pair (skk+1; pkk+1) Ã KeyGenE(¸), sets ¼0 Ã

skk+1 and ¼1 Ã sk
0

k+1, and requests a challenge

ciphertext (under `
R

pk) encrypting either ¼0;

¼1 2 P . The challenger generates ¯ Ã f0; 1g and

sends a tuple of ciphertexts hÃji encrypting the bits

h¼¯ji. B replaces its original tuple hsk(k+1)ji with the

tuple hÃji. One can verify that the public values are

generated exactly as in Game k + ¯. B sends the

public values to A. R Eventually, A requests a

challenge ciphertext on ¼0 or ¼1. B sets b Ã f0; 1g.

If k < d, R R B sends the values Ãj Ã EncryptE

(pkd; ¼bj). If k = d, B generates random ¼ Ã P and

asks R the challenger for a challenge ciphertext on

¼b or ¼. The challenger generates ¯ Ã f0; 1g and

encrypts ¼b or ¼ accordingly, and B forwards the

challenge to A. A sends a bit b
0
. B sends bit ¯

0
 Ã b

© b
0
 to the challenger. One can verify that the

challenge is generated as in Game k + ¯. Since B's

simulation has the same distribution as Game k +

¯, and the probability that outputs 0 is ²k+¯. The

result follows.

Fully Homomorphic Encryption from

KDM-Secure Boots trappable Encryption

The length of the public key in E

(d)
 is proportional

to d (the depth of the circuits that can be

evaluated). It would be preferable to have a

construction E
¤
 where the public key size is

completely independent of the circuit depth, a

construction that is fully homomorphic rather than

merely leveled fully homomorphic. Here is the

obvious way to make the public key pk
¤
 of E

¤

short: for E key pair (sk; pk), pk
¤
 includes only pk

and (the bits" of) sk encrypted under pk. In other

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 86

words, we have a cycle (in fact, a self-loop in this

example) of encrypted secret keys rather than an

acyclic chain. It is clear that E
¤
 is correct: the

recursive algorithm EvaluateE¤ works as before,

except that the implicit recryptions generate

\refreshed" ciphertexts under the same public key.

Why didn't we present this construction in the first

place? Using an acyclic chain of encrypted secret

keys allowed us to base the security of E
(d)

 on E

using a hybrid argument; this hybrid argument

breaks down when there is a cycle. In general, a

semantically secure encryption scheme is not

guaranteed to be KDM-secure { i.e., secure when

the adversary can request the encryptions of key-

dependent messages, such as the secret key itself.

Typ-ically, when we prove an encryption scheme

semantically secure, there is not an obvious attack

when the adversary is given the encryption of a

key-dependent message.[7] However, KDM-

security is highly nontrivial to prove. The problem

is precisely that the usual hybrid argument breaks

down.[6]

It proposed the acyclic, leveled approach as a way

to remove the need for KDM-security. Our initial

approach had actually been to use E
¤
 (with the

self-loop), and assume, or try to prove, KDM-

security.Let us review (a restriction of) the

definition of KDM-security. We will say a scheme

E is KDM-secure if all polynomial-time

adversaries A have negligible advantage in the

following KDM-security game.

KDM-Security Game.

R
Setup(¸; n). The challenger sets (ski; pki) Ã KeyGen(¸) for i 2 [0; n ¡ 1] for integer n =

R
poly(¸). It chooses a random bit b Ã f0; 1g. If b = 0, then for i 2 [0; n ¡ 1] and j 2 [1; `],

R
it sets skij Ã EncryptE (pk(i¡1) mod n; skij), where skij is the jth \bit" of ski. If b = 1, it generates the skij values as

encryptions of random secret keys, unrelated to pk0; : : : ; pkn¡1. It sends the public keys and encrypted secret keys

to A.

Challenge and Guess. Basically as in the semantic security game.

This definition of KDM-security is a restriction of

the general setting [18, 68, 22], where A can select

multiple functions f, and request the encryption of

f(sk0; : : : ; skn¡1). However, when E is a

bootstrappable encryption scheme, A can use the

cycle of encrypted secret keys in our game to

generate the encryption of f(sk0; : : : ; skn¡1) under

any pki, as long as f can be computed in

polynomial time. Hence, we only need to consider

our restricted setting [65]. We have the following

theorem.

Suppose E is KDM-secure and also bootstrappable

with respect to a uni-versal set of gates ¡. Then, E

¤
, obtained from E as described above (with the

self-loop), is semantically secure (and fully

homomorphic).

The theorem is a straightforward consequence of

the fact that, from any loop of public keys and

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 87

encrypted secret keys that includes (pk0; sk0), one

can compute an encryption of sk0 under pk0. There

does not seem to be any advantage in having pk
¤

contain any cycle of encrypted secret keys other

than a self-loop.

Absent proof of KDM-security in the plain model,

one way to obtain fully homomorphic encryption

from bootstrappable encryption is simply to

assume that the underlying boot-strappable

encryption scheme is also KDM-secure. This

assumption, though unsatisfying, does not seem

completely outlandish. While an encrypted secret

key is very useful in a bootstrappable encryption

scheme { indeed, one may view this as the essence

of bootstrap-pability { we do not see any actual

attack on a bootstrappable encryption scheme that

provides a self-encrypted key.

Fully Homomorphic Encryption from

Bootstrappable En-cryption in the Random

Oracle Model

Above, we constructed a fully homomorphic

encryption E
¤
 from a bootstrappable encryp-tion

scheme E basically by adding a self-loop" { a E

secret key sk encrypted under its corresponding

public key pk { to the E
¤
 public key pk

¤
. We

showed that E
¤
 should inherit the semantic

security of E, under the assumption that E is

KDM-secure { in particular, under the assumption

that it is safe" to reveal a direct encryption of a

secret key un-der its own public key (as opposed

to some possibly-less-revealing non-identity

function of the secret key). Can we provide any

evidence that E
¤
 is semantically secure without this

assumption?[9] Here we provide some evidence in

the random oracle model. First, given a leveled

fully homomorphic scheme E
(d)

 and a hash

function, we define an intermediate scheme E
(d)y

.

E
(d)y

 is the same as E
(d)

, except for the following.

The public key includes a hash function

`
0

`

 R

`
0

R

(d

)

H : P ! P

, sets rj ; rj) . Also, in KeyGen, one generates r Ã P Ã EncryptE(d) (pk

for j [1; `
0
], sets ¾ H(r) ? sk0 , and includes (rj ; ¾) in the public key. (Assume ? is

2

Ã

h

i

some invertible operation such that a ? b would completely hide b 2 P
`
 if a 2 P

`
 were a one-time pad.) In other

words, the E
(d)y

 public key includes some additional information: an encryption of the the secret key sk0, where the

encryption uses a hash function that will be treated as a random oracle in the security analysis.

Next, we prove the following theorems.

If E

(d)
 is semantically secure, then E

(d)y
 is

semantically secure in the random oracle model.

Theorem 4.4.2. Suppose E is leveled circuit private

(in addition to being bootstrappable) and let E
(d)y

and E
¤
 be constructed from E as described above.

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 88

Then, if E
(d)

y
 is semantically secure (in the plain

model), and the circuit required to compute the

hash function H and invert the ? operation is at

most d levels, then E
¤
 is semantically secure.

The result here should be quite surprising. The

scheme E
¤
 does not even contain a hash function,

and yet we are basically claiming that it is secure

in the random oracle model! This is the first

instance that we are aware of where one scheme is

proven secure in the random oracle model, and

then a second scheme's security is based on the

first scheme, even though the second scheme does

not use a hash function. How is this possible?

First, let us consider in this research paper. This

theorem basically just states the previously known

result that it is easy to construct a KDM-secure

encryption scheme in the random oracle model.

This is because the random oracle allows the

reduction to construct a fake" ciphertext

purportedly encrypting the secret key, such that the

adversary finds out that it was fake only after it has

queried the random oracle; this query gives the

reduction all of the information that it needs to

solve the underlying problem. In our particular

case, E
(d)y

 has a loop among (sk0; pk0); : : : ; (skd;

pkd), because E
(d)

 reveals direct encryptions of ski

under pki¡1 for i 2 [1; d], and E
(d)y

 also reveals an

indirect encryption (hrji; ¾) of sk0 under pkd

(\indirect," because encryption in E does not

normally use a hash function). However, the

reduction algorithm in the proof of Theorem 4.4.1

will construct ¾ simply as a random string { i.e., it

does not actually need to know anything about sk0.

It perhaps the more surprising result. But the result

is actually a simple consequence of the fact that:

given a correctly constructed E
(d)

y
 public key, the

reduction algorithm can generate an E-encryption

of sk0 under pk0, as needed for the E
¤
 public key.

How do we generate the latter ciphertext? The

reduction algorithm is given hrji, an encryption of

r under pkd. It simply uses the leveled

homomorphism and the circuit corresponding to

the hash function H to compute a ciphertext that

encrypts H(r) from the ciphertext that encrypts r.

Then, given that ciphertext and the value of ¾ =

H(r) ? sk0, it computes a ciphertext that encrypts

sk0 in the natural way { i.e., directly, rather than

with the hash function. We assumed that the hash

function H and the ? operation can be computed

with a circuit of depth at most d; therefore, our

leveled homomorphic scheme E
(d)

 has enough

levels to evaluate this circuit. Consequently, we

obtain a \natural" encryption of sk0 (i.e., under E)

under some public key pki for i ¸ 0, and we can use

Recrypt operations to obtain a natural encryption

of sk0 under pk0. This ciphertext is an output of

EvaluateE , but circuit privacy guarantees that the

ciphertext is distributed as if it were output directly

by EncryptE.

Although one can view (hrji; ¾) as an encryption"

of sk0, this encryption" function is not the usual

encryption function and it might have a very

complex decryption circuit, much more complex

than DE . In particular, we cannot assume that its

decryption circuit is in CE. This why we needed

many (d) levels in the leveled scheme to recover

sk0, and could not immediately use a self-loop

from the outset.[10]

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 89

So, if E
¤
 is secure in the random oracle model

despite not using a hash function, does that imply

that it is secure in the plain model? Certainly not.

The obstacle to this conclusion is obviously that

random oracles cannot be instantiated in general.

A bit more specifically, however, the obstacle is

that the proof of Theorem 4.4.2 depends crucially

on the correctness of the ciphertext (hrji; ¾) in E
(d)

y
 to construct (homomorphically) an encryption of

sk0 under pk0 as needed for the E
¤
 public key;

however, in the proof of the ciphertext is not

correct (except with negligible probability): the

adversary funds out that it was fake only after it

has queried r to the random oracle, giving the

reduction all the information it needs.

Proof : Let A be an algorithm that attacks the semantic security of E

(d)y
; from A, we construct an algorithm B that

attacks the semantic security of E
(d)

. B will actually request `
0
 + 1 challenge ciphertexts; thus, the reduction loses a

factor of `
0
 + 1 under the usual hybrid argument.

 The challenger gives B a E(d)
R

 public key. It also sets a bit b Ã f0; 1g. B selects

two messages r

(0
)
; r

(1)
2 P

`
0 R

 and sends them to the challenger. The challenger sets ª Ã

f

Encrypt(pk ; r
(b)

) : j

2

[1; `
0

]

g

and sends back ª. The following is included in the public

d j
key that B sends to A: the public key for E

(d)
 sent by the challenger, the set of ciphertexts

R `

ª, and ¾ Ã P .

A requests a challenge ciphertext on one ¼0; ¼1 2 P. B forwards the query to the challenger, who responds with a

ciphertext encrypting ¼b, which B forwards to A. Eventually, either A queries some r
0
 2 fr

(0)
; r

(1)
g to the random

oracle, or A finishes with a guess b
0
. In the former case, B sets b

0
 so that r

0
 = r

(b0)
. In either case, B sends b

0
 as its

guess to the challenger.

Let p be the probability that A queries some r
0
 2 fr

(0)
; r

(1)
g to the random oracle. B's simulation appears perfect to A

if it does not query some r
0
 2 fr

(0)
; r

(1)
 g; in this case, which occurs with probability 1 ¡ p, A's advantage is at least ².

Since A's view is independent of r
(1¡b)

, the probability that it queries r
(b)

 to the random oracle is at least p ¡ qH =jPj
`0

,

where qH is the number of random oracle queries make by A. Overall B's advantage in guessing b
0
 is at least (1 ¡ p)²

+ p ¡ qH =jPj
`0

 ¸ ² ¡ qH =jPj
`0

.

Proof: The proof is essentially a simple consequence of the fact that, given a public key for E

(d)y
, it is easy to

generate the public key for E
¤
 homomorphically.

Let A be an algorithm that breaks the semantic security of E

¤
. We use A to construct an algorithm B that breaks the

semantic security of E
(d)y

.

B receives a E
(d)y

 public key from the challenger. This public key consists of hpkiii2[0;±], hskijii2[1;±], hrjij2[1;`0], and ¾

= H(r) ? sk0. From hrji, B uses the homomorphism of E
(d)

 to compute ciphertexts ª that encrypt H(r). It encrypts ¾,

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 90

and then uses the homomorphism to recover to obtain an encryption of sk0 from the encryptions of H(r) and ¾

(inverting the ? operation). By assumption, these homomorphic operations take at most d levels. If it takes only ± <

d levels, and we obtain an encryption of sk0 under pkd¡±, then we can perform Recrypt operations until we have the

desired encryption of sk0 under pk0. By circuit privacy, this ciphertext is distributed properly. B includes the

encryption of sk0 under pk0 as the encrypted secret key contained in the public key for E
¤
 that it provides to A.

A requests a challenge ciphertext on one ¼0; ¼1 2 P. B forwards the query to the challenger, who responds with a

ciphertext encrypting ¼b. B uses Recrypt operations to obtain an encryption of ¼b under pk0 and forwards the result

to A. A sends a guess b
0
, which B forwards to the challenger.

Clearly, B's advantage is the same as A's.

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 91

An Abstract Scheme Based on the Ideal

Coset Problem

Our goal now is to construct a bootstrappable

encryption scheme, a scheme that can ho-

momorphically evaluate a rich set of circuits that

includes its own decryption circuit, plus some." In

the past, attempts to construct fully homomorphic

encryption have focused solely on maximizing the

complexity of the circuits that the scheme can

evaluate. Our notion of bootstrapability gives us a

different way of attacking the problem { by

minimizing the complexity of the scheme's

decryption circuit.

Our strategy for minimizing the circuit complexity

of decryption is to construct our scheme using

ideal lattices, since decryption in lattice-based

cryptosystems is typically dom-inated by a simple

operation, such as an easily parallelizable matrix-

vector multiplication (in contrast to, say, RSA,

where decryption involves exponentiation, an

operation not even known to be in NC). We begin

describing the ideal-lattice-based scheme in

Chapter 7, after providing some basic background

on ideal lattices in Chapter 6.

In this Chapter, we describe our strategy for

maximizing the evaluative capacity"[11] of the

scheme abstractly, without reference to lattices.

Generally speaking, our exposition strategy

throughout the paper is to defer technical lattice

details for as long as possible. One reason is to

make the presentation more modular, and therefore

easier to understand. Another reason is that some

of our techniques { e.g., bootstrapping, and using

techniques from server-aided cryptography to

squash the decryption circuit" { maybe applicable

to schemes that use different underlying

mathematics { e.g., linear codes, or something less

similar to lattices.

The Ideal Coset Problem

We saw in this research paper that many previous

homomorphic encryption schemes base security on

some ideal membership problem (IMP). For

example, in the Polly Cracker" scheme by Fellows

and Koblitz, the public key consists of some

multivariate polynomials that generate the ideal I

of polynomials having a common root x, and ¼ is

encrypted by outputting a sample Ã Ã ¼ + I. One

can easily see that this is semantically secure if it is

hard to distinguish membership in I { in particular,

deciding whether Ã ¡¼ 2 I. Unfortunately, one can

also see that homomorphic operations, especially

multiplication, expand the ciphertext size

potentially exponentially in the depth.

Since we will ultimately use lattices, we apparently

need a different abstract approach, since it is easy

to distinguish membership in a lattice L: given a

basis B of L and t 2 R
n
, one simply determines

whether t mod B = 0 mod B. Instead, we base

security on an ideal coset problem (ICP), which

we will state abstractly in terms of rings and ideals.

Recall that a ring R is an algebraic object that is

closed under addition `+' and multiplication `£' and

additive inverse, with an additive identity `0' and

multiplicative identity `1'. An ideal I of a ring R is

a subset satisfying a + b 2 I and r £ a 2 I for all a;

b 2 I and r 2 R. The sum and product of two ideals

I and J are, respectively, fi + j : i 2 I; j 2 Jg and the

additive closure of fi £ j : i 2 I; j 2 Jg. Two ideals I

and J are relatively prime if I + J = R. For

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 92

example, if R = Z, the ideals (2) (the even integers)

and (5) (the integers divisible by 5) are relatively

prime: (2) + (5) = (1).

Now, the ideal coset problem (ICP) is as follows.

Definition 5.1.1 (Ideal Coset Problem (ICP)). Fix R, BI , algorithm IdealGen, and an al-
 R pk R
gorithm Samp1 that e±ciently samples R. The challenger sets b Ã f0; 1g and (BJ

sk
; BJ) Ã

R
p
k

. If b = 1, it samples t IdealGen(R; BI). If b = 0, it sets r Ã Samp1 (R) and t Ã r mod BJ

uniformly from R mod B
pk

. The problem: guess b given (t; B
pk

).

J J

Basically the ICP asks one to decide whether t is uniform modulo J, or whether it was chosen according to a known

clumpier" distribution induced by Samp1. Of course, the ICP will be impossible if Samp1 also samples uniformly

modulo J, but the security of our encryption scheme will rely on the ICP being hard for a clumpier" instantiation of

Samp1; the hardness of the problem depends on the particular instantiation of Samp1. Note that it is possible for the

ICP to be hard even when the IMP is easy.

An Abstract Scheme

We start by describing our initial attempt simply in

terms of rings and ideals; we bring in ideal lattices

later. In our initial scheme E, we use a fixed ring R

that is set appropriately according to a security

parameter ¸. We also use a fixed basis BI of a ideal

I ½ R, and an algorithm IdealGen(R; BI) that

outputs public and secret bases B
pk

J and B
sk

J of

some (variable) ideal J, such that I + J = R { i.e., I

and J are relatively prime. We assume that if t 2 R

and BM is a basis for ideal M ½ R, then the value t

mod BM is unique and can be computed efficiently

{ i.e., the coset t + M has a unique, efficiently-

computable \distinguished representative" with

respect to the basis BM . We use the notation R

mod BM to denote the set of distinguished

representatives of r + M over r 2 R, with respect to

the particular basis BM of M. We also use an

algorithm Samp(BI ; x) that samples from the coset

x + I.

In the scheme, Evaluate takes as input a circuit C

whose gates perform operations modulo BI . For

example, an AddBI gate in C takes two terms in R

mod BI , and outputs a third term in R mod BI ,

which equals the sum of the first two terms modulo

I.

sk pk R

KeyGen(R; BI). Takes as input a ring R and basis BI of I. It sets (BJ ; BJ) Ã IdealGen(R; BI). The plaintext space P

is (a subset of) R mod BI . The public key pk includes R, BI , B
pk

J, and Samp. The secret key sk also includes B
sk

J.

Encrypt(pk; ¼). Takes as input the public key pk and plaintext ¼ 2 P. It sets Ã

0
 Ã Samp(BI ; ¼) and outputs Ã Ã

Ã
0
 mod B

pk
J. Decrypt(sk; Ã). Takes as input the secret key sk and a ciphertext Ã. It outputs

¼ Ã (Ã mod B
sk

J) mod BI

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 93

Evaluate(pk; C; ª). Takes as input the public key pk, a circuit C in some permitted set CE of circuits composed of

AddBI and MultBI gates and a set of input ciphertexts ª. It invokes Add and Mult, given below, in the proper

sequence to compute the output ciphertext Ã. (We will describe CE when we consider correctness below. If

desired, one could use di®erent arithmetic gates.)

Add(pk; Ã1; Ã2). Outputs Ã1 + Ã2 mod B
pk

J.

Mult(pk; Ã1; Ã2). Outputs Ã1 £ Ã2 mod B
pk

J.

Concerning IdealGen, it is define the secret basis B

sk
J de¯nes a lattice L(B

sk
J) for a (possibly fractional) ideal that

contains J, rather than being exactly J.

Now, let us consider correctness, which is a highly nontrivial issue in this paper. The following definitions provide

structure for our analysis.

To begin, we observe that the scheme is actually

using two di®erent circuits. First, Evaluate takes a

mod-BI circuit C as input. This circuit is implicitly

applied to plaintexts. Second, Evaluate applies a

circuit related to C, which we call the generalized

circuit, to the ciphertexts; this circuit uses the ring

operations (not modulo I).[12]

Let C be a mod-BI circuit. We say generalized

circuit g(C) of C is the circuit formed by replacing

C's AddBI and MultBI operations with addition `+'

and multiplication `£' in the ring R. Here are a few

more definitions relevant to below, which concerns

correctness. (XEnc and XDec). Let XEnc be the image

of Samp. Notice that all ciphertexts output by

Encrypt are in XEnc +J. Let XDec equal R mod B
sk

J,

the set of distinguished representatives of cosets of

J wrt the secret basis B
sk

J.

Definition 5.2.4 (Permitted Circuits). Let

CE
0
 = fC : 8(x1; : : : ; xt) 2 XEnc

t
; g(C)(x1; : : : ; xt) 2 XDecg

In other words, CE
0
 is the set of mod-BI circuits that, when generalized, the output is always in XDec if the inputs are

in XEnc. (The value t will of course depend on C.) If CE µ CE
0
, we say that CE is a set of permitted circuits.

Ã is a valid ciphertext wrt E public key pk and permitted circuits CE if it equals Evaluate(pk; C; ª) for some C 2 CE,

where each Ã 2 ª is in the image of Encrypt. The circuit C may be the identity circuit, in which case the output of

Evaluate is simply an output of Encrypt.

Finally, we prove correctness with respect to CE . Theorem 5.2.6. Assume CE is a set of permitted circuits containing

the identity circuit. E is correct for CE { i.e., Decrypt correctly decrypts valid ciphertexts. CHAPTER 5. AN

ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM61

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 94

Proof. For ciphertexts ª = fÃ1; : : : ; Ãtg, Ãk = ¼k + ik + jk, where ¼k 2 P, ik 2 I, jk 2 J, and ¼k + ik 2 XEnc, we

have

Evaluate(pk; C; ª) = g(C)(ª) mod B
pk

J 2 g(C)(¼1 + i1; : : : ; ¼t + it) + J

If C 2 CE, we have g(C)(XEnc; : : : ; XEnc) 2 XDec and therefore

Decrypt(sk; Evaluate(pk; C; ª)) = g(C)(¼1 + i1; : : : ; ¼t + it) mod BI
= g(C)(¼1; : : : ; ¼t) mod BI
= C(¼1; : : : ; ¼t)

as required.

The bottom line is that we have proven that E is

correct for permitted circuits, and our goal now is

to maximize this set. The permitted circuits are

defined somewhat indirectly; they are the circuits

for which the error" g(C)(x1; : : : ; xt) of the output

ciphertext is small (i.e., lies inside XDec) when the

input ciphertexts are in the image of EncryptE.

When we begin to instantiate the abstract scheme

with lattices and give geometric interpretations of

XEnc and XDec, the problem of maximizing CE will

have a geometric °avor.

Again, we note the rather confusing fact that C

automatically" reduces the result modulo BI , since

it uses mod-BI gates. It does not particularly matter

how these mod-BI gates are implemented; in

particular, it is more confusing than helpful to

imagine a boolean implementation of these gates.

Instead, one should just observe that the

generalized circuit manages to lazily emulate these

gates, reducing its output modulo BI at the end of

the computation. C's mod-BI operations are never

actually implemented;" they only occur implicitly.

Later, when we consider whether our scheme is

bootstrappable, and analyze the depth of the

decryption circuit in terms of mod-BI gates, it will

again be tempting to consider how these gates are

\implemented." But in fact these gates are given" in

the sense that they are emulated (without any

intermediate reduction steps) by the usual ring

operations.

Security of the Abstract Scheme

For the following abstract instantiation" of Samp,

and where I is a principle ideal generated by some

s 2 R (and s is encoded in BI), we provide a simple

proof of semantic security based on the ICP.

Samp(BI ; x). Run r Ã Samp1(R). Output x + r £ s.

Obviously, the output is in x + I since s 2 I.

Suppose that there is an algorithm A that breaks

the semantic security of E with advantage ² when it

uses Samp. Then, there is an algorithm B, running

in about the same time as A, that solves the ICP

with advantage ²=2.

Proof. The challenger sends B a ICP instance (t;

B
pk

J). B sets s, and sets the other compo-nents of

pk in the obvious way using the ICP instance.

When A requests a challenge cipher- text on one of

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 95

¼0; ¼1 2 P, B sets a bit ¯ Ã f0; 1g and sends back Ã

Ã ¼¯ + t £ s mod BJ . A sends back a guess ¯
0
, and

B guesses b
0
 Ã ¯ © ¯

0
.

If b = 0, we claim that B's simulation is perfect; in

particular, the challenge ciphertext has the correct

distribution. When b = 0, we have that t = r + j,

where r was chosen according to Samp1 and j 2 J.

So, Ã Ã ¼¯ + t £ s = ¼¯ + r £ s mod B
pk

J; the

ciphertext is thus well-formed. In this case A

should have advantage ², which translates into an

advantage of ² for B. If b = 1, then t is uniformly

random modulo J. Since the ideal I = (s) is

relatively prime to J, t£s is uniformly random

modulo J, and consequently Ã is a uniformly

random element of R mod B
pk

J that is independent

of ¯. In this case A's advantage is 0. Overall, B's

advantage is ²=2.

References:

1. M. Bellare, A. Boldyreva, and S. Micali. Public-

Key Encryption in a Multi-user Setting: Security

Proofs and Improvements. In Proc. of Eurocrypt

'00, pages 259{274. Springer, 2000.

2. J. Benaloh. Veri¯able secret-ballot elections.

Ph.D. thesis, Yale Univ., Dept. of Comp. Sci.,

1988.

3. J. Black, P. Rogaway, and T. Shrimpton.

Encryption-scheme security in the presence of key-

dependent messages. In Proc. of SAC '02, LNCS

2595, pages 62{75. Springer, 2002.

4. M. Blaze, G. Bleumer, and M. Strauss.

Divertible protocols and atomic proxy cryptog-

raphy. Eurocrypt '98, LNCS 1403, pp. 127{144.

5. D. Boneh and M. Franklin. E±cient Generation

of Shared RSA Keys. J. ACM, vol. 48, no. 4.

Pages, 702-722. ACM, 2001. Preliminary version

in Crypto 1997.

6. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating

2-DNF formulas on ciphertexts. TCC '05, LNCS

3378, pp. 325{341.

7. D. Boneh, S. Halevi, M. Hamburg, and R.

Ostrovsky. Circular-Secure Encryption from

Decision Di±e-Hellman. In Proc. of Crypto '08,

LNCS 5157, pages 108{125.

8. D. Boneh and R. Lipton. Searching for Elements

in Black-Box Fields and Applications. In Proc of

Crypto '96, LNCS 1109, pages 283{297. Springer,

1996.

9. J. Boyar, R. Peralta, and D. Pochuev. On the

Multiplicative Complexity of Boolean Functions

over the Basis (^; ©; 1). Theor. Comput. Sci.

235(1), pp. 43{57, 2000.

10. E. Brickell and Y. Yacobi. On Privacy

Homomorphisms. In Proc. of Eurocrypt '87, LNCS

304, pages 117{125. Springer, 1988.

11. J.Y. Cai and A. Nerurkar. An improved worst-

case to average-case connection for lattice

problems. In Proc. of FOCS '97, pages 468{477.

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 96

12. R. Canetti. Personal communication, 2008.

13. R. Canetti, O. Goldreich, and S. Halevi. The

random oracle methodology, revisited. In Proc. of

STOC '98, pages 209{218. ACM, 1998.

14. R. Canetti and S. Hohenberger. Chosen-

ciphertext secure proxy re-encryption. In Proc. of

ACM CCS '07.

15. R. Canetti, H. Krawczyk, and J.B. Nielsen.

Relaxing chosen-ciphertext security. In Proc. of

Crypto '03, pages 565{582. Springer, 2003.

