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                                                                          Abstract 
 

We propose the principal completely homomorphic encryption plot, tackling a focal open issue in 

cryptography. Such a plan enables one to figure subjective capacities over encoded information without the 

decoding key { i.e., given encryptions E(m1); : ; E(mt) of m1; : ; mt, one can proficiently process a smaller 

cipher text that scrambles f(m1; : ; mt) for any effectively calculable capacity f. This issue was postured by 

Rivest et al. in 1978.  

 

Completely homomorphic encryption has various applications. For instance, it empowers private inquiries to 

an internet searcher { the client presents a scrambled inquiry and the web index figures a concise encoded 

reply while never taking a gander at the question free. It additionally empowers looking on encoded 

information { a client stores scrambled files on a remote file server and can later have the server recover just 

files that (when decoded) fulfil some boolean requirement, despite the fact that the server can't unscramble 

the files all alone. All the more comprehensively, completely homomorphic encryption enhances the efficiency 

of secure multiparty calculation. 

 

Our development starts with a to some degree homomorphic boost rappable" encryption plot that works 

when the capacity f is the plan's own unscrambling capacity. We at that point demonstrate how, through 

recursive self-implanting, boots trappable encryption gives completely homomorphic encryption. The 

development makes utilization of difficult issues on perfect cross sections. 

 

Keywords: Security of the Abstract Scheme, Bootstrappable Encryption, Computational Complexity and 

Security, KDM-Secure Boots trappable Encryption, The Ideal Coset 
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INTRODUCTION 

 

Bootstrappable  Encryption 
 

 
Assume we have an encryption scheme E that 

compactly evaluates some set of circuits CE. We 

want to use E to construct a homomorphic 

encryption scheme that can handle arbitrary 

circuits. In this Chapter we prove a fundamental 

result: that if CE contains (slight augmentations of) 

E's own decryption circuit DE { i.e., if E compactly 

evaluates" its (augmented) decryption circuit { 

then we can use E to construct an efficient scheme 

that handles circuits of arbitrary depth. 
 
 

A bit more specifically, for any integer d, we use E 

to construct a scheme E
(d)

 that can compactly 

evaluate circuits of depth up to d. The decryption 

circuit for E
(d)

 is still DE; the secret key and 

ciphertexts are the same size as in E. The public 

key in E
(d)

 consists of d + 1 public keys from E, 

together with a chain of encrypted E secret keys { 

the first E secret key encrypted under the second E 

public key, and so on. In short, the family of 

schemes fE
(d)

 g is leveled fully homomorphic. We 

base the semantic security of E
(d)

 on that of E 

using a hybrid argument; as usual with hybrid 

arguments, the reduction loses a factor linear in d. 

In Chapter 4.3, we describe how one can obtain a 

fully homomorphic encryption scheme (where the 

public key size does not depend on the maximum 

number of levels we want to evaluate) by 

assuming key-dependent-message (KDM) 

security, specifically circular-security { i.e., that 

one can safely encrypt a E secret key under its 

associated public key. 
 
Since this critical property of E { that it can 

compactly evaluate (slight augmentations of) its 

own decryption circuit { is self-referential and 

universal, we give it the obvious name: 

bootstrappability. Why should bootstrappability be 

such a powerful feature? At a high level, the 

reason is that bootstrappability allows us 

periodically to refresh" ciphertexts associated to 

interior nodes in a circuit; we can refresh for an 

arbitrary number of levels in the circuit, and thus 

can evaluate circuits of arbitrary depth. To refresh" 

a ciphertext that encrypts a plaintext ¼ under E 

public key pki, we re-encrypt it under pki+1 and 

then homomorphically apply the decryption circuit 

to the result, using the secret key ski that is 

encrypted under pki+1, thereby obtaining an 

encryption of ¼ under pki+1. Homomorphically 

evaluating the decryption circuit decrypts the inner 

ciphertext under pki, but within homomorphic 

encryption under pki+1. The implicit decryption 

refreshes" the ciphertext, but the plaintext is never 

revealed; the plaintext is always covered by at 

least one layer of encryption. Now that the 

ciphertext is refreshed, we can continue" correctly 

evaluating the circuit.[1] 
 
To see how this works mathematically, begin by 

considering the following algorithm, called 

Recrypt. For simplicity, suppose the plaintext 

space P is f0; 1g and DE is a boolean circuit in CE. 

Let (sk1; pk1) and (sk2; pk2) be two E key-pairs. 

Let Ã1 be an encryption of 1/4 2 P under pk1. Let 
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sk1j be an encryption of the j-th bit of the first 

secret key sk1 under the second public key pk2. 

Recrypt takes as these things as input, and outputs 

an encryption of ¼ under pk2. 

 

 
 

Recrypt(pk2; DE ; hsk1ji; Ã1).  
 

R  
Set Ã1j Ã EncryptE (pk2; Ã1j) where Ã1j is the j-th bit of Ã1 Set Ã2 Ã 

EvaluateE(pk2; DE; hhsk1ji; hÃ1jii) Output Ã2  
 

 

Above, the Evaluate algorithm takes in all of the 

bits of sk1 and all of the bits of Ã1, each encrypted 

under pk2. Then, E is used to evaluate the 

decryption circuit homomorphically. The output Ã2 

is thus an encryption under pk2 of DecryptE(sk1; 

Ã1) ! ¼.  The Recrypt algorithm implies a proxy 

one-way re-encryption scheme [19]. Roughly 

speaking, a one-way proxy re-encryption scheme 

allows the owner of sk1 to generate a tag that 

enables an untrusted proxy to convert an 

encryption of ¼ under pk1 to an encryption of ¼ 

under pk2, but not the reverse. In our case, the tag 

is hsk1ji, the encrypted secret key.[2] Strictly 

speaking, the security model for proxy re-

encryption typically requires the security of the 

delegator's secret key, even against a collusion of 

delegatee's who also get to see the delegating tags. 

However, this requirement seems unnecessary, 

since a delegatee will be able to decrypt 

ciphertexts directed to the delegator anyway. In the 

Recrypt algorithm above, the plaintext ¼ is doubly 

encrypted at one point { under both pk1 and pk2. 

Depending on the encryption scheme E, however, 

this double encryption might be overkill. Suppose 

WeakEncryptE is an algorithm such that the image 

of WeakEncryptE (pk; ¼) is always a subset of the 

image of EncryptE (pk; ¼). Then we can replace 

the first step of RecryptE with: 

 
 

R  
Set Ã1j Ã WeakEncryptE (pk2; Ã1j) where Ã1j is the j-th bit of Ã1 

 
Let us call this relaxation Recrypt

0
E. The main 

point of this relaxation is that WeakEncrypt does 

not need to be semantically secure for Recrypt
0

E to 

be a secure one-way proxy re-encryption scheme, 

or for Recrypt
0

E to be useful toward bootstrapping 

(as we will see below). Thus, depending on E, 

WeakEncryptE can be very simple { e.g., for some 

schemes, and in particular for the ideal-lattice-

based scheme that we describe later, 

WeakEncryptE might leave the input bits" entirely 

unmodified. This will unfortunately not help us 

much in terms of making the encryption scheme 

boots trappable; essentially, it will add one circuit 

level to what E can evaluate. However, it will 

affect the eventual computational complexity of 

our scheme, since it will require less computation 

to apply the decryption circuit homo-morphically 

to cipher texts in which the outer encryption is 
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weak.[3] Another way of viewing this relaxation is 

that we only need to be able to evaluate non-

uniform decryption circuits, where the ciphertext 

is hard-wired" into the circuit (making this circuit 

simpler than the normal" decryption circuit that 

takes the ciphertext (and secret key) as input. 

 

To be bootstrappable, E needs to be able to 

compactly evaluate not only its decryption circuit, 

which merely allows recryptions of the same 

plaintext, but also slightly augmented versions of 

it, so that we can perform binary operations on 

plaintexts and make actual progress through a 

circuit. 
 
 

Let DE be E's decryption circuit, which takes a 

secret key and ciphertext as input, each formatted 

as an element of P
`(¸)

, where P is the plaintext 

space. Let ¡ be a set of gates with inputs and output 

in P, which includes the trivial gate (input and 

output are the same). We call a circuit composed 

of multiple copiesof DE connected by a single g 

gate (the number of copies equals the number of 

inputs to g) a g-augmented decryption circuit." We 

denote the set of g-augmented decryption circuits, 

g 2 ¡, by DE(¡). 

 

As before, let CE denote the set of circuits that E 

can compactly evaluate. We say that E is 

bootstrappable with respect to ¡ if DE (¡) µ CE :For 

example, if ¡ includes the trivial gate and NAND, 

E is bootstrappable with respect to ¡ if CE contains 

DE and the circuit formed by joining two copies of 

DE with a NAND gate. Remarkably, as we will 

show, if there is a scheme E that can compactly 

evaluate only these two circuits, then there is a 

scheme that is leveled fully homomorphic.[4] 

 
We could relax the bootstrappability definition 

slightly to say that E only needs to be able to 

homomorphically evaluate its (augmented) 

decryption circuit when the input ciphertext is 

weakly encrypted, similar to the relaxation 

Recrypt
0
E above. But, this makes the definition of 

bootstrappable more cumbersome; we will 

continue with the definition above, and remind the 

reader occasionally that the relaxation can be used. 

 
From the informal description above, it should 

already be somewhat clear how to use a 

bootstrappable encryption scheme to construct a 

leveled fully homomorphic one; below, we give a 

more formal description. Let E be bootstrappable 

with respect to a set of gates For any integer d ¸ 1, 

we use E to construct a scheme E
(d)

 = (KeyGenE(d) 

; EncryptE(d) ; EvaluateE(d) ; DecryptE(d) ) that 

can handle all circuits of depth d with gates in ¡. 

Note that in the description below we encrypt the 

secret keys in reverse order; the only reason is that 

this ordering simplifies our description of the 

recursion in Evaluate. When we refer to the level 

of a wire in C, we mean the level of the gate for 

which the wire is an input. We use the notation 

DE(¡; ±) to refer to the set of circuits that equal a 

±-depth circuit with gates in ¡ augmented by DE 

(copies of DE become inputs to the ±-depth 

circuit). 
 
KeyGenE(d) (¸; d). Takes as input a security 

parameter ¸ and a positive integer d. For ‘=’(¸) as  

it sets: 
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 R  

for i 2 [0; d] (ski; pki) Ã KeyGenE(¸) 

 

R 

; skij) for i 2 [1; d]; j 2 [1; `] 

 

skij Ã EncryptE(pki¡1  

 

where ski1; : : : ; ski` is the representation of ski as elements of P. It outputs the secret key 

 

sk
(d)

 Ã sk0 and the public key pk
(d)

 Ã (hpkii; hskiji). Let E
(±)

 refer to the sub-system that uses sk
(±)

 Ã 

sk0 and pk
(±)

 Ã (hpkiii2[0;±]; hskijii2[1;±]) for ± · d. 

 

EncryptE(d) (pk
(d)

; ¼). Takes as input a public key pk
(d)

 and a plaintext ¼ 2 P. It outputs a 

R 

ciphertext Ã Ã EncryptE (pkd; ¼). 

DecryptE(d) (sk
(d)

; Ã). Takes as input a secret key sk
(d)

 and a ciphertext Ã (which should be an encryption under pk0). 

It outputs DecryptE(sk0; Ã). 

EvaluateE(±) (pk
(±)

; C±; ª±). Takes as input a public key pk
(±)

, a circuit C± of depth at most with gates in ¡, and a tuple 

of input ciphertexts ª± (where each input ciphertext should be under pk±). We assume that each wire in C± connects 

gates at consecutive levels; if not, add trivial gates to make it so. If ± = 0, it outputs ª0 and terminates. Otherwise, it 

does the following: 

 
² Sets (C±

y
¡1; ª

y
±¡1) Ã AugmentE(±) (pk

(±)
; C±; ª±). 

 
² Sets (C±¡1; ª±¡1) Ã ReduceE(±¡1) (pk

(±¡1)
; C±

y
¡1; ª

y
±¡1). 

 
² Runs EvaluateE(±¡1) (pk

(±¡1)
; C±¡1; ª±¡1). 

 

AugmentE(±) (pk
(±)

; C±; ª±). Takes as input a public key pk
(±)

, a circuit C± of depth at most ±  with gates in ¡, and a 

tuple of input ciphertexts ª± (where each input ciphertext should be under pk±). It augments C± with DE ; call the 

resulting circuit C±
y
¡1. Let ª

y
±¡1 be the tuple of ciphertexts formed by replacing each input ciphertext Ã 2 ª± by the 

tuple hhsk±ji; hÃjii, where Ãj Ã WeakEncryptE(±¡1) (pk
(±¡1)

; Ãj) and the Ãj's form the properly-formatted 

representation of Ã as elements of P. It outputs (C±
y
¡1; ª

y
±¡1). 

 

ReduceE(±) (pk
(±)

; C±
y
; ª

y
±). Takes as input a public key pk

(±)
, a tuple of input ciphertexts ª

y
± (where each input 

ciphertext should be in the image of EncryptE(±) ), and a circuit C±
y
 2 DE(¡; ± + 1). It sets C± to be the sub-circuit of 

C±
y
 consisting of the first ± levels. It sets ª± to be the induced input ciphertexts of C±, where the ciphertext Ã±

(w)
 

associated to wire w at level ± is set to EvaluateE (pk±; C±
(w)

; ª
(
±

w)
), where C±

(w)
 is the sub-circuit of C±

y
 with output 

wire w, and ª
(
±

w)
 are the input ciphertexts for C±

(w)
. It outputs (C±; ª±). 
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High-level review of the Evaluate algorithm. We 

are given a circuit Cd of, say, d levels with gates in 

¡. For each input wire w of Cd, there is an 

associated input ciphertext Ãwencrypted under pkd. 

We are also given an encryption scheme E that 

compactly evaluates circuits in DE (¡). 

 

Note that we have not assumed that E can evaluate 

gates in ¡; we have only assumed it can evaluate 

gates in ¡ that are augmented by the decryption 

circuit. So, our first step is to augment Cd by 

placing copies of DE at the leaves of Cd (as in 

Augment), thereby constructing Cd
y
¡1. Now, what 

are the input ciphertexts for our new circuit Cd
y
¡1? 

Reconsider the algorithm Recrypt
0

E. In Recrypt
0

E, 

we begin with a ciphertext Ã1 encrypt-ing ¼ under 

pk1 for the single wire w, and an empty" circuit C1 

(since Recrypt
0

E doesn't actually evaluate any 

gates, it just generates a new encryption of the 

same plaintext). Our next step was to augment C1 

with the decryption circuit DE to obtain C2 Ã DE. 

The input ciphertexts ª2 to C2 included the 

encrypted secret key bits, and the weakly 

encrypted bits of Ã1. We then showed that the 

ciphertext generated by Ã2 Ã EvaluateE(pk2; C2; 

ª2), which is also associated to wire w, also 

encrypts ¼, but now under pk2. 

 

In the full scheme above, the ciphertexts that we 

associate to the decryption circuit that was 

attached to wire w are analogous to the ones we 

used in Recrypt
0
E: the encrypted secret key (skd 

under pkd¡1), and the re-encryption ciphertexts of 

Ãw under pkd¡1. By the correctness of Recrypt, the 

ciphertext now associated to w (after performing 

EvaluateE) should encrypt the same plaintext as 

Ãw, but now under pkd¡1. 
 
 

The Reduce step simply performs this Evaluate up 

to the wire w, and one level beyond. We know that 

Evaluate can correctly continue one level beyond 

the wire w, because (by assumption) E can 

evaluate not just the decryption circuit attached to 

w, but can evaluate a circuit containing one ¡-gate 

above w. Reduce outputs Cd¡1 and ciphertexts 

associated to Cd¡1's input wires. We have made 

progress, since Cd¡1 is one level shallower than Cd. 

We perform this entire process d ¡ 1 more times to 

obtain the final output ciphertexts. 

we said that Evaluate takes as input ciphertexts 

that are \fresh" outputs of Encrypt. However, we 

note EvaluateE(±) also operates correctly on 

ciphertexts output by Evaluate. (For ± < d above, 

this is precisely what EvaluateE(±) does.) 

 

Correctness, Computational Complexity 

and Security of the Generic Construction 

 
Here we state and prove some theorems regarding 

the generic construction. Regarding correctness, 

we have the following theorem.[5] 

 

Let E be bootstrappable with respect to a set of 

gates ¡. Then E
(d)

 com-pactly evaluates all circuits 

of depth d with gates in ¡ { i.e., if ¡ is a universal 

set of gates, the family E
(d)

 is leveled fully 

homomorphic. Proof. (Theorem 4.2.1) First, we 

define a convenient notation: let D(±; w; C; ª) 

denote the plaintext value for wire w in circuit C 

induced by the decryptions (under sk±) of the 

ciphertexts ª associated to C's input wires. If C is 

empty (has no gates), then the input wires are the 
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same as the output wires, and D(±; w; C; ª) just 

denotes the decryption of the single ciphertext Ã 2 

ª associated to w. To prove correctness, it succes to 

show that 
 

D(d; wout; Cd; ªd) = D(0; wout; C0; ª0) (1) 

 

for every output wire wout of C0 (at level 0). First, when (C±
y
¡1; ª

y
±¡1) Ã AugmentE(±) (pk

(±)
; C±; ª±), we claim that 

D(±; w; C±; ª±) = D(±¡1; w; C±
y
¡1; ª

y
±¡1) for any wire w at level at most ±¡1. This follows from the correctness of 

Recrypt (generalized beyond a boolean plaintext space and boolean circuits), and the fact that circuits C± and C±
y
¡1 

are identical up to level ± ¡ 1. 
 
Next, when (C±; ª±) Ã ReduceE(±) (pk

(±)
; C±

y
; ª

y
±), we have D(±; w; C±

y
; ª

y
±) = D(±; w; C±; ª±) for any wire at level at 

most ±. This follows from the correctness of EvaluateE over circuits in D (¡), and the fact that circuits C
y
 and C  are 

identical up to level ±. 

E ± ±  
 

Note that ¡ is arbitrary. For example, each gate in ¡ 

could be a circuit of (ANDs, ORs, NOTs) of depth 

m and fan-in 2; for this value of ¡, It implies the 

scheme correctly evaluates boolean circuits up to 

depth d ¢ m. 
 
We need to check that the computational 

complexity of EvaluateE(d) is reasonable { e.g., 

that recursive applications of Augment do not 

increase the effective circuit size exponentially. 

 
For a circuit C of depth at most d and size s 

(defined here as the number of wires), the 

computational complexity of applying 

EvaluateE(d) to C is dominated by at most s ¢ ` ¢ d 

applications of WeakEncryptE and at most s ¢ d 

applications of EvaluateE to circuits in DE (¡), 

where ` is as in this research paper. Proof: There is 

a pre-processing step to ensure that all wires in the 

circuit connect gates at consecutive levels; clearly, 

this step increases the number of wires in the 

circuit by at most a multiplicative factor of d. It 

remains to prove that, for the pre-processed circuit, 

the computational complexity is dominated by at 

most s
0
 ¢ ` applications of Encrypt and at most s

0
 

applications of EvaluateE to circuits in DE (¡), 

where s
0
 is the size of the pre-processed circuit. 

The complexity of AugmentE(±) (pk
(±)

; C±; ª±) is 

dominated by replacing each ciphertext A2 ª± by 

the ciphertexts hhsk±ji; hÃjii; generating the hÃji's 

involves jW±j ¢ ` applications of WeakEncryptE , 

where W± is the set of wires at level ±. Summing 

over all ±, there are at most s
0
 ¢ ` applications of 

WeakEncryptE. 

 

The complexity of ReduceE(±) (pk
(±)

; C±
y
; ª

y
±) is 

dominated by the evaluation of C±
(w)

 for each w 2 

W±, which involves jW±j applications of EvaluateE 

to circuits in DE (¡). Summing over all ±, there are 

at most s
0
 such applications. The theorem follows. 

 

 

 

Finally, assuming the semantic security of E, we prove the semantic security of E
(d)

. Theorem 4.2.3. Let A be an 

algorithm that (t; ²)-breaks the semantic security of E
(d)

. Then, there is an algorithm B that (t
0
; ²

0
)-breaks the 
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semantic security of E for t
0
 ¼ t ¢ ` and ²

0
 ¸ ²=`(d + 1), for ` as in. Proof. (Theorem 4.2.3) Let (E)

`
 be equivalent to E, 

but with plaintext space P 
·`
, where Encrypt(E)` involves up to ` invocations of E and a concatenation of the results. 

We use a hybrid argument to show that B (t
00

; ²
00

)-breaks the semantic security of (E)
`
 for t

00
 ¼ t and ²

00
 ¸ ²=(d + 1), 

from which the result follows.For k 2 [0; d], let Game k denote a game against E
(d)

 in which everything is exactly as 

in the real-world game, except that for all i 2 [1; k] the challenger sets 

(ski
0 

R 

  

R 

; skij
0
) 

  

; pki
0
) Ã KeyGenE (¸) and  skij Ã EncryptE(pki¡1 

 

In other words, for i 2 [1; k], skij is the encryption (under pki¡1) of the j-th bit of a random secret key sk
0
i unrelated to 

ski. Game d + 1 is identical to Game d, except that the challenger ignores b and (¼0; ¼1), generates a random 

plaintext ¼ of the appropriate length, and encrypts ¼ to construct the challenge ciphertext. Let ²k denote the 

adversary's advantage in Game k. 

 

Since Game 0 is identical to the real world attack, 

the adversary's advantage is ² by assumption. Also, 

²d+1 = 0, since the challenge is independent of b. 

Consequently, for some k 2 [0; d], it must hold that 

j²k ¡ ²k+1j ¸ ²=(d + 1); ¯x this value of k. B uses A to 

break (E)
`
 as follows. B receives from the 

challenger a public key pk. B generates the secret 

and public values exactly as in Game k, except that 

it replaces its  0 0 
R 

original value of 

pkk with pk. Also, if k < d, it generates a dummy 

key pair (skk+1; pkk+1) Ã KeyGenE(¸), sets ¼0 Ã 

skk+1 and ¼1 Ã sk
0

k+1, and requests a challenge 

ciphertext (under ` 
R 

pk) encrypting either ¼0; 

¼1 2 P . The challenger generates ¯ Ã f0; 1g and 

sends a tuple of ciphertexts hÃji encrypting the bits 

h¼¯ji. B replaces its original tuple hsk(k+1)ji with the 

tuple hÃji. One can verify that the public values are 

generated exactly as in Game k + ¯. B sends the 

public values to A. R Eventually, A requests a 

challenge ciphertext on ¼0 or ¼1. B sets b Ã f0; 1g. 

If k < d, R R B sends the values Ãj Ã EncryptE 

(pkd; ¼bj). If k = d, B generates random ¼ Ã P and 

asks R the challenger for a challenge ciphertext on 

¼b or ¼. The challenger generates ¯ Ã f0; 1g and 

encrypts ¼b or ¼ accordingly, and B forwards the 

challenge to A. A sends a bit b
0
. B sends bit ¯

0
 Ã b 

© b
0
 to the challenger. One can verify that the 

challenge is generated as in Game k + ¯. Since B's 

simulation has the same distribution as Game k + 

¯, and the probability that outputs 0 is ²k+¯. The 

result follows. 
 
 

Fully Homomorphic Encryption from 

KDM-Secure Boots trappable Encryption 

 
The length of the public key in E

(d)
 is proportional 

to d (the depth of the circuits that can be 

evaluated). It would be preferable to have a 

construction E 
¤
 where the public key size is 

completely independent of the circuit depth, a 

construction that is fully homomorphic rather than 

merely leveled fully homomorphic. Here is the 

obvious way to make the public key pk
¤
 of E

¤
 

short: for E key pair (sk; pk), pk
¤
 includes only pk 

and (the bits" of) sk encrypted under pk. In other 
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words, we have a cycle (in fact, a self-loop in this 

example) of encrypted secret keys rather than an 

acyclic chain. It is clear that E
¤
 is correct: the 

recursive algorithm EvaluateE¤ works as before, 

except that the implicit recryptions generate 

\refreshed" ciphertexts under the same public key. 
 
Why didn't we present this construction in the first 

place? Using an acyclic chain of encrypted secret 

keys allowed us to base the security of E
(d)

 on E 

using a hybrid argument; this hybrid argument 

breaks down when there is a cycle. In general, a 

semantically secure encryption scheme is not 

guaranteed to be KDM-secure { i.e., secure when 

the adversary can request the encryptions of key-

dependent messages, such as the secret key itself. 

Typ-ically, when we prove an encryption scheme 

semantically secure, there is not an obvious attack 

when the adversary is given the encryption of a 

key-dependent message.[7] However, KDM-

security is highly nontrivial to prove. The problem 

is precisely that the usual hybrid argument breaks 

down.[6] 

 

It proposed the acyclic, leveled approach as a way 

to remove the need for KDM-security. Our initial 

approach had actually been to use E
¤
 (with the 

self-loop), and assume, or try to prove, KDM-

security.Let us review (a restriction of) the 

definition of KDM-security. We will say a scheme 

E is KDM-secure if all polynomial-time 

adversaries A have negligible advantage in the 

following KDM-security game. 

 

KDM-Security Game. 

R 
Setup(¸; n). The challenger sets (ski; pki) Ã KeyGen(¸) for i 2 [0; n ¡ 1] for integer n = 

R 
poly(¸). It chooses a random bit b Ã f0; 1g. If b = 0, then for i 2 [0; n ¡ 1] and j 2 [1; `], 

R  
it sets skij Ã EncryptE (pk(i¡1) mod n; skij), where skij is the jth \bit" of ski. If b = 1, it generates the skij values as 

encryptions of random secret keys, unrelated to pk0; : : : ; pkn¡1. It sends the public keys and encrypted secret keys 

to A. 
 
Challenge and Guess. Basically as in the semantic security game. 
 

This definition of KDM-security is a restriction of 

the general setting [18, 68, 22], where A can select 

multiple functions f, and request the encryption of 

f(sk0; : : : ; skn¡1). However, when E is a 

bootstrappable encryption scheme, A can use the 

cycle of encrypted secret keys in our game to 

generate the encryption of f(sk0; : : : ; skn¡1) under 

any pki, as long as f can be computed in 

polynomial time. Hence, we only need to consider 

our restricted setting [65]. We have the following 

theorem. 

 
Suppose E is KDM-secure and also bootstrappable 

with respect to a uni-versal set of gates ¡. Then, E 

¤
, obtained from E as described above (with the 

self-loop), is semantically secure (and fully 

homomorphic). 

The theorem is a straightforward consequence of 

the fact that, from any loop of public keys and 
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encrypted secret keys that includes (pk0; sk0), one 

can compute an encryption of sk0 under pk0. There 

does not seem to be any advantage in having pk
¤
 

contain any cycle of encrypted secret keys other 

than a self-loop. 

 

Absent proof of KDM-security in the plain model, 

one way to obtain fully homomorphic encryption 

from bootstrappable encryption is simply to 

assume that the underlying boot-strappable 

encryption scheme is also KDM-secure. This 

assumption, though unsatisfying, does not seem 

completely outlandish. While an encrypted secret 

key is very useful in a bootstrappable encryption 

scheme { indeed, one may view this as the essence 

of bootstrap-pability { we do not see any actual 

attack on a bootstrappable encryption scheme that 

provides a self-encrypted key. 

 

Fully Homomorphic Encryption from 

Bootstrappable En-cryption in the Random 

Oracle Model 

 
Above, we constructed a fully homomorphic 

encryption E
¤
 from a bootstrappable encryp-tion 

scheme E basically by adding a self-loop" { a E 

secret key sk encrypted under its corresponding 

public key pk { to the E 
¤
 public key pk

¤
. We 

showed that E 
¤
 should inherit the semantic 

security of E, under the assumption that E is 

KDM-secure { in particular, under the assumption 

that it is safe" to reveal a direct encryption of a 

secret key un-der its own public key (as opposed 

to some possibly-less-revealing non-identity 

function of the secret key). Can we provide any 

evidence that E
¤
 is semantically secure without this 

assumption?[9] Here we provide some evidence in 

the random oracle model. First, given a leveled 

fully homomorphic scheme E
(d)

 and a hash 

function, we define an intermediate scheme E
(d)y

. 

E
(d)y

 is the same as E
(d)

, except for the following. 

The public key includes a hash function 

 

  

`
0 

 

` 

   

 R 

 

`
0 

  

R 

(d

) 

 

H : P ! P 

    

, sets rj ; rj)   . Also, in KeyGen, one generates r Ã P  Ã EncryptE(d) (pk  

for j   [1; `
0
], sets ¾  H(r) ? sk0 , and includes ( rj ; ¾) in the public key. (Assume ? is 

 

2 

   

Ã 

 

h 

 

i 

      

            

some invertible operation such that a ? b would completely hide b 2 P
`
 if a 2 P

`
 were a one-time pad.) In other 

words, the E
(d)y

 public key includes some additional information: an encryption of the the secret key sk0, where the 

encryption uses a hash function that will be treated as a random oracle in the security analysis. 

 
Next, we prove the following theorems. 
 
If E

(d)
 is semantically secure, then E

(d)y
 is 

semantically secure in the random oracle model. 

Theorem 4.4.2. Suppose E is leveled circuit private 

(in addition to being bootstrappable) and let E
(d)y

 

and E
¤
 be constructed from E as described above. 
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Then, if E
(d)

 
y
 is semantically secure (in the plain 

model), and the circuit required to compute the 

hash function H and invert the ? operation is at 

most d levels, then E
¤
 is semantically secure. 

 
 

The result here should be quite surprising. The 

scheme E
¤
 does not even contain a hash function, 

and yet we are basically claiming that it is secure 

in the random oracle model! This is the first 

instance that we are aware of where one scheme is 

proven secure in the random oracle model, and 

then a second scheme's security is based on the 

first scheme, even though the second scheme does 

not use a hash function. How is this possible? 

First, let us consider in this research paper.  This  

 

theorem basically just states the previously known 

result that it is easy to construct a KDM-secure 

encryption scheme in the random oracle model. 

This is because the random oracle allows the 

reduction to construct a fake" ciphertext 

purportedly encrypting the secret key, such that the 

adversary finds out that it was fake only after it has 

queried the random oracle; this query gives the 

reduction all of the information that it needs to 

solve the underlying problem. In our particular 

case, E
(d)y

 has a loop among (sk0; pk0); : : : ; (skd; 

pkd), because E
(d)

 reveals direct encryptions of ski 

under pki¡1 for i 2 [1; d], and E
(d)y

 also reveals an 

indirect encryption (hrji; ¾) of sk0 under pkd 

(\indirect," because encryption in E does not 

normally use a hash function). However, the 

reduction algorithm in the proof of Theorem 4.4.1 

will construct ¾ simply as a random string { i.e., it 

does not actually need to know anything about sk0. 
 
 

It perhaps the more surprising result. But the result 

is actually a simple consequence of the fact that: 

given a correctly constructed E
(d)

 
y
 public key, the 

reduction algorithm can generate an E-encryption 

of sk0 under pk0, as needed for the E
¤
 public key. 

How do we generate the latter ciphertext? The 

reduction algorithm is given hrji, an encryption of 

r under pkd. It simply uses the leveled 

homomorphism and the circuit corresponding to 

the hash function H to compute a ciphertext that 

encrypts H(r) from the ciphertext that encrypts r. 

Then, given that ciphertext and the value of ¾ = 

H(r) ? sk0, it computes a ciphertext that encrypts 

sk0 in the natural way { i.e., directly, rather than 

with the hash function. We assumed that the hash 

function H and the ? operation can be computed 

with a circuit of depth at most d; therefore, our 

leveled homomorphic scheme E
(d)

 has enough 

levels to evaluate this circuit. Consequently, we 

obtain a \natural" encryption of sk0 (i.e., under E) 

under some public key pki for i ¸ 0, and we can use 

Recrypt operations to obtain a natural encryption 

of sk0 under pk0. This ciphertext is an output of 

EvaluateE , but circuit privacy guarantees that the 

ciphertext is distributed as if it were output directly 

by EncryptE.  

 

Although one can view (hrji; ¾) as an encryption" 

of sk0, this encryption" function is not the usual 

encryption function and it might have a very 

complex decryption circuit, much more complex 

than DE . In particular, we cannot assume that its 

decryption circuit is in CE. This why we needed 

many (d) levels in the leveled scheme to recover 

sk0, and could not immediately use a self-loop 

from the outset.[10] 
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So, if E
¤
 is secure in the random oracle model 

despite not using a hash function, does that imply 

that it is secure in the plain model? Certainly not. 

The obstacle to this conclusion is obviously that 

random oracles cannot be instantiated in general. 

A bit more specifically, however, the obstacle is 

that the proof of Theorem 4.4.2 depends crucially 

on the correctness of the ciphertext (hrji; ¾) in E
(d)

 

y
 to construct (homomorphically) an encryption of 

sk0 under pk0 as needed for the E
¤
 public key; 

however, in the proof of  the ciphertext is not 

correct (except with negligible probability): the 

adversary funds out that it was fake only after it 

has queried r to the random oracle, giving the 

reduction all the information it needs. 

 
Proof : Let A be an algorithm that attacks the semantic security of E

(d)y
; from A, we construct an algorithm B that 

attacks the semantic security of E
(d)

. B will actually request `
0
 + 1 challenge ciphertexts; thus, the reduction loses a 

factor of `
0
 + 1 under the usual hybrid argument. 

 

 The challenger gives B a E(d) 
R 

 public key.  It also sets a bit b Ã f0; 1g.  B selects 

two messages r 

(0
) 
; r 

(1) 
2 P 

`
0    R 

   and sends them to the challenger. The challenger sets ª Ã 

f 

Encrypt(pk ; r
(b)

) : j 

2 

[1; `
0 

] 

g 

and sends back ª. The following is included in the public 

d j        
key that B sends to A: the public key for E

(d)
 sent by the challenger, the set of ciphertexts 

R ` 

ª, and ¾ Ã P . 
 
A requests a challenge ciphertext on one ¼0; ¼1 2 P. B forwards the query to the challenger, who responds with a 

ciphertext encrypting ¼b, which B forwards to A. Eventually, either A queries some r
0
 2 fr

(0)
; r

(1)
g to the random 

oracle, or A finishes with a guess b
0
. In the former case, B sets b

0
 so that r

0
 = r

(b0)
. In either case, B sends b

0
 as its 

guess to the challenger. 
 
 

Let p be the probability that A queries some r
0
 2 fr

(0)
; r

(1)
g to the random oracle. B's simulation appears perfect to A 

if it does not query some r
0
 2 fr

(0)
; r

(1)
 g; in this case, which occurs with probability 1 ¡ p, A's advantage is at least ². 

Since A's view is independent of r
(1¡b)

, the probability that it queries r
(b)

 to the random oracle is at least p ¡ qH =jPj
`0

, 

where qH is the number of random oracle queries make by A. Overall B's advantage in guessing b
0
 is at least (1 ¡ p)² 

+ p ¡ qH =jPj
`0

 ¸ ² ¡ qH =jPj
`0

. 

 
Proof:  The proof is essentially a simple consequence of the fact that, given a public key for E

(d)y
, it is easy to 

generate the public key for E
¤
 homomorphically. 

 
Let A be an algorithm that breaks the semantic security of E

¤
. We use A to construct an algorithm B that breaks the 

semantic security of E
(d)y

. 

 

B  receives a E
(d)y

 public key from the challenger. This public key consists of hpkiii2[0;±], hskijii2[1;±], hrjij2[1;`0], and ¾ 

= H(r) ? sk0. From hrji, B uses the homomorphism of E
(d)

 to compute ciphertexts ª that encrypt H(r). It encrypts ¾, 
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and then uses the homomorphism to recover to obtain an encryption of sk0 from the encryptions of H(r) and ¾ 

(inverting the ? operation). By assumption, these homomorphic operations take at most d levels. If it takes only ± < 

d levels, and we obtain an encryption of sk0 under pkd¡±, then we can perform Recrypt operations until we have the 

desired encryption of sk0 under pk0. By circuit privacy, this ciphertext is distributed properly. B includes the 

encryption of sk0 under pk0 as the encrypted secret key contained in the public key for E
¤
 that it provides to A. 

 
A requests a challenge ciphertext on one ¼0; ¼1 2 P. B forwards the query to the challenger, who responds with a 

ciphertext encrypting ¼b. B uses Recrypt operations to obtain an encryption of ¼b under pk0 and forwards the result 

to A. A sends a guess b
0
, which B forwards to the challenger. 

 
Clearly, B's advantage is the same as A's. 
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An Abstract Scheme Based on the Ideal 

Coset Problem 

 
Our goal now is to construct a bootstrappable 

encryption scheme, a scheme that can ho-

momorphically evaluate a rich set of circuits that 

includes its own decryption circuit, plus some." In 

the past, attempts to construct fully homomorphic 

encryption have focused solely on maximizing the 

complexity of the circuits that the scheme can 

evaluate. Our notion of bootstrapability gives us a 

different way of attacking the problem { by 

minimizing the complexity of the scheme's 

decryption circuit. 

 

Our strategy for minimizing the circuit complexity 

of decryption is to construct our scheme using 

ideal lattices, since decryption in lattice-based 

cryptosystems is typically dom-inated by a simple 

operation, such as an easily parallelizable matrix-

vector multiplication (in contrast to, say, RSA, 

where decryption involves exponentiation, an 

operation not even known to be in NC). We begin 

describing the ideal-lattice-based scheme in 

Chapter 7, after providing some basic background 

on ideal lattices in Chapter 6. 
 
 

In this Chapter, we describe our strategy for 

maximizing the evaluative capacity"[11] of the 

scheme abstractly, without reference to lattices. 

Generally speaking, our exposition strategy 

throughout the paper is to defer technical lattice 

details for as long as possible. One reason is to 

make the presentation more modular, and therefore 

easier to understand. Another reason is that some 

of our techniques { e.g., bootstrapping, and using 

techniques from server-aided cryptography to 

squash the decryption circuit" { maybe applicable 

to schemes that use different underlying 

mathematics { e.g., linear codes, or something less 

similar to lattices. 

 
 

The Ideal Coset Problem 

 

We saw in  this research paper that many previous 

homomorphic encryption schemes base security on 

some ideal membership problem (IMP). For 

example, in the Polly Cracker" scheme by Fellows 

and Koblitz, the public key consists of some 

multivariate polynomials that generate the ideal I 

of polynomials having a common root x, and ¼ is 

encrypted by outputting a sample Ã Ã ¼ + I. One 

can easily see that this is semantically secure if it is 

hard to distinguish membership in I { in particular, 

deciding whether Ã ¡¼ 2 I. Unfortunately, one can 

also see that homomorphic operations, especially 

multiplication, expand the ciphertext size 

potentially exponentially in the depth. 
 
Since we will ultimately use lattices, we apparently 

need a different abstract approach, since it is easy 

to distinguish membership in a lattice L: given a 

basis B of L and t 2 R
n
, one simply determines 

whether t mod B = 0 mod B. Instead, we base 

security on an ideal coset problem (ICP), which 

we will state abstractly in terms of rings and ideals. 

Recall that a ring R is an algebraic object that is 

closed under addition `+' and multiplication `£' and 

additive inverse, with an additive identity `0' and 

multiplicative identity `1'. An ideal I of a ring R is 

a subset satisfying a + b 2 I and r £ a 2 I for all a; 

b 2 I and r 2 R. The sum and product of two ideals 

I and J are, respectively, fi + j : i 2 I; j 2 Jg and the 

additive closure of fi £ j : i 2 I; j 2 Jg. Two ideals I 

and J are relatively prime if I + J = R. For 
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example, if R = Z, the ideals (2) (the even integers) 

and (5) (the integers divisible by 5) are relatively 

prime: (2) + (5) = (1).  

 

Now, the ideal coset problem (ICP) is as follows. 

Definition 5.1.1 (Ideal Coset Problem (ICP)). Fix R, BI , algorithm IdealGen, and an al-  
 R pk R 
gorithm Samp1 that e±ciently samples R. The challenger sets b Ã f0; 1g and (BJ

sk
; BJ ) Ã 

R 
p
k 

. If b = 1, it samples t IdealGen(R; BI ). If b = 0, it sets r Ã Samp1 (R) and t Ã r mod BJ 

uniformly from R mod B
pk

. The problem: guess b given (t; B
pk

).   

J J   
 
Basically the ICP asks one to decide whether t is uniform modulo J, or whether it was chosen according to a known 

clumpier" distribution induced by Samp1. Of course, the ICP will be impossible if Samp1 also samples uniformly 

modulo J, but the security of our encryption scheme will rely on the ICP being hard for a clumpier" instantiation of 

Samp1; the hardness of the problem depends on the particular instantiation of Samp1. Note that it is possible for the 

ICP to be hard even when the IMP is easy. 

 
 

An Abstract Scheme 

 

We start by describing our initial attempt simply in 

terms of rings and ideals; we bring in ideal lattices 

later. In our initial scheme E, we use a fixed ring R 

that is set appropriately according to a security 

parameter ¸. We also use a fixed basis BI of a ideal 

I ½ R, and an algorithm IdealGen(R; BI ) that 

outputs public and secret bases B
pk

J and B
sk

J of 

some (variable) ideal J, such that I + J = R { i.e., I 

and J are relatively prime. We assume that if t 2 R 

and BM is a basis for ideal M ½ R, then the value t 

mod BM is unique and can be computed efficiently 

{ i.e., the coset t + M has a unique, efficiently-

computable \distinguished representative" with 

respect to the basis BM . We use the notation R 

mod BM to denote the set of distinguished 

representatives of r + M over r 2 R, with respect to 

the particular basis BM of M. We also use an 

algorithm Samp(BI ; x) that samples from the coset 

x + I. 
 
In the scheme, Evaluate takes as input a circuit C 

whose gates perform operations modulo BI . For 

example, an AddBI gate in C takes two terms in R 

mod BI , and outputs a third term in R mod BI , 

which equals the sum of the first two terms modulo 

I. 

 
sk pk R 

KeyGen(R; BI ). Takes as input a ring R and basis BI of I. It sets (BJ ; BJ ) Ã IdealGen(R; BI ). The plaintext space P 

is (a subset of) R mod BI . The public key pk includes R, BI , B
pk

J, and Samp. The secret key sk also includes B
sk

J. 

 
Encrypt(pk; ¼). Takes as input the public key pk and plaintext ¼ 2 P. It sets Ã

0
 Ã Samp(BI ; ¼) and outputs Ã Ã 

Ã
0
 mod B

pk
J. Decrypt(sk; Ã). Takes as input the secret key sk and a ciphertext Ã. It outputs 

¼ Ã (Ã mod B
sk

J) mod BI 
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Evaluate(pk; C; ª). Takes as input the public key pk, a circuit C in some permitted set CE of circuits composed of 

AddBI and MultBI gates and a set of input ciphertexts ª. It invokes Add and Mult, given below, in the proper 

sequence to compute the output ciphertext Ã. (We will describe CE when we consider correctness below. If 

desired, one could use di®erent arithmetic gates.) 
 

Add(pk; Ã1; Ã2). Outputs Ã1 + Ã2 mod B
pk

J. 
 

Mult(pk; Ã1; Ã2). Outputs Ã1 £ Ã2 mod B
pk

J. 
 
 
Concerning IdealGen, it is define the secret basis B

sk
J de¯nes a lattice L(B

sk
J) for a (possibly fractional) ideal that 

contains J, rather than being exactly J. 

 

Now, let us consider correctness, which is a highly nontrivial issue in this paper. The following definitions provide 

structure for our analysis. 

 

To begin, we observe that the scheme is actually 

using two di®erent circuits. First, Evaluate takes a 

mod-BI circuit C as input. This circuit is implicitly 

applied to plaintexts. Second, Evaluate applies a 

circuit related to C, which we call the generalized 

circuit, to the ciphertexts; this circuit uses the ring 

operations (not modulo I).[12] 

 
Let C be a mod-BI circuit. We say generalized 

circuit g(C) of C is the circuit formed by replacing 

C's AddBI and MultBI operations with addition `+' 

and multiplication `£' in the ring R. Here are a few 

more definitions relevant to below, which concerns 

correctness. (XEnc and XDec). Let XEnc be the image 

of Samp. Notice that all ciphertexts output by 

Encrypt are in XEnc +J. Let XDec equal R mod B
sk

J, 

the set of distinguished representatives of cosets of 

J wrt the secret basis B
sk

J. 

 
Definition 5.2.4 (Permitted Circuits). Let 

  

CE
0
 = fC : 8(x1; : : : ; xt) 2 XEnc

t
; g(C)(x1; : : : ; xt) 2 XDecg 

 

In other words, CE
0
 is the set of mod-BI circuits that, when generalized, the output is always in XDec if the inputs are 

in XEnc. (The value t will of course depend on C.) If CE µ CE
0
, we say that CE is a set of permitted circuits. 

 
 

Ã is a valid ciphertext wrt E public key pk and permitted circuits CE if it equals Evaluate(pk; C; ª) for some C 2 CE, 

where each Ã 2 ª is in the image of Encrypt. The circuit C may be the identity circuit, in which case the output of 

Evaluate is simply an output of Encrypt. 

 
Finally, we prove correctness with respect to CE . Theorem 5.2.6. Assume CE is a set of permitted circuits containing 

the identity circuit. E is correct for CE { i.e., Decrypt correctly decrypts valid ciphertexts. CHAPTER 5. AN 

ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM61 
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Proof. For ciphertexts ª = fÃ1; : : : ; Ãtg, Ãk = ¼k + ik + jk, where ¼k 2 P, ik 2 I, jk 2 J, and ¼k + ik 2 XEnc, we 

have 

Evaluate(pk; C; ª) = g(C)(ª) mod B
pk

J 2 g(C)(¼1 + i1; : : : ; ¼t + it) + J 

 

If C 2 CE, we have g(C)(XEnc; : : : ; XEnc) 2 XDec and therefore 

 

Decrypt(sk; Evaluate(pk; C; ª)) = g(C)(¼1 + i1; : : : ; ¼t + it) mod BI  
= g(C)(¼1; : : : ; ¼t) mod BI  
= C(¼1; : : : ; ¼t) 

 

as required.  
 
 
 

The bottom line is that we have proven that E is 

correct for permitted circuits, and our goal now is 

to maximize this set. The permitted circuits are 

defined somewhat indirectly; they are the circuits 

for which the error" g(C)(x1; : : : ; xt) of the output 

ciphertext is small (i.e., lies inside XDec) when the 

input ciphertexts are in the image of EncryptE. 

When we begin to instantiate the abstract scheme 

with lattices and give geometric interpretations of 

XEnc and XDec, the problem of maximizing CE will 

have a geometric °avor. 
 
 

Again, we note the rather confusing fact that C 

automatically" reduces the result modulo BI , since 

it uses mod-BI gates. It does not particularly matter 

how these mod-BI gates are implemented; in 

particular, it is more confusing than helpful to 

imagine a boolean implementation of these gates. 

Instead, one should just observe that the 

generalized circuit manages to lazily emulate these 

gates, reducing its output modulo BI at the end of 

the computation. C's mod-BI operations are never 

actually implemented;" they only occur implicitly. 

Later, when we consider whether our scheme is 

bootstrappable, and analyze the depth of the 

decryption circuit in terms of mod-BI gates, it will 

again be tempting to consider how these gates are 

\implemented." But in fact these gates are given" in 

the sense that they are emulated (without any 

intermediate reduction steps) by the usual ring 

operations. 

 

Security of the Abstract Scheme 

 

For the following abstract instantiation" of Samp, 

and where I is a principle ideal generated by some 

s 2 R (and s is encoded in BI ), we provide a simple 

proof of semantic security based on the ICP. 

Samp(BI ; x). Run r Ã Samp1(R). Output x + r £ s. 

Obviously, the output is in x + I since s 2 I. 

 

Suppose that there is an algorithm A that breaks 

the semantic security of E with advantage ² when it 

uses Samp. Then, there is an algorithm B, running 

in about the same time as A, that solves the ICP 

with advantage ²=2. 

 
Proof. The challenger sends B a ICP instance (t; 

B
pk

J). B sets s, and sets the other compo-nents of 

pk in the obvious way using the ICP instance. 

When A requests a challenge cipher- text on one of 
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¼0; ¼1 2 P, B sets a bit ¯ Ã f0; 1g and sends back Ã 

Ã ¼¯ + t £ s mod BJ . A sends back a guess ¯
0
, and 

B guesses b
0
 Ã ¯ © ¯

0
. 

 
 
If b = 0, we claim that B's simulation is perfect; in 

particular, the challenge ciphertext has the correct 

distribution. When b = 0, we have that t = r + j, 

where r was chosen according to Samp1 and j 2 J. 

So, Ã Ã ¼¯ + t £ s = ¼¯ + r £ s mod B
pk

J; the 

ciphertext is thus well-formed. In this case A 

should have advantage ², which translates into an 

advantage of ² for B. If b = 1, then t is uniformly 

random modulo J. Since the ideal I = (s) is 

relatively prime to J, t£s is uniformly random 

modulo J, and consequently Ã is a uniformly 

random element of R mod B
pk

J that is independent 

of ¯. In this case A's advantage is 0. Overall, B's 

advantage is ²=2. 
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