

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 189

A Comprehensive Research Study on Participant's Maintenance

Effort and Effort Adjustment Factor for Performance Appraisal of

Computer Programmers

Safia Yasmeen
1
, Prof.Dr.G.Manoj Someswar

2

1. Research Scholar, Mahatma Gandhi Kashi Vidyapith, Varanasi, U.P., India

2. Research Supervisor, Mahatma Gandhi Kashi Vidyapith, Varanasi, U.P., India

Abstract:

We recruited 1 senior and 23 computer-science graduate students who were participating in our

directed research projects. The participation in the experiment was voluntary although we gave

participants a small incentive by exempting participants from the final assignment. By the time the

experiment was carried, all participants had been asked to compile and test the program as a part

of their directed research work. However, according to our pre-experiment survey, their level of

unfamiliarity with the program code (UNFM) varies from "Completely unfamiliar" to "Completely

familiar". We rated UNFM as "Completely unfamiliar" if the participant had not read the code

and as "Completely familiar" if the participant had read and understood the code, and modified

some parts of the program prior to the experiment.

The performance of participants is affected by many factors such as programming skills,

programming experience, and application knowledge. We assessed the expected performance of

participants through pre-experiment surveys and review of participants' resumes. All participants

claimed to have programming experience in either C/C++ or Java or both, and 22 participants

already had working experience in the software industry. On average, participants claimed to have

3.7 years of programming experience and 1.9 years of working experience in the software industry.

We ranked participants by their expected performance based on their C/C++ programming

experience, industry experience, and level of familiarity with the program. We then carefully

assigned participants to three groups in a manner that the performance capability among the

groups is balanced as much as possible. As a result, we had seven participants in the enhancive

group, eight in the redictive group, and nine in the corrective group.

Keywords: Participant's Maintenance Effort, Effort Adjustment Factor (EAF), Language and Tools Experience

(LTEX), Platform Experience (PLEX), DELPHI SURVEY, Execution Time Constraint (TIME), Personnel

Continuity (PCON)

INTRODUCTION

Participants performed the maintenance tasks

individually in two sessions in a software engineering

lab. Two sessions had the total time limit of 7 hours,

and participants were allowed to schedule their time

to complete these sessions. If participants did not

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 190

complete all tasks in the first session, they continued

the second session on the same or a different day.

Prior to the first session, participants were asked to

complete a pre-experiment questionnaire on their

understanding of the program and then were told how

the experiment would be performed. Participants

were given the original source code, a list of

maintenance activities,, and a timesheet form.

Participants were required to record time on paper for

every activity performed to complete maintenance

tasks. The time information includes start clock time,

stop clock time, and interruption time measured in

minute. Participants recorded their time for each of

the following activities:

• Task comprehension includes reading,

understanding task requirements, and asking for

further clarification.

• Isolation involves locating and

understanding code segments to be adapted.

 • Editing code includes programming and

debugging the affected code.

• Unit test involves performing tests on the

affected code.

We focused on the context of software maintenance

where the programmers perform quick fixes

according to customer's maintenance requests. Upon

receiving the maintenance request, the programmers

validate the request and contact the submitter for

clarifications if needed. They then investigate the

program code to identify relevant code fragments,

edit, and perform unit tests on the changes.

Obviously, the activities above do not include design

modifications because small changes and

enhancements hardly affect, the system design.

Indeed, since we focus on the maintenance quick-fix,

the maintenance request often does no, affect the

existing design integration test activities are also no.

included as the program is by itself the only

component, and we perform acceptance testing

independently to certify the completion of tasks.

 Participants performed the maintenance tasks for the

UCC program, an enhanced Version of the Code

Count tool.[1] The program was a utility used to

count and compare SLOC-related metrics such as

statements, comments, directive statements, and data

Legations of a source program. (This same program

was also used to collect the sample data for

calibrating the model proposed in this dissertation).

UCC was written m C++ and |ad 5,188 logical SLOC

in 20 classes.

 The maintenance tasks were divided into three

groups, enhancive, reductive, and Corrective, each

being assigned to one respective participant group.

These maintenance types fall into the business rules

cluster, according to the topology proposed by us.

There were five maintenance tasks for the enhancive

group and six for the other groups.

The enhancive tasks require participants to add five

new capabilities that allow the program to take an

extra input parameter, check the validity of the input

and notify users, count for and while statements, and

display a progress indicator.[2] Since these

capabilities are located in multiple classes and

methods, participants had to locate the appropriate

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 191

code to add and possibly modify or delete the

existing code. We expected that majority of code

would be added for the enhancive tasks unless

participants had enough time to replace the existing

code with a better version of their own.

The reductive tasks ask for deleting six capabilities

from the program. These capabilities involve

handling an input parameter, counting blank lines,

and generating a count summary for the output files.

The reductive tasks emulate possible needs from

customers who do not want to include certain'

capabilities in the program because of redundancy,

performance issues, platform adaptation, etc. Similar

to the enhancive tasks, participants need to locate the

appropriate code and delete lines of code, or possibly

modify and add new code to meet the requirements.

The corrective tasks call for fixing six capabilities

that were not working as expected. Each task is

equivalent to a user request to fix a defect of the

program. Similar to the enhancive and reductive

tasks, corrective tasks handle input parameters,

counting functionality, and output files. We designed

these tasks in such a way that they required

participants to mainly modify the existing lines of

code.

EXPERIMENT RESULTS

Maintenance time was calculated as the duration

between finish and start time excluding the

interruption time if any. The resulting timesheet had a

total of 490 records totaling 4,621 minutes. On

average, each participant recorded 19.6 activities

with a total of 192.5 minutes or 3.2 hours. We did not

include the acceptance test effort because it was done

independently after the participants completed and

submitted their work. Indeed, in the real-world

situation the acceptance test is usually performed by

customers.

The first three charts in Figure 1 show the

distribution of effort of four different activities by

participants in each group. The forth chart shows the

overall distribution of effort by combining all three

groups. Participants spent the largest proportion of

time on coding, and they spent much more time on

the isolation activity than the testing activity. By

comparing the distribution of effort among the

groups, we can see that proportions of effort spent on

the maintenance activities vary vastly among three

groups. The task comprehension activity required the

smallest proportions of effort. The corrective group

spent the largest share of time for code isolation,

twice as much as that of the enhancive group, while

the reductive group spent much more time on unit

test as compared with the other groups. That is,

updating or deleting existing program capabilities

requires a high proportion of effort for isolating the

code while adding new program capabilities needs a

large majority of effort for editing code.

The enhancive group spent 53% of total time on

editing, twice as much as that spent by the other

groups. At the same time, the corrective group

needed 51% of the total time on program

comprehension related activities including task

comprehension and code isolation. Overall, these

activities account for 42% of the total time. These

results largely support the COCOMO IPs assumption

in the size parameter software Understanding (SU)

and the previous studies of effort distribution of

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 192

maintenance tasks which suggest that program

comprehension requires up to 50% of maintainer's

total effort.

Predicting Participant's Maintenance Effort

With the data obtained from the experiment, we built

models to explain and predict time spent by each

participant on his or her maintenance tasks. Previous

studies have identified numerous factors that affect

the cost of maintenance work.[3] These factors

reflect the characteristics of the platform, program,

product, and personnel of maintenance work. In the

context of this experiment, personnel factors are most

relevant. Other factors are relatively invariant, hence

irrelevant, because participants performed the

maintenance tasks in the same environment, same

product, and same working set. Therefore, we

examined the models that use only factors that are

relevant to the context of this experiment.

Effort Adjustment Factor (EAF) is the product of the

effort multipliers defined in the COCOMO II model,

representing overall effects of the model's

multiplicative factors on effort. In this experiment,

we defined EAF as the multiplicative of programmer

capability {PCAP), language and tools experience

(LTEX), and platform experience (PLEX). We used

the same rating values for these cost drivers that are

defined in the COCOMO II Post-Architecture model.

We rated PCAP, LTEX, PLEX values based on

participant's GPA, experience, pre-test, and post test

scores. The numeric values of these parameters are

given in Appendix D. If the rating fell in between two

defined rating levels, we divided the scale into finer

intervals by using a linear extrapolation from the

defined values of two adjacent rating levels. This

technique allowed specifying more precise ratings for

the cost drivers.

The estimates of the intercept (fio) in the models

indicate the average overhead of the participant's

maintenance tasks.[4] The overhead seems to come

from non-coding activities such as task

comprehension and unit test, and these activities do

not result in any changes in source code. Model Mj

has the highest overhead (110 minutes), which seems

to compensate for the absence of the deleted SLOC in

the model.

The coefficient of determination (R2) values suggest

that 75% of the variability in the effort is predicted

by the variables in M2 while only 50%, 55%, and

64% of that predicted by the variables in Mi, M3, and

M4, respectively. It is interesting to note that both

models M3 and M4, which did not include the

deleted SLOC, generated higher R2 values than did

model Mi. Moreover, the R values obtained by

models M2 and M4 are higher than those of models

M/ and M3 that use a single combined size metric.

The MMRE, PRED(0.3), and PRED(0.25) values

indicate that M2 is the best performer, and it

outperforms Mi, the worst performer, by a wide

margin. Model M2 produced estimates with a lower

error average (MMRE = 20%) than did Mi (MMRE =

33%). For model M2, 79% of the estimates (19 out of

24) have the MRE values of less than or equal to

30%. In other words, the model produced effort

estimates that are within 30% of the actuals 79% of

the time. Comparing the performance of M2 and M4,

we can get that the deleted SLOC contributes to

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 193

improving the performance of M2 over M4 as these

models have the same variables except the deleted

SLOC. This result reinforces the rejection of

Hypothesis 1.

LIMITATIONS OF THE EXPERIMENT

As the controlled experiment was performed using

the subjects of student programmers in the lab

setting, a number of limitations are exhibited.

Differences in environment settings between the

experiment and real software maintenance may limit

the ability to generalize the conclusions of this

experiment. First, professional maintainers may have

more experience than our participants. However, as

all of the participants, with the exception of the

senior, were graduate students, and most of the

participants including the senior had industry

experience, the difference in experience is not a

major concern. Second, professional maintainers may

be thoroughly familiar with the program, e.g., they

are the original programmers. The experiment may

not be generalized for this case although many of our

participants were generally familiar with the

program.[5] Third, a real maintenance process may

be different in several ways, such as more

maintenance activities (e.g., design change and code

inspection) and collaboration among programmers. In

this case, the experiment can be generalized to four

investigated maintenance activities that are

performed by an individual programmer with no

interaction or collaboration with other programmers

DELPHI SURVEY RESULTS

Expert-judgment estimation, as the name implies, is

an estimation methodology that relies on the experts

to produce project estimates based on their

experience as opposed to using formal estimation

methods. Expert-judgment estimation is useful in the

case where information is not sufficient or a high

level of uncertainty exists in the project ' being

estimated. Of many expert-judgment techniques

introduced, Wideband Delphi has been applied

successfully in determining initial rating values for

the COCOMO-like models, such as COCOMO

11.2000 and COSYSMO.[6]

In this study, the Delphi exercise was also employed

to reach expert consensus regarding the initial rating

scales of the maintenance effort model. The results

are treated as priori-knowledge to be used in the

Bayesian and other calibration techniques.

The Delphi form was distributed to a number of

software maintainers, project managers, and

researchers who have been involving in maintaining

software projects and in software maintenance

research. In the Delphi form, the definitions of

parameters, pre-determined rating levels, and

descriptions of each rating level were given. The

form also includes the initial rating scales from

COCOMO 11.2000. These initial rating scales were

intended to provide participants information on the

current experience about software development cost

so that participants can draw similarities and

differences between software development and

maintenance to provide estimates for software

maintenance. Although the survey was distributed to

various groups of participants, it turned out that only

participants who were familiar with COCOMO

returned the form with their result.

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 194

The results of the Delphi survey are presented in

Table 5-3 with the last two columns showing the

productivity range and variances of productivity

ranges for each of the cost drivers. The productivity

range represents the maximum impact of the

respective "x)St driver on effort. As an illustration,

changing the ACAP rating from Low to High would

require the additional effort of 77%.

Initially, the Delphi survey was planned to be carried

out in two rounds. However, as shown in the last row

of Table 5-3, the experts' estimates were converged

even in the first round. Therefore, I decided not to

run the second round. One possible explanation for

this early convergence is the participants' familiarity

with the COCOMO model and its cost drivers. In

addition, the initial rating values of the cost drivers

were provided, offering information for participants

to compare with COCOMO II estimates.[7]

Table 5-2 shows the differences in the productivity

ranges between the COCOMO 11.2000 model and

the Delphi survey. The Difference column indicates

an increase (if positive) or a decrease (if negative) in

level of impact of the respective cost driver on effort.

As can be seen in Table 5-3 and Table 5-2, a few cost

drivers have their productivity ranges changed

significantly. The Program Complexity (CPLX) still

has the highest influence on effort, but its impact in

software maintenance is less than in software

development, indicating that the experts believe that

having the legacy system will reduce the effort spent

for maintaining the same system (although the

complexity of the system remains the same). Other

cost drivers Analyst Capability (ACAP), Application

Experience (APEX), and Personnel Continuity

(PCON), Execution Time Constraint (TIME), Main

Storage Constraint (STOR), and Programmer

Capability (PCAP).

These data attributes are grouped into three

categories: project general information, size

measures, and effort and cost drivers. One

organization used its own data collection form, but its

core data attributes were consistent with the

definitions provided in our forms.

For the cost drivers, an actual rating that falls

between two defined rating levels an be specified,

allowing finer-grained increments in the rating scale

to more closely describe the true value of the cost

driver. The increment attribute can be specified to

increase the base rating, and the numeric rating for

the cost driver is a linear extrapolation from the base

rating and the next defined value.[8]

CM is the percentage of code modified in the adapted

modules. Thus, it is computed as the ratio between

SLOC Adapted and SLOC Pre-Adapted, or CM =

SLOC Adapted / SLOC Pre-Adapted.

In total, 86 releases that met the above criteria were

collected. All 86 releases were completed and

delivered in the years between 1997 and 2009. The

application domains of these releases can be

classified into data processing, military - ground,

management of information system, utilities, web,

and others. Of these data points, 64 came from an

organization member of the center's Affiliates, 14

from a CMMI-level 5 organization in Vietnam, and 8

from a CMMI-level 3 organization in Thailand. The

first organization has been an active COCOMO user

and calibrated the model for their inter ml use. The

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 195

other organizations collected analyzed project size,

effort, and other metrics as a part of their CMMI

compliant processes. The organization in Vietnam

granted me permission to interview project managers

and team members to fill out the data collection

forms. For the organization in Thailand, several

interviews with the representative were carried out in

order to validate the data points provided by the

project teams. These granted accesses helped

alleviate variations that may have been caused by

consistency in understanding the data attributes.

The size metrics were collected by using code

counting tools to compare differentials between two

baselines of the source program (see Figure 5-2).

These size metrics are based on the logical SLOC

definition originally described in Park [1992] and

later adopted into the definition checklist for logical

SLOC counts in the COCOMO model. According to

this checklist, one source statement is counted as one

logical SLOC, and thus, blanks and comments are

excluded. One organization reported using various

code counting tools, and the other organizations used

the Code Count tool10 for collecting the size metrics.

Although using the same counting definition,

variations in the results generated by these SLOC

counting tools may exist[9]. This problem, which is

caused by inconsistent interpretations of the counting

definition, is a known limitation of the SLOC metrics

[10]. Nonetheless, the SLOC counts among the

releases of the same program are highly consistent as

each program used the same SLOC counting tool.

Effort was collected in person-hour and converted

into person-month using COCOMO's standard 152

person-hours per person-month, avoiding variations

created by different definitions of person-month

among the organizations. However, as discussed in

[11], unrecorded overtime can cause variations in the

actual effort reported. Another source of variations

arrives from the subjective estimates of originates

from adapting the pre-existing modules, almost a

third for adding new modules, and only a small

percentage (7.5%) for testing and integrating the

reused modules.

The scatter plot on PM versus Equivalent KLSOC of

the dataset shown in Figure 5-4 indicates that the

dataset is skewed with far fewer large projects than

small projects and the variability of PM is

considerably higher in large projects. Additionally,

there is one extreme project that has effort almost

three times as much as that of the second largest

project. These characteristics are often seen in

software datasets. A typical approach to handling

these datasets is to apply the logarithmic

transformation on both effort and size metrics. The

logarithmic transformation takes into account both

linear and non-linear relationships, and it helps

ensure linear relationships between log-transformed

variables. The scatter plot in Figure 5-5 shows that

the logarithmic transformation can appropriately

resolve these issues that exist in the data set.

Outliers can distort the linear regression model,

affecting the accuracy and stability of the model.

Unfortunately, software data sets often contain

outliers. This problem is caused by inconsistency and

ambiguity in the definition of software terms (i.e.,

size and effort), imprecision in the data collection

process, and the lack of standardized software

processes. To handle possible outliers in software

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 196

data sets, several techniques have been used often,

including building robust regression models,

transforming the data, and identifying and

eliminating outliers from the rest of the data set [12].

To some extent, all of these techniques were used in

this study.

Table 5-8 summarizes the rating values of the 20 cost

drivers calibrated by the Gayesian analysis using the

80 releases of the final data set. Undefined rating

scales for the cost drivers at the corresponding levels

are indicated by the grayed blank cells. It should be

noted that the rating value for the Nominal rating of

the effort multipliers is 1.0, which implies that the

nominal estimated effort is not adjusted by the effort

multipliers.

Hypothesis 2 states that the productivity ranges of the

cost drivers in the COMO II model for maintenance

are different form those of COCOMO 11.2000.

Different approaches used to calibrate the COCOMO

II model for maintenance result in different sets of

productivity ranges. For testing this hypothesis, the

productivity ranges calibrated through the Bayesian

analysis were used to compare with those of

COCOMO 11.2000. This comparison is valid since

the Bayesian analysis was also applied to calibrating

COCOMO 11.2000's productivity ranges.

Table 5-7 presents productivity ranges of the

COCOMO II maintenance calibrated y the Bayesian

approach and COCOM 11.2000 and their differences

between the two models. For the effort multipliers,

the productivity range is the ratio between the largest

and the smallest rating value. The productivity ranges

of the scale factors are for 100 EKSLOC projects and

computed as Pl.SFj = IQQQ" ' w^ere ^ an<^

SFimax are the constant B and the maximum rating

value of the scale factor i.

Table 1: Estimation Accuracies of Constrained Approaches

Approach PRED(0 .30

)

PRED(0 .25) PRED(0 .50) MMRE MdMRE

CMRE 60% 56% 76% 37% 23%

CMSE 51% 43% 79% 39% 30%

CMAE 58% 54% '71% 42% 23%

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 197

Table 3: Estimation Accuracies of Constrained Approaches using LOOC Cross-validation

As i l lus tra ted in Table 1 , which sho ws the

productivi ty ranges genera ted by the

CMRE approach, e ight cos t dr ivers,

includ ing a l l 5 sca le fac tors but FLEX and

4 e ffor t mul t ip l ier s (PVOL, DATA, TIME,

and RELY), were pruned from the model ,

leaving 12 most relevant cost dr ivers in the

model. The Storage Constraint (STOR) cost

dr iver appears to be the most inf luent ia l

dr iver wi th the product ivi ty range of 2 .81,

and the personnel factors except LTEX are

among the leas t inf luential . This result

appears to be counter intui t ive s ince i t

contrad ic ts the Delphi result s which

ind icate tha t personnel factors have the

most s igni f icant impacts on effor t and that

STOR is 1 to t considered to be highly

inf luential . I t should be no ted that , unl ike

the Bayesian approach, which adjus ts the

data -dr iven est imates wi th the experts '

es t imates, the const rained regression

techniques rely heavi ly on the sample data

to genera te est imates. Thus, l ike mul t iple

'near regression, it suffers the correlation between cost drivers

and the lack of dispersion the sample data set..

PRED(0 .30) PRED(0 .25) PRED(0 .50) MMRE MdMRE

CMRE 51% 40% 73% 43% 30%

CMSE 41% 35% 69% 49%o 35%

CMAE 51% 48% 67% 52% 28% Approach PRED(0.30) PRED(0.25) PRED(0.50) MMRE MdMRE

CMR

E

60% 56% 76% 37% 23%

CMSE 51% 43% 79% 39% 30%

CMAE 58% 54% 71% 42% 23%

Table 2: Estimation Accuracies of Constrained Approaches

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 198

Figure 2: Productivity Ranges Generated by CMRE

 The estimation accuracies produced by three constrained

regression approaches are listed in Table. Considering the

PRED(0.30), PRED(0.25), and MMRE metrics, it is clear

that CMRE and CMAE outperform both COCOMO

11.2000 and the Bayesian calibrated model, improving

PRED(OJO) from 38% produced by COCOMO 11.2000 to

60%, a 58% improvement. It is important to note that

CMSE's PRED(0.30) and PRED(0.25) values are as low as

those of the Bayesian calibrated model. A possible reason

this similarity is that both CMSE and the Bayesian calibrated

model optimize the same quantity, the sum of square

errors. This quantity may overlook high square errors

in small projects to favor high square errors in large

projects, resulting in high MRE errors in the

estimates of these small projects. The LOOC cross-

validation results in Table 5 further confirm the

improvement in the performance of the constrained

models over the Bayesian calibrated model. This

observation is consistent with the results reported in

which the performance of these approaches were

compared with Lasso, Ridge, Stepwise, and OLS

regression techniques using other COCOMO data

sets.

REDUCED PARAMETER MODELS

0

1.50

aoo

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 199

Strong correlations and the lack of dispersion in cost

drivers can negatively affect the stability of the

estimation model that is built on the assumptions of

the multiple linear regression. The analysis of the

correlation and dispersion properties of the data set

may suggest possible redundant drivers that

contribute little to improving the accuracy of the

estimation model. Similar to the previous COCOMO

studies, this study also investigated a reduced model

with a smaller set of cost drivers by aggregating cost

drivers that are highly correlated or lack dispersion.

Two cost drivers are deemed to be aggregated if their

correlation coefficient is 0.65 or greater.

Table 3 shows the correlation matrix of highly

correlated drivers, all belonging to the personnel

factors. ACAP and PCAP were aggregated into

Personnel Capability (PERS), and APEX, LTEX,

PLEX into Personnel Experience (PREX). It turns

out that these aggregations are the same as those of

the COCOMO Early Design model, except that

PCON was not aggregated into PREX.

 Table 3: Correlation Matrix for Highly Correlated Cost Drivers

ACAP PCAP APEX LTEX PLEX

PCAP 0,74 1.00

APEX 0.44 0.39 1.00

TEX 0.58 0.53 0 J 2 1.00

LEX 0:49 03 058 75

Table 3 and Table 4 show that the Execution Time

Constraint (TIME) and Main Storage Constraint (STOR)

ratings are positively skewed with 82 and 76 data

oints out of the 86 data points rated Nominal,

respectively. Moreover, while the range of defined

ratings for TIME and STOR is from Nominal to Very

High, no data point was rated High and Very High

for TIME and Very High for STOR. This lack of

dispersion in TIME and STOR can result in high

variances in the coefficients of these drivers as the

impact of the non-Nominal ratings cannot be

determined due to the lack of these ratings. An

explanation for this lack of dispersion is that new

technologies and advancements in the storage and

processing facilities, making TIME and STOR

insignificant for the systems that are less constrained

by the limitations of the storage and processing

facilities. And all of the projects in the data set are

non-critical and non-embedded systems, which are

typically not dependent on the storage and processing

constraints. Thus, the TIME and STOR cost drivers

were eliminated from the reduced model. In all,

seven cost drivers were removed, and two new were

added, resulting in the red; ced model with 15 cost

drivers, as compared to the full model with 20 cost

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 200

drivers, gayesian approach appears to have a smaller

MMRE value than that of the respective full model.

Local Calibration

A series of stratifications by organization and by

program were performed using four different

approaches:

• Productivity index. The project effort

estimate is determined by dividing

project size by productivity index, i.e.,

Effort = Size I Product ivity

Index, where the productivity index

is the average productivity of past

projects or an industry census. It is the

simplest model to estimate effort given

that the productivity index is known.

This model is often referred to as the

baseline, and a more sophisticated

model is only useful if it outperforms

the baseline model.

• Simple linear regression between

effort and size. The simple linear

regression is used to derive the model

whose response and predictor are the

logarithmic transformations of PM and

Equivalent KSLOC, respectively.

• Bayesian analysis. The full model

with all the drivers that were calibrated

using the Bayesian analysis was used

as a basis to fit into local data sets and

compute the constants A and B in the

COCOMO effort estimation model

(Eq. 4-11). The resulting local models

differ from each other only in the

constants A and B. The full model,

instead of the reduced model, was used

since it allows organizations to select

from the full model the most suitable

cost drivers for their processes.

• Constrained regression with

CMRE. This local calibration

approach used the set of 12 cost drivers

and the constants A and B obtained

from the constrained regression with

CMRE. The constants A and B were

further calibrated into local data sets

based on organization and program.

 Using the approaches above, the following eight

local calibrations were investigated:

CI. The productivity index of each organization was

computed and used to estimate the projects within the

same organization.

C2. The simple linear regression was applied for each

individual organization.

C3. Stratification by organization using the Bayesian

approach.

C4. Stratification by organization using the

constrained approach CMRE.

C5. The productivity index of the previous releases in

each program was used to determine the effort of the

current release in the same program.

C6. The simple linear regression was applied for each

individual program that has five or more releases.

C7. Stratification by program using the Bayesian

approach.

C8. Stratification by program using the constrained

approach CMRE.

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 201

 Table 4: Stratification by Organization on 45 Releases

Calibration #Releases PRED(0.3
0)

PRED(0.2
5)

MMRE MdMRE

CI 45 40% 40% 44% 37%

C2 45 31% 27% 53% 40%

C3 45
63% 55% 40% 24%

C4 45
60% 58% 34% 22%

It can be seen from Table 3 and Table 4 that the

calibrations based on the gayesian and CMRE models

outperform both productivity index and simple linear

regression approaches. C3 and C4, whose

performances are comparable, are more approachable

than CI and C2 when stratification by organization is

concerned. Similarly, C7 and C8 outperform C5 and

C6 when calibrating for each individual program. It is

clear at the effects of the cost drivers in the Bayesian

and CMRE models positively contribute to

improving the performance of the models. Even in

the same program, the ost drivers' ratings change

from one release to another. For example, if the

attrition rate low, the programmer is more familiar

with the system, and is more experienced with e

languages and tools used in the program. If the

attrition rate is high, on the other hand, the overall

programmer capability and experience could be

lower than the previous release. Due to these effects,

the productivity of the releases of the same program

does iot remain the same.

The program-based calibrations appear to generate

better estimates than the organization-based

calibrations. This finding is further confirmed when

the local models t CI, C2, C3, and C4 were tested on

the same data set of 45 releases used in the program-

based calibrations. One explanation for the

superiority of the program-based calibrations is that

possible variations in application domains,

technologies, and software processes were minimized

when considering only releases in the same program.

Another explanation is that the variations in the data

collection process are reduced as the same code

counting tool was used and the same data collector

rated the cost drivers for all releases in the same

program.

The best performers are the local models that were

calibrated using the Bayesian and MRE models on

each individual program. They could produce

estimates within 30% of the actuals 80% of the time.

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 202

This result is comparable to the COOCOMO 11.2000

model when it was stratified by organization.

Comparing the accuracies in Tables 5-9, 5-12, 5-13,

5-16, 5-17, and, 5-18 one can see that the generic

models calibrated using the Bayesian and CMRE

approaches can be further improved by calibrating

them into each individual organization and program.

Moreover, these generic models are more favorable

than the productivity index and the simple linear

regression in the stratification by organization,

indicating that the generic models may be useful in

the absence of sufficient data for local calibration.

This finding confirms the previous COCOMO studies

and other studies which suggest that local calibration

improves the performance of the software estimation

model.

Hypothesis 4 states that the COCOMO II model for

maintenance outperforms the simple linear regression

and the productivity index method. As shown above,

this hypothesis is supported.

Conclusion

The data set of 80 releases from 3 organizations was

used to validate the proposed extensions to the size

and effort estimation model. The effort estimation

model was calibrated to the data set using a number

of techniques including the linear regression,

Bayesian, and constrained regression. Local

calibrations to organization and program were also

performed and compared with the less sophisticated

approaches, the productivity index and the simple

linear regression. The best model, which was

calibrated using the releases of each individual

program, can produce estimates with PRED(0.30) =

80% and MMRE = 0.22, outperforming the less

sophisticated but commonly used productivity index

and simple linear regression.

REFERENCES

1. Nguyen V., Deeds-Rubin S., Tan T., Boehm B.W.

(2007), "A SLOC Counting Standard," The 22nd

International Annual Forum on COCOMO and

Systems/Software Cost Modeling. DOI =

http://csse.usc.edu/csse/TECHRPTS/2007/usc-csse-

2007-737/usc-csse-2007-737.pdf

2. Nguyen V., Steece B., Boehm B.W. (2008), "A

constrained regression technique for COCOMO

calibration", Proceedings of the 2nd ACM-IEEE

international symposium on Empirical software

engineering and measurement (ESEM), pp 213-222

3. Nguyen V., Boehm B.W., Danphitsanuphan P.

(2009), "Assessing and Estimating Corrective,

Enhancive, and Reductive Maintenance Tasks: A

Controlled Experiment." Proceedings of 16th Asia-

Pacific Software Engineering Conference (APSEC

2009), Dec.

4. Nguyen V., Boehm B.W., Danphitsanuphan P.

(2010), "A Controlled Experiment in

Assessing and Estimating Software Maintenance

Tasks", APSEC Special Issue, Information and

Software Technology Journal, 2010.

5. Nguyen V., Huang L., Boehm B.W. (2010),

"Analysis of Productivity Over Years", Technical

International Journal of Research
e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-11

International Conference on Multi-Disciplinary Research - 2017 held in

February, 2018 in Hyderabad, Telangana State, India organised by

GLOBAL RESEARCH ACADEMY - Scientific & Industrial Research

Organisation (Autonomous), Hyderabad.

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 203

Report, USC Center for Systems and Software

Engineering.

6. Niessink F., van Vliet H. (1998), "Two case study

in measuring maintenance effort", Proceedings of

International Conference on Software Maintenance,

Bethesda, MD, USA, pp. 76-85.

7. Parikh G. and Zvegintzov N. (1983). The World of

Software Maintenance, Tutorial on Software

Maintenance, IEEE Computer Society Press, pp. 1-3.

8. Park R.E. (1992), "Software Size Measurement: A

Framework for Counting Source Statements,"

CMU/SEI-92-TR-11, Sept.

9. Pew R. W. and Mavor A. S. (2007), "Human-

System Integration in the System Development

Process: A New Look", National Academy Press

10. Price-S (2009), TruePlanning User Manual,

PRICE Systems, www.pricesystems.com

11. Putnam L. & Myers W. (1992), "Measures for

Excellence: Reliable Software on Time, within

Budget," Prentice H. 11 PTR.

12. Quinlan J.R. (1993), "C4.5: Prograns for Machine

Learning," Morgan Kaufmann Publishers, Sao

Mateo, CA.

