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Abstract: 

We recruited 1 senior and 23 computer-science graduate students who were participating in our 

directed research projects. The participation in the experiment was voluntary although we gave 

participants a small incentive by exempting participants from the final assignment. By the time the 

experiment was carried, all participants had been asked to compile and test the program as a part 

of their directed research work. However, according to our pre-experiment survey, their level of 

unfamiliarity with the program code (UNFM) varies from "Completely unfamiliar" to "Completely 

familiar". We rated UNFM as "Completely unfamiliar" if the participant had not read the code 

and as "Completely familiar" if the participant had read and understood the code, and modified 

some parts of the program prior to the experiment. 

The performance of participants is affected by many factors such as programming skills, 

programming experience, and application knowledge.  We assessed the expected performance of 

participants through pre-experiment surveys and review of participants' resumes. All participants 

claimed to have programming experience in either C/C++ or Java or both, and 22 participants 

already had working experience in the software industry. On average, participants claimed to have 

3.7 years of programming experience and 1.9 years of working experience in the software industry. 

We ranked participants by their expected performance based on their C/C++ programming 

experience, industry experience, and level of familiarity with the program. We then carefully 

assigned participants to three groups in a manner that the performance capability among the 

groups is balanced as much as possible. As a result, we had seven participants in the enhancive 

group, eight in the redictive group, and nine in the corrective group. 

Keywords: Participant's Maintenance Effort, Effort Adjustment Factor (EAF), Language and Tools Experience 

(LTEX), Platform Experience (PLEX), DELPHI SURVEY, Execution Time Constraint (TIME), Personnel 

Continuity (PCON) 

INTRODUCTION 

Participants performed the maintenance tasks 

individually in two sessions in a software engineering 

lab. Two sessions had the total time limit of 7 hours, 

and participants were allowed to schedule their time 

to complete these sessions. If participants did not 
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complete all tasks in the first session, they continued 

the second session on the same or a different day. 

Prior to the first session, participants were asked to 

complete a pre-experiment questionnaire on their 

understanding of the program and then were told how 

the experiment would be performed. Participants 

were given the original source code, a list of 

maintenance activities,, and a timesheet form. 

Participants were required to record time on paper for 

every activity performed to complete maintenance 

tasks. The time information includes start clock time, 

stop clock time, and interruption time measured in 

minute. Participants recorded their time for each of 

the following activities: 

• Task comprehension includes reading, 

understanding task requirements, and asking for 

further clarification. 

• Isolation involves locating and 

understanding code segments to be adapted.  

 •   Editing code includes programming and 

debugging the affected code. 

• Unit test involves performing tests on the 

affected code. 

We focused on the context of software maintenance 

where the programmers perform quick fixes 

according to customer's maintenance requests. Upon 

receiving the maintenance request, the programmers 

validate the request and contact the submitter for 

clarifications if needed. They then investigate the 

program code to identify relevant code fragments, 

edit, and perform unit tests on the changes. 

Obviously, the activities above do not include design 

modifications because small changes and 

enhancements hardly affect, the system design. 

Indeed, since we focus on the maintenance  quick-fix, 

the maintenance request often does no, affect the 

existing  design integration test activities are also no. 

included as the program is by itself the only 

component, and we perform acceptance testing 

independently to certify the completion of tasks. 

 Participants performed the maintenance tasks for the 

UCC program, an enhanced Version of the Code 

Count tool.[1] The program was a utility used to 

count and compare SLOC-related metrics such as 

statements, comments, directive statements, and data 

Legations of a source program. (This same program 

was also used to collect the sample data for 

calibrating the model proposed in this dissertation). 

UCC was written m C++ and |ad 5,188 logical SLOC 

in 20 classes. 

    The maintenance tasks were divided into three 

groups, enhancive, reductive, and Corrective, each 

being assigned to one respective participant group. 

These maintenance types fall into the business rules 

cluster, according to the topology proposed by us. 

There were five maintenance tasks for the enhancive 

group and six for the other groups. 

The enhancive tasks require participants to add five 

new capabilities that allow  the program to take an 

extra input parameter, check the validity of the input 

and notify users, count for and while statements, and 

display a progress indicator.[2] Since these  

capabilities are located in multiple classes and 

methods, participants had to locate the appropriate 
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code to add and possibly modify or delete the 

existing code. We expected that majority of code 

would be added for the enhancive tasks unless 

participants had enough time to replace the existing 

code with a better version of their own. 

The reductive tasks ask for deleting six capabilities 

from the program. These capabilities involve 

handling an input parameter, counting blank lines, 

and generating a count summary for the output files. 

The reductive tasks emulate possible needs from 

customers who do not want to include certain' 

capabilities in the program because of redundancy, 

performance issues, platform adaptation, etc. Similar 

to the enhancive tasks, participants need to locate the 

appropriate code and delete lines of code, or possibly 

modify and add new code to meet the requirements. 

The corrective tasks call for fixing six capabilities 

that were not working as expected. Each task is 

equivalent to a user request to fix a defect of the 

program. Similar to the enhancive and reductive 

tasks, corrective tasks handle input parameters, 

counting functionality, and output files. We designed 

these tasks in such a way that they required 

participants to mainly modify the existing lines of 

code. 

EXPERIMENT RESULTS 

Maintenance time was calculated as the duration 

between finish and start time excluding the 

interruption time if any. The resulting timesheet had a 

total of 490 records totaling 4,621 minutes. On 

average, each participant recorded 19.6 activities 

with a total of 192.5 minutes or 3.2 hours. We did not 

include the acceptance test effort because it was done 

independently after the participants completed and 

submitted their work. Indeed, in the real-world 

situation the acceptance test is usually performed by 

customers. 

The first three charts in Figure 1 show the 

distribution of effort of four different activities by 

participants in each group. The forth chart shows the 

overall distribution of effort by combining all three 

groups. Participants spent the largest proportion of 

time on coding, and they spent much more time on 

the isolation activity than the testing activity. By 

comparing the distribution of effort among the 

groups, we can see that proportions of effort spent on 

the maintenance activities vary vastly among three 

groups. The task comprehension activity required the 

smallest proportions of effort. The corrective group 

spent the largest share of time for code isolation, 

twice as much as that of the enhancive group, while 

the reductive group spent much more time on unit 

test as compared with the other groups. That is, 

updating or deleting existing program capabilities 

requires a high proportion of effort for isolating the 

code while adding new program capabilities needs a 

large majority of effort for editing code. 

The enhancive group spent 53% of total time on 

editing, twice as much as that spent by the other 

groups. At the same time, the corrective group 

needed 51% of the total time on program 

comprehension related activities including task 

comprehension and code isolation. Overall, these 

activities account for 42% of the total time. These 

results largely support the COCOMO IPs assumption 

in the size parameter software Understanding (SU) 

and the previous studies of effort distribution of 
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maintenance tasks which suggest that program 

comprehension requires up to 50% of maintainer's 

total effort. 

Predicting Participant's Maintenance Effort 

With the data obtained from the experiment, we built 

models to explain and predict time spent by each 

participant on his or her maintenance tasks. Previous 

studies have identified numerous factors that affect 

the cost of maintenance work.[3] These factors 

reflect the characteristics of the platform, program, 

product, and personnel of maintenance work. In the 

context of this experiment, personnel factors are most 

relevant. Other factors are relatively invariant, hence 

irrelevant, because participants performed the 

maintenance tasks in the same environment, same 

product, and same working set. Therefore, we 

examined the models that use only factors that are 

relevant to the context of this experiment. 

Effort Adjustment Factor (EAF) is the product of the 

effort multipliers defined in the COCOMO II model, 

representing overall effects of the model's 

multiplicative factors on effort. In this experiment, 

we defined EAF as the multiplicative of programmer 

capability {PCAP), language and tools experience 

(LTEX), and platform experience (PLEX). We used 

the same rating values for these cost drivers that are 

defined in the COCOMO II Post-Architecture model. 

We rated PCAP, LTEX, PLEX values based on 

participant's GPA, experience, pre-test, and post test 

scores. The numeric values of these parameters are 

given in Appendix D. If the rating fell in between two 

defined rating levels, we divided the scale into finer 

intervals by using a linear extrapolation from the 

defined values of two adjacent rating levels. This 

technique allowed specifying more precise ratings for 

the cost drivers. 

The estimates of the intercept (fio) in the models 

indicate the average overhead of the participant's 

maintenance tasks.[4] The overhead seems to come 

from non-coding activities such as task 

comprehension and unit test, and these activities do 

not result in any changes in source code. Model Mj 

has the highest overhead (110 minutes), which seems 

to compensate for the absence of the deleted SLOC in 

the model. 

The coefficient of determination (R2) values suggest 

that 75% of the variability in the effort is predicted 

by the variables in M2 while only 50%, 55%, and 

64% of that predicted by the variables in Mi, M3, and 

M4, respectively. It is interesting to note that both 

models M3 and M4, which did not include the 

deleted SLOC, generated higher R2 values than did 

model Mi. Moreover, the R values obtained by 

models M2 and M4 are higher than those of models 

M/ and M3 that use a single combined size metric. 

The MMRE, PRED(0.3), and PRED(0.25) values 

indicate that M2 is the best performer, and it 

outperforms Mi, the worst performer, by a wide 

margin. Model M2 produced estimates with a lower 

error average (MMRE = 20%) than did Mi (MMRE = 

33%). For model M2, 79% of the estimates (19 out of 

24) have the MRE values of less than or equal to 

30%. In other words, the model produced effort 

estimates that are within 30% of the actuals 79% of 

the time. Comparing the performance of M2 and M4, 

we can get that the deleted SLOC contributes to 
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improving the performance of M2 over M4 as these 

models have the same variables except the deleted 

SLOC. This result reinforces the rejection of 

Hypothesis 1. 

LIMITATIONS OF THE EXPERIMENT 

As the controlled experiment was performed using 

the subjects of student programmers in the lab 

setting, a number of limitations are exhibited. 

Differences in environment settings between the 

experiment and real software maintenance may limit 

the ability to generalize the conclusions of this 

experiment. First, professional maintainers may have 

more experience than our participants. However, as 

all of the participants, with the exception of the 

senior, were graduate students, and most of the 

participants including the senior had industry 

experience, the difference in experience is not a 

major concern. Second, professional maintainers may 

be thoroughly familiar with the program, e.g., they 

are the original programmers. The experiment may 

not be generalized for this case although many of our 

participants were generally familiar with the 

program.[5] Third, a real maintenance process may 

be different in several ways, such as more 

maintenance activities (e.g., design change and code 

inspection) and collaboration among programmers. In 

this case, the experiment can be generalized to four 

investigated maintenance activities that are 

performed by an individual programmer with no 

interaction or collaboration with other programmers 

DELPHI SURVEY RESULTS 

Expert-judgment estimation, as the name implies, is 

an estimation methodology that relies on the experts 

to produce project estimates based on their 

experience as opposed to using formal estimation 

methods. Expert-judgment estimation is useful in the 

case where information is not sufficient or a high 

level of uncertainty exists in the project ' being 

estimated. Of many expert-judgment techniques 

introduced, Wideband Delphi has been applied 

successfully in determining initial rating values for 

the COCOMO-like models, such as COCOMO 

11.2000 and COSYSMO.[6] 

In this study, the Delphi exercise was also employed 

to reach expert consensus regarding the initial rating 

scales of the maintenance effort model. The results 

are treated as priori-knowledge to be used in the 

Bayesian and other calibration techniques. 

The Delphi form was distributed to a number of 

software maintainers, project managers, and 

researchers who have been involving in maintaining 

software projects and in software maintenance 

research. In the Delphi form, the definitions of 

parameters, pre-determined rating levels, and 

descriptions of each rating level were given. The 

form also includes the initial rating scales from 

COCOMO 11.2000. These initial rating scales were 

intended to provide participants information on the 

current experience about software development cost 

so that participants can draw similarities and 

differences between software development and 

maintenance to provide estimates for software 

maintenance. Although the survey was distributed to 

various groups of participants, it turned out that only 

participants who were familiar with COCOMO 

returned the form with their result. 
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The results of the Delphi survey are presented in 

Table 5-3 with the last two columns showing the 

productivity range and variances of productivity 

ranges for each of the cost drivers. The productivity 

range represents the maximum impact of the 

respective "x)St driver on effort. As an illustration, 

changing the ACAP rating from Low to High would 

require the additional effort of 77%. 

Initially, the Delphi survey was planned to be carried 

out in two rounds. However, as shown in the last row 

of Table 5-3, the experts' estimates were converged 

even in the first round. Therefore, I decided not to 

run the second round. One possible explanation for 

this early convergence is the participants' familiarity 

with the COCOMO model and its cost drivers. In 

addition, the initial rating values of the cost drivers 

were provided, offering information for participants 

to compare with COCOMO II estimates.[7] 

Table 5-2 shows the differences in the productivity 

ranges between the COCOMO 11.2000 model and 

the Delphi survey. The Difference column indicates 

an increase (if positive) or a decrease (if negative) in 

level of impact of the respective cost driver on effort. 

As can be seen in Table 5-3 and Table 5-2, a few cost 

drivers have their productivity ranges changed 

significantly. The Program Complexity (CPLX) still 

has the highest influence on effort, but its impact in 

software maintenance is less than in software 

development, indicating that the experts believe that 

having the legacy system will reduce the effort spent 

for maintaining the same system (although the 

complexity of the system remains the same). Other 

cost drivers Analyst Capability (ACAP), Application 

Experience (APEX), and Personnel Continuity 

(PCON), Execution Time Constraint (TIME), Main 

Storage Constraint (STOR), and Programmer 

Capability (PCAP). 

These data attributes are grouped into three 

categories: project general information, size 

measures, and effort and cost drivers. One 

organization used its own data collection form, but its 

core data attributes were consistent with the 

definitions provided in our forms. 

For the cost drivers, an actual rating that falls 

between two defined rating levels an be specified, 

allowing finer-grained increments in the rating scale 

to more closely describe the true value of the cost 

driver. The increment attribute can be specified to 

increase the base rating, and the numeric rating for 

the cost driver is a linear extrapolation from the base 

rating and the next defined value.[8] 

CM is the percentage of code modified in the adapted 

modules. Thus, it is computed as the ratio between 

SLOC Adapted and SLOC Pre-Adapted, or CM = 

SLOC Adapted / SLOC Pre-Adapted. 

In total, 86 releases that met the above criteria were 

collected. All 86 releases were completed and 

delivered in the years between 1997 and 2009. The 

application domains of these releases can be 

classified into data processing, military - ground, 

management of information system, utilities, web, 

and others. Of these data points, 64 came from an 

organization member of the center's Affiliates, 14 

from a CMMI-level 5 organization in Vietnam, and 8 

from a CMMI-level 3 organization in Thailand. The 

first organization has been an active COCOMO user 

and calibrated the model for their inter ml use. The 
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other organizations collected analyzed project size, 

effort, and other metrics as a part of their CMMI 

compliant processes. The organization in Vietnam 

granted me permission to interview project managers 

and team members to fill out the data collection 

forms. For the organization in Thailand, several 

interviews with the representative were carried out in 

order to validate the data points provided by the 

project teams. These granted accesses helped 

alleviate variations that may have been caused by 

consistency in understanding the data attributes. 

The size metrics were collected by using code 

counting tools to compare differentials between two 

baselines of the source program (see Figure 5-2). 

These size metrics are based on the logical SLOC 

definition originally described in Park [1992] and 

later adopted into the definition checklist for logical 

SLOC counts in the COCOMO model. According to 

this checklist, one source statement is counted as one 

logical SLOC, and thus, blanks and comments are 

excluded. One organization reported using various 

code counting tools, and the other organizations used 

the Code Count tool10 for collecting the size metrics. 

Although using the same counting definition, 

variations in the results generated by these SLOC 

counting tools may exist[9]. This problem, which is 

caused by inconsistent interpretations of the counting 

definition, is a known limitation of the SLOC metrics 

[10]. Nonetheless, the SLOC counts among the 

releases of the same program are highly consistent as 

each program used the same SLOC counting tool. 

Effort was collected in person-hour and converted 

into person-month using COCOMO's standard 152 

person-hours per person-month, avoiding variations 

created by different definitions of person-month 

among the organizations. However, as discussed in 

[11], unrecorded overtime can cause variations in the 

actual effort reported. Another source of variations 

arrives from the subjective estimates of originates 

from adapting the pre-existing modules, almost a 

third for adding new modules, and only a small 

percentage (7.5%) for testing and integrating the 

reused modules. 

The scatter plot on PM versus Equivalent KLSOC of 

the dataset shown in Figure 5-4 indicates that the 

dataset is skewed with far fewer large projects than 

small projects and the variability of PM is 

considerably higher in large projects. Additionally, 

there is one extreme project that has effort almost 

three times as much as that of the second largest 

project. These characteristics are often seen in 

software datasets. A typical approach to handling 

these datasets is to apply the logarithmic 

transformation on both effort and size metrics. The 

logarithmic transformation takes into account both 

linear and non-linear relationships, and it helps 

ensure linear relationships between log-transformed 

variables. The scatter plot in Figure 5-5 shows that 

the logarithmic transformation can appropriately 

resolve these issues that exist in the data set. 

Outliers can distort the linear regression model, 

affecting the accuracy and stability of the model. 

Unfortunately, software data sets often contain 

outliers. This problem is caused by inconsistency and 

ambiguity in the definition of software terms (i.e., 

size and effort), imprecision in the data collection 

process, and the lack of standardized software 

processes. To handle possible outliers in software 
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data sets, several techniques have been used often, 

including building robust regression models, 

transforming the data, and identifying and 

eliminating outliers from the rest of the data set [12]. 

To some extent, all of these techniques were used in 

this study. 

Table 5-8 summarizes the rating values of the 20 cost 

drivers calibrated by the Gayesian analysis using the 

80 releases of the final data set. Undefined rating 

scales for the cost drivers at the corresponding levels 

are indicated by the grayed blank cells. It should be 

noted that the rating value for the Nominal rating of 

the effort multipliers is 1.0, which implies that the 

nominal estimated effort is not adjusted by the effort 

multipliers. 

Hypothesis 2 states that the productivity ranges of the 

cost drivers in the COMO II model for maintenance 

are different form those of COCOMO 11.2000. 

Different approaches used to calibrate the COCOMO 

II model for maintenance result in different sets of 

productivity ranges. For testing this hypothesis, the 

productivity ranges calibrated through the Bayesian 

analysis were used to compare with those of 

COCOMO 11.2000. This comparison is valid since 

the Bayesian analysis was also applied to calibrating 

COCOMO 11.2000's productivity ranges. 

Table 5-7 presents productivity ranges of the 

COCOMO II maintenance calibrated y the Bayesian 

approach and COCOM 11.2000 and their differences 

between the two models. For the effort multipliers, 

the productivity range is the ratio between the largest 

and the smallest rating value. The productivity ranges 

of the scale factors are for 100 EKSLOC projects and 

computed as Pl.SFj = IQQQ" ' w^ere ^ an<^ 

SFimax are the constant B and the maximum rating 

value of the scale factor i. 

        

 

 

 

 

 

 

Table 1:  Estimation Accuracies of Constrained Approaches 

 
Approach  PRED(0 .30

)  

PRED(0 .25)  PRED(0 .50)  MMRE MdMRE 

CMRE 60% 56% 76% 37% 23% 

CMSE 51% 43% 79% 39% 30% 

CMAE 58% 54% '71% 42% 23% 
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Table 3:  Estimation Accuracies of Constrained Approaches using LOOC Cross-validation 

As i l lus tra ted in Table 1 ,  which sho ws the  

productivi ty ranges genera ted by the  

CMRE approach,  e ight  cos t  dr ivers,  

includ ing a l l  5  sca le  fac tors  but  FLEX and  

4 e ffor t  mul t ip l ier s (PVOL, DATA, TIME,  

and  RELY),  were pruned from the model ,  

leaving 12 most  relevant cost  dr ivers in the  

model.  The Storage Constraint (STOR) cost  

dr iver  appears to  be the most  inf luent ia l  

dr iver  wi th the product ivi ty range of 2 .81,  

and the personnel  factors except  LTEX are  

among the leas t  inf luential .  This result  

appears to  be counter intui t ive s ince i t  

contrad ic ts  the Delphi  result s  which 

ind icate tha t  personnel  factors have the  

most  s igni f icant  impacts on effor t  and that  

STOR is 1 to t  considered to  be highly 

inf luential .  I t  should be  no ted that ,  unl ike  

the Bayesian approach,  which adjus ts the  

data -dr iven est imates wi th  the experts '  

es t imates,  the const rained regression 

techniques rely heavi ly on the sample data  

to  genera te  est imates.  Thus,  l ike mul t iple  

'near regression, it suffers the correlation between cost drivers 

and the lack of dispersion the sample data set.. 

 
PRED(0 .30)  PRED(0 .25)  PRED(0 .50)  MMRE MdMRE 

CMRE 51% 40% 73% 43% 30% 

CMSE 41% 35% 69% 49%o 35% 

CMAE 51% 48% 67% 52% 28% Approach PRED(0.30)  PRED(0.25)  PRED(0.50)  MMRE MdMRE 

CMR

E 

60% 56% 76% 37% 23% 

CMSE 51% 43% 79% 39% 30% 

CMAE 58% 54% 71% 42% 23% 

 

Table 2: Estimation Accuracies of Constrained Approaches 
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Figure 2: Productivity Ranges Generated by CMRE 

 
 

 

                      The estimation accuracies produced by three constrained 

regression approaches are listed in Table. Considering the 

PRED(0.30), PRED(0.25), and MMRE metrics, it is clear 

that CMRE and CMAE outperform both COCOMO 

11.2000 and the Bayesian calibrated model, improving 

PRED(OJO) from 38% produced by COCOMO 11.2000 to 

60%, a 58% improvement. It is important to note that 

CMSE's PRED(0.30) and PRED(0.25) values are as low as 

those of the Bayesian calibrated model. A possible reason 

this similarity is that both CMSE and the Bayesian calibrated 

model optimize the same quantity, the sum of square 

errors. This quantity may overlook high square errors 

in small projects to favor high square errors in large 

projects, resulting in high MRE errors in the 

estimates of these small projects. The LOOC cross-

validation results in Table 5 further confirm the 

improvement in the performance of the constrained 

models over the Bayesian calibrated model. This 

observation is consistent with the results reported in 

which the performance of these approaches were 

compared with Lasso, Ridge, Stepwise, and OLS 

regression techniques using other COCOMO data 

sets. 

REDUCED PARAMETER MODELS 
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Strong correlations and the lack of dispersion in cost 

drivers can negatively affect the stability of the 

estimation model that is built on the assumptions of 

the multiple linear regression. The analysis of the 

correlation and dispersion properties of the data set 

may suggest possible redundant drivers that 

contribute little to improving the accuracy of the 

estimation model. Similar to the previous COCOMO 

studies, this study also investigated a reduced model 

with a smaller set of cost drivers by aggregating cost 

drivers that are highly correlated or lack dispersion. 

Two cost drivers are deemed to be aggregated if their 

correlation coefficient is 0.65 or greater. 

Table 3  shows the correlation matrix of highly 

correlated drivers, all belonging to the personnel 

factors. ACAP and PCAP were aggregated into 

Personnel Capability (PERS), and APEX, LTEX, 

PLEX into Personnel Experience (PREX). It turns 

out that these aggregations are the same as those of 

the COCOMO Early Design model, except that 

PCON was not aggregated into PREX. 

       Table 3: Correlation Matrix for Highly Correlated Cost Drivers 

ACAP             PCAP APEX LTEX PLEX 

PCAP 0,74 1.00   

APEX 0.44 0.39 1.00  

TEX 0.58 0.53 0 J 2  1.00 

LEX 0:49 03 058 75 

 

Table 3 and Table 4 show that the Execution Time 

Constraint (TIME) and Main Storage Constraint (STOR) 

ratings are positively skewed with 82 and 76 data 

oints out of the 86 data points rated Nominal,  

 

respectively. Moreover, while the range of defined 

ratings for TIME and STOR is from Nominal to Very 

High, no data point was rated High and Very High 

for TIME and Very High for STOR. This lack of 

dispersion in TIME and STOR can result in high 

variances in the coefficients of these drivers as the 

impact of the non-Nominal ratings cannot be 

determined due to the lack of these ratings. An 

explanation for this lack of dispersion is that new 

technologies and advancements in the storage and 

processing facilities, making TIME and STOR 

insignificant for the systems that are less constrained 

by the limitations of the storage and processing 

facilities. And all of the projects in the data set are 

non-critical and non-embedded systems, which are 

typically not dependent on the storage and processing 

constraints. Thus, the TIME and STOR cost drivers 

were eliminated from the reduced model. In all, 

seven cost drivers were removed, and two new were 

added, resulting in the red; ced model with 15 cost 

drivers, as compared to the full model with 20 cost 
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drivers, gayesian approach appears to have a smaller 

MMRE value than that of the respective full  model. 

Local Calibration 

A series of stratifications by organization and by 

program were performed using four different 

approaches: 

• Productivity index. The project effort 

estimate is determined by dividing 

project size by productivity index, i.e., 

Effort  = Size  I Product ivity  

Index,  where the productivity index 

is the average productivity of past 

projects or an industry census. It is the 

simplest model to estimate effort given 

that the productivity index is known. 

This model is often referred to as the 

baseline, and a more sophisticated 

model is only useful if it outperforms 

the baseline model. 

• Simple linear regression between 

effort and size. The simple linear 

regression is used to derive the model 

whose response and predictor are the 

logarithmic transformations of PM and 

Equivalent  KSLOC, respectively. 

• Bayesian analysis. The full model 

with all the drivers that were calibrated 

using the Bayesian analysis was used 

as a basis to fit into local data sets and 

compute the constants A and B in the 

COCOMO effort estimation model 

(Eq. 4-11). The resulting local models 

differ from each other only in the 

constants A and B. The full model, 

instead of the reduced model, was used 

since it allows organizations to select 

from the full model the most suitable 

cost drivers for their processes. 

• Constrained regression with 

CMRE. This local calibration 

approach used the set of 12 cost drivers 

and the constants A and B obtained 

from the constrained regression with 

CMRE. The constants A and B were 

further calibrated into local data sets 

based on organization and program. 

       Using the approaches above, the following eight 

local calibrations were investigated: 

CI. The productivity index of each organization was 

computed and used to estimate the projects within the 

same organization. 

C2. The simple linear regression was applied for each 

individual organization. 

C3. Stratification by organization using the Bayesian 

approach. 

C4. Stratification by organization using the 

constrained approach CMRE. 

C5. The productivity index of the previous releases in 

each program was used to determine the effort of the 

current release in the same program. 

C6. The simple linear regression was applied for each 

individual program that has five or more releases. 

C7. Stratification by program using the Bayesian 

approach. 

C8. Stratification by program using the constrained 

approach CMRE. 
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                            Table 4: Stratification by Organization on 45 Releases 

Calibration #Releases PRED(0.3
0) 

PRED(0.2
5) 

MMRE MdMRE 

CI 45 40% 40% 44% 37% 

C2 45 31% 27% 53% 40% 

C3 45 
63% 55% 40% 24% 

C4 45 
60% 58% 34% 22% 

 

It can be seen from Table 3 and Table 4 that the 

calibrations based on the gayesian and CMRE models 

outperform both productivity index and simple linear 

regression approaches. C3 and C4, whose 

performances are comparable, are more approachable 

than CI and C2 when stratification by organization is 

concerned. Similarly, C7 and C8 outperform C5 and 

C6 when calibrating for each individual program. It is 

clear at the effects of the cost drivers in the Bayesian 

and CMRE models positively contribute to 

improving the performance of the models. Even in 

the same program, the ost drivers' ratings change 

from one release to another. For example, if the 

attrition rate low, the programmer is more familiar 

with the system, and is more experienced with e 

languages and tools used in the program. If the 

attrition rate is high, on the other hand, the overall 

programmer capability and experience could be 

lower than the previous release. Due to these effects, 

the productivity of the releases of the same program 

does iot remain the same. 

The program-based calibrations appear to generate 

better estimates than the organization-based 

calibrations. This finding is further confirmed when 

the local models t CI, C2, C3, and C4 were tested on 

the same data set of 45 releases used in the program-

based calibrations. One explanation for the 

superiority of the program-based calibrations is that 

possible variations in application domains, 

technologies, and software processes were minimized 

when considering only releases in the same program. 

Another explanation is that the variations in the data 

collection process are reduced as the same code 

counting tool was used and the same data collector 

rated the cost drivers for all releases in the same 

program. 

The best performers are the local models that were 

calibrated using the Bayesian and MRE models on 

each individual program. They could produce 

estimates within 30% of the actuals 80% of the time. 
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This result is comparable to the COOCOMO 11.2000 

model when it was stratified by organization. 

Comparing the accuracies in Tables 5-9, 5-12, 5-13, 

5-16, 5-17, and, 5-18 one can see that the generic 

models calibrated using the Bayesian and CMRE 

approaches can be further improved by calibrating 

them into each individual organization and program. 

Moreover, these generic models are more favorable 

than the productivity index and the simple linear 

regression in the stratification by organization, 

indicating that the generic models may be useful in 

the absence of sufficient data for local calibration. 

This finding confirms the previous COCOMO studies 

and other studies which suggest that local calibration 

improves the performance of the software estimation 

model. 

Hypothesis 4 states that the COCOMO II model for 

maintenance outperforms the simple linear regression 

and the productivity index method. As shown above, 

this hypothesis is supported. 

Conclusion 

The data set of 80 releases from 3 organizations was 

used to validate the proposed extensions to the size 

and effort estimation model. The effort estimation 

model was calibrated to the data set using a number 

of techniques including the linear regression, 

Bayesian, and constrained regression. Local 

calibrations to organization and program were also 

performed and compared with the less sophisticated 

approaches, the productivity index and the simple 

linear regression. The best model, which was 

calibrated using the releases of each individual 

program, can produce estimates with PRED(0.30) = 

80% and MMRE = 0.22, outperforming the less 

sophisticated but commonly used productivity index 

and simple linear regression. 
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