

 THE ARCHITECTURE AND APPLICATIONS OF 12C DEVICE DRIVER IN EMBEDDED SYSTEMS S. Suresh Kumar;

Dr.C.V.Narasimhulu & T Rama Krishna

P a g e | 2006

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

The Architecture and Applications of 12C
Device Driver in Embedded Systems

S. Suresh Kumar1; Dr.C. V. Narasimhulu2 & T Rama Krishna3

1
Research Scholar, Geethanjali College Of Engineering And Technology,

Cheeryal (Vill), Keesara (Mandal), RrDist,A.P, India
Email: sanam.sureshkumar93@gmail.com

2
Professor &Hod:,Geethanjali College Of Engineering And Technology,

Cheeryal (Vill), Keesara (Mandal), RrDist,A.P, India

3
Professor, Geethanjali College Of Engineering And Technology,

Cheeryal (Vill), Keesara (Mandal), RrDist,A.P, India

Abstract-

‘The device-core-bus three-layer architecture of i2c is the

main reference framework to develop i2c device driver

efficiently in Embedded system. With a structured viewpoint

we have analyzed the driver layers, data structures, driving

procedures, and especially analyzed the two developing

approaches for driving procedures in device layer.

Keywords-Embedded, l2c, Driver, Architecture

I. INTRODUCTION
I2C bus, a two-wire bus with a compact size and simple

timing, is widely used in embedded field. But in the

operating system, i2c device driver architecture becomes

very complex in order to support multi-device, multi-tasking.

The author, therefore, with a structured viewpoint, expounds

the architecture and application of i2c under embedded

Systems in detail.
This paper is based on the embedded Systems of 2.6.30

Kernel and the i2c kernel driver developed by Greg K,

Hartman, Simon G. Vogl.

II. I2C-DRIVER'S LAYER STRUCTURE

A. Constitution of driver layer

kernel

According to the call layers, Device drivers can be

divided the following three levels: i2c device layer driver, i2c

core layer driver and i2c bus (adapter) layer drive. These

three parts complete the framework for i2c driver with strong

applicability. i2c bus driver and the device driver are linked

by the kernel driver. And i2c source file layer mechanism

corresponds to the driver layers structure.[l]

B. 12C file structure

Kernel source organization: the sources related to i2C
are stored in i2c folder of kernel. There are i2c core.c, i2c _
dev.c and some folders such as busses, chips and
algorithm.

The functions of the core layer are achieved by the i2c _

core.c. The device layer is rather special, and there are two

equivalent ways. First, by i2c _dev.c, adapter file interface is

realized (i2c_dev method), in other words, at the application

layer calling the master node (the equivalent of the adapter)
created by the kernel file i2c_dev.C, interface functions,

such as read, ioctl, etc.. can have access to visit the device.

This method is equivalent to programming device driver

process in the application layer. 2. Through c file in the chips

folder, device driver file interface is realized (driver method),

that is, writing performance functions such as xxx command

o (xxx is the name of a custom from the device) illc file in the

chips folder can access device process and call this function

at the application layer. The two methods are equivalent. [3]

ARM chips are generally integrated with i2c adapter

hardware, and the C file under busses realizes the functions

of the bus adapter by calling the driver algorithm file

functions under algorithm, and busses and algorithm

 THE ARCHITECTURE AND APPLICATIONS OF 12C DEVICE DRIVER IN EMBEDDED SYSTEMS S. Suresh Kumar;

Dr.C.V.Narasimhulu & T Rama Krishna

P a g e | 2007

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

constitute the bus layer.

III. I2C DATA STRUCTURES AND PERFORMANCE
FUNCTIONS

I2C can be divided into performance functions and data

structures according to the function completed by driver

code.
I2C performance functions, such as driver registration,

attachment, attachment solution, cancellation, transfer, etc.,

reflect on the general methods of operating i2c hardware,

data, timing, etc. while data structure represent example

objects of the hardware, data, timing algorithm, and the

device must be instantiated as corresponding data structure

in order to be used by i2c performance function, and through

its interaction with the data structure, it completes the driver

process. Device layer, core layer and bus layer all include

corresponding performance functions and data structures.

A. 12C driver data structure

The structure in i2c, as the abstract examples of the

specific adapter, device, drivers, signal algorithm, a message,

is the carriers of specific device, driving method, and data,

which play an important role in the i2c framework. The main

data structures in i2c driver include i2c_ dev, i2c _client,
i2c_adapter, i2c_msg, etc., and there is also nestification

between some structures. The correspondences between

the main structures and objects are as follows:

B. 12c Performance Functions

12c bus layer provides the core layer with the processing

function of bottom signal timing. i2c core layer, as the

intermediate layer, provides the specific device and the

general driver function unrelated to adapter for calling by the

device and the bus layer. The device layer, through calling

the driver function of the core layer, calls the bus adapter

function and provides the application layer with performance

function of specific device.

IV. THE LOADING OF 12c DRIVER

A. The loading of bus (adapter) driver

The bus driver, when separately loaded as a module

driver, first needs to be registered a structure,

platform_driver, including the specific adapter's probeO

function, removeO function pointer, etc., which need to be

assigned. When this module is loaded, the probeO function

of the specific adapter is called to initialize the adapter

hardware, including the initialization of hardware to enable

and applying I / 0 address, interrupt numbers, and so on.

When the initialization is completed correctly, the bus driver

probeO function calls i2c_add_numbered_adapterO function

in the i2c kernel to add the current bus driver to the linked
list of kernel i2c _adapter.

1------------------------,

Device driver: Load

Driver Module

12C Core: register Char
dev

 Device Driver: Load Driver

 Device Driver: Attach Device

L-____ ----�

 I

1

�

 1

 1

 12C Core: Create Device

I

L-__________�

 � 1

-------------------______ 1

Figure 2. driver loading process

B. The loading of the device layer driver

The device layer driver must be attached to

corresponding adapter to call the bus drive function in the

bottom when it is loaded. According to the driver way, for the

attachment of the device drivers there are two methods: the

adapter file interface (i2c_dev.c) and device driver file

interface (Driver). [4]
The first method is to use the adapter file interface (i2

c_dev. c). It attaches master device data structure i2c_dev
to the physical adapter, and operates slave unit through

operating the master node (the equivalent of adapter) for the

issue of timing signals on the bus. i2c_dev structure uses device

object structure to organize the devices on the same bus into

chain table, and add it to the chain table of global devices. i2c

dev.c maintains a structure i2c driver, which is a supportive data

structure instead of corresponding to a specific physical device,

including two member functions attach_adapter and

detach_adapter, whose pointers respectively points to two

private member functions i2cdev_attach_adapter and

i2cdev_detach_adapter. When i2c dev device driver is loaded, it

first uses register_ chrdevO to register a character device in the

init function, and through i2c add driverO calls i2cdev attach

adapterO function, in whICh it first calls geUreej2c_dev()

function to create a i2c dev data structure, and gets the adap

members pointer to pomt the current adapter structure; second,

i2c _dev structure needs to be added to the linked list in the

kernel to maintain i2c dev; thirdly, it is supposed to call

device_createO function to register device object in the kernel;

finally, you should use device create fileO function to create the

primary device file to complete the attachment of the master

structure (i2c_dev) on/to the bus adapter (i2c _adapter) .

The second method is to use the device driver file

interface. In this way each slave device corresponds to a

client, which in turn, needs to attach to the physical adapter.

When the device layer driver is loaded, i2c_add_driverO

function will be called in the init function, and the parameter

of the function is the structure pointer pointing to xxx_driver

(xxx is slave unit name). xxx_driver structure contains the

function pointers such as probeO, detectO, removeO, and so

 THE ARCHITECTURE AND APPLICATIONS OF 12C DEVICE DRIVER IN EMBEDDED SYSTEMS S. Suresh Kumar;

Dr.C.V.Narasimhulu & T Rama Krishna

P a g e | 2008

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

on. First, through the probeO function, it completes hardware

detection, initiating the implement of detectO function, in

which the i2c client structure of slave unit will be created and

initialized� and then calls the i2c_attach_ c1ientO function

in i2c core layer to add i2c_client structure to a static client

chain table in the kernel, and finally it is supposed to initialize

the device hardware, and complete the attachment of the

slave unit structure (i2c_client) on the bus adapter (i2c

_adapter).

V. THE CALLING OF 12c DRIVER

A. The calling method of adapter file interface
The adapter interface file is i2c_dev.c, which can

generate a primary device node of i2c-x(x is the serial

number in the kernel chain table of the present adapter)
when the kernel has been loaded. The slave unit is operated
indirectly through the manipulation of the primary device
(adapter). To begin with, the application layer needs to use
open function to open this node, transmit a reading and
writing authority at the same time, and then invokes/calls
ioctl function to deliver the timeout and retry times to the

core of i2c, next needs to defme a data structure of i2c rdwr-

ioctl data and makes it instantiated. An i2c-msg message

structure pointer of msgs is nested in this data structure,
which is pointed at an arrayof7 bytes. It also
defines a variable for the number of the start signal-nmsgs.

[5]

struei2.,,_msg

{

unsigned short

addr; unsigned

shon flags

unsigned shon en;

unsigned char "buf;

};

According to the i2c agreement, the number of i2c

messages is related to the start signal, with a start signal

corresponding to a message. Several messages are usually

needed for a complicated i2c device to fmish a complete

access, so the nmsgs should be more than 1. A pointer

variable directing/pointing the address of i2c _msg is defmed

in i2c_rdwr_ioctl_data. Thus, the structure of i2c_msg (see

Fig. 3) should be initialized. In this structure, the device

address needs to be fIrst initialized, then the read-write

symbols of equipment operation, the length of the byte of the

message - len, and the initial address of the buffer zone of

message byte - buf pointer. Last, another member of the i2c

_rdwr_ioctl_ data structure should be initialized: integer

nmsgs variable. For example, The selected read time

sequence of eeprom chip 24C02 (see Fig. 4) needs two

start signals, so nmsgs should be equal to 2.

After the necessary i2c message data are ready, the
equipment can be operated. The main operating functions
are i2c_read, i2c _write, ioctl, etc. As for the two functions of
i2c _read and i2c _write, the functions of i2c _master_recv

and i2c- master- send in the core of i2c need to be called to

construct a i2c message and trigger to transmit in the way of
i2c _masterJfer of the algorithm of corresponding adapter in
the Bus Driver. But this method is only limited to the
operation of one message, while ioctl method can be applied
to the operation of many messages. Because it supports a
method of Rep start and sends out start signals on the bus
repeatedly (see Figure 5). Therefore, ioctl method has

greater adaptability and should be the fIrst choice in the

general case. Certainly, the bus transfer functions

(i2c_masterJfer) that ioctl and the read and write functions

call are the same.

B. The calling method of the device driver file interface

The loading procedure of the device driver fIle is similar

to the adapter fIle interface. It loads specifIc device driver via
i2c_add_driver () function in the process of init and attaches

it to the corresponding bus driver. Driver can support the

data structure of many slave units «i2c_c1ient), but they

need to be attached to the present physical adapter

(i2c_adapter). The timing sequence that has been organized

by calling the device layer via the xxx_command function in

the application program accomplish the i2c operation

process of a specifIc device.

VI. CONCLUSION

Practice has shown that the device-core-bus three-layer

architecture of i2c in Embedded Systems can fully satisi)r

the requirements of more equipment, muItitask in embedded

environment. But in some cases, it is necessary to

 THE ARCHITECTURE AND APPLICATIONS OF 12C DEVICE DRIVER IN EMBEDDED SYSTEMS S. Suresh Kumar;

Dr.C.V.Narasimhulu & T Rama Krishna

P a g e | 2009

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

simplii)rthe driver levels so as to simplii)r the development

process. If the bus driver layer is only retained, all the driver

task will be fmished on this floor. In short, it is supposed to

choose suitable framework and the corresponding

developing method according to the specifIc application in

order to improve or enhance the efficiency of development.

REFERENCES

[I] Simon G.Vog i2c-core.c - a device driver for the i2c-bus

interface. GNU,1999

[2] Greg Kroah-Hartman. i2c-dev.c - i2c-bus driver, char

device interface. GNU,2003

[3] JonathanCorbet, Alessandro Rubini, Greg Kroah-
Hartman. Device Drivers,3rd Edition., O'Reilly, 2005.12

[4] Jun Li, Development Solutions to Embedded Linux Device

Driver, Beijing: Posts & Telecom Press, 2008.10

[5] Tianze Sun, Wenju Yuan, Haifeng Zhang, A Guide to

Embedded Design and Linux Driver Development -

Based on ARM9 Processor, Beijing: Electronic Industry

Press,2005.2

	S. Suresh Kumar1; Dr.C. V. Narasimhulu2 & T Rama Krishna3

