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Abstract:  

Big Data applications are becoming more 

complex and expe-riencing frequent changes and 

updates. In practice, manual optimization of complex 

big data jobs is time-consuming and error-prone. 

Maintenance and management of evolving big data 

applications is a challenging task as well. We 

demon-strate HDM, Hierarchically Distributed Data 

Matrix, as a big data processing framework with 

built-in data ow op-timizations and integrated 

maintenance of data provenance information that 

supports the management of continuously evolving 

big data applications. In HDM, the data ow of jobs 

are automatically optimized based on the functional 

DAG representation to improve the performance 

during ex-ecution. Additionally, comprehensive 

meta-data related to explanation, execution and 

dependency updates of HDM ap-plications are stored 

and maintained in order to facilitate the debugging, 

monitoring, tracing and reproducing of HDM jobs 

and programs. 

Keywords:Big Data; Data Flow Optimization; 
Provenance Manage-ment 

I. Introduction  

We are experiencing the era of big data that has been 

fu-elled by the striking speed of the growth in the 

amount of data that has been generated and 

consumed. Several big data processing frameworks 

(e.g., MapReduce [2], Spark [6] and Flink [1], etc.) 

have been introduced to deal with the challenges of 

processing the ever larger data sets [3]. These 

frameworks signi cantly reduce the complexity of 

writing large scale data-oriented applications. 

However, in practice, as big data programs and 

applications have become more and more 

complicated, it is almost impossible to manually 

optimize the performance of programs written by 

diversi ed programmers. Therefore, built-in 

optimizers are crucial for tackling the challenges of 

improving the performance of ex-ecuting those hand-

written programs and applications. At the same time, 

realistic data analytics applications are con-tinuously 

evolving in order to deal with the non-stop changes 

in the real world. In practice, managing and 

analyzing those continuously evolving big data 

applications have resulted in big technical debts [4]. 

Therefore, there are increasing re-quirements for data 

provenance to support analyzing, trac-ing and 

reproduction of historical versions of data analytics 

applications. In this paper, we demonstrate HDM, 

(Hierarchically Dis-tributed Matrix) [5], a big data 

processing framework with built-in data 

optimizations for execution and data prove-nance 

supports for managing continuously evolving big 

data applications. In particular, HDM is a 

lightweight, functional and strongly-typed data 

representation which contains com-plete information 

(such as data format, locations, dependen-cies and 

functions between input and output) to support 

parallel execution of data-driven applications [5]. 
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Exploit-ing the functional nature of HDM enables 

deployed appli-cations of HDM to be natively 

integrable and reusable by other programs and 

applications. In addition, by analyzing the execution 

graph and functional semantics of HDMs, mul-tiple 

optimizations are provided to automatically improve 

the execution performance of HDM data ows. 

Moreover, by drawing on the comprehensive 

information maintained by HDM graphs, the runtime 

execution engine of HDM is also able to provide 

provenance and history management for submitted 

applications. 

 

2. HDM FRAMEWORK 

 

2.1 System Overview 

 Fig 1 shows the system architecture of the 
HDM runtime engine which is composed of three 
main components: Runtime Engine: is responsible 
for the management of HDM jobs such as 
explaining, optimization, schedul-ing and 
execution. Within the runtime engine, the 
AppManager manages the information of all 
deployed jobs. TaskManager maintains the 
activated tasks for runtime scheduling in the 
Schedulers; Planner and Op-timizers interpret and 
optimize the execution plan of HDMs in the 
explanation phases; HDM manager man-ages the 
information and states of the HDM blocks in the 
entire cluster; Execution Context is an abstraction 
component to support the execution of scheduled 
tasks on either local or remote nodes. 
Coordination Service: is composed of three types 
of co-ordinations: cluster coordination, block 
coordination 

 

and executor coordination. They are responsible 
for the coordination and management of node 
resources, distributed HDM data blocks and 
executors on work-ers, respectively. Data 
Provenance Manager: is responsible to interact 

with the HDM runtime engine to collect and main-
tain data provenance information (such as 
Dependen-cyTrace, JobPlanningTrace and 
ExecutionTrace) for HDM applications. Those 
information can be queried and obtained by client 
programs through messages for the usage of 
analysis or tracing. 

 

2.2 HDM Data Flow Optimization  

One key feature of HDM is that, the execution 
engine contains built-in planners and optimizers to 
automatically optimize the functional data ow of 
submitted applications and jobs. During 
explanation of HDM applications, the data ow are 
represented as DAGs with functional 
dependencies among operations. The HDM 
optimizers traverse through the DAG to 
reconstruct and modify the operations based on 
optimization rules to obtain more optimal 
execution plans. Currently, the optimization rules 
implemented in the HDM optimizers include: 
function fusion, local aggregation, oper-ation 
reordering and data caching for iterative jobs [5]. 
Function fusion. During optimization, the HDM 
plan-ner combines the lined-up non-shu e 
operations into one operation with high-order 
function so that the se-quence of operations can be 
compute within one task rather than separate ones 
to reduce redundant inter-mediate results and task 
scheduling. This rule can be applied recursively on 
a sequence of fusible operations to form a compact 
combined operation. Local Aggregation. Shu e 
operations are very expen-sive in the execution of 
data-intensive applications. If a shu e operation is 
followed with some aggregations, in some cases, 
the aggregation or part of the aggrega-tion can be 
applied before the shu ing stage. During 
optimization, HDM planer tries to move those 
aggre-gation operations forward before the shu ing 
stage to reduce the amount of data that needs to be 
transferred during shu ing. Operation 
reordering/reconstruction. Apart from ag-
gregations, there are a group of operations which 
l-ter out a subset of the input during execution. 
Thoseoperations are called pruning operations1. 
The HDM planner attempts to lift the priority of 
the pruning op-erations while sinking the priority 
of shu e-intensive operations to reduce the data 
size that needs to be computed and transferred 
across the network. Data Caching. For many 
complicated and pipelined analytics jobs (such as 
machine learning algorithms), some intermediate 
results of the job could be reused multiple times 
by the subsequent operations. There-fore, it is 
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necessary to cache those repetitively used data to 
avoid redundant computation and communica-
tion. In this case, HDM planner counts the 
reference for the output of each operation in the 
functional DAG to detect the potential points that 
intermediate results should be cached for reusing 
by subsequent operations. During optimization 
process, the rule above are applied one by one to 
reconstruct the HDM DAG and the optimiza-tion 
can last multiple iterations until there is no change 
in the DAG or it has reached the maximum 
number of itera-tions. The HDM optimizer is also 
designed to be extendable by adding new 
optimization rules by developers when it is 
needed.  

2.3 Data Provenance Supports in HDM 

It is normally tedious and complicated to maintain 
and manage applications that are continuously 
evolving and be-ing updated. In HDM, drawing on 
comprehensive meta-data information maintained 
by HDM models, the runtime engine is able to 
provide data provenance supports includ-ing 
execution tracing, version control and job replay 
in the dependency and execution history 
management component. Basically, the HDM 
server maintains three types of meta-data about 
each submitted HDM jobs including Execution-
Trace, JobPlanningTrace and DependencyTrace. 
DependencyTrace. For every submitted HDM 
program, the server stores and maintains the 
dependent libraries required for execution. The 
dependencies and update history are maintained as 
a tree structure. Based on this information, users 
are able to reproduce any ver-sion of the submitted 
applications in the history. JobPlanningTrace. The 
HDM server also stores the explanation and 
planning traces for every HDM appli-cations. 
JobPlanningTrace includes the logical plan, 
optimizations applied and nal physical execution 
plan after being parallelized.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Data ow Visualization of HDM Applica-
tions.  

 

ExecutionTrace. During execution, the HDM 
server also maintains all the runtime information 
(execution location, input/output, timestamps and 
execution sta-tus, etc.) related to each executed 
task and job. These information are very 
meaningful to monitor and trace back the process 
of execution of historical jobs and applications. 
Drawing on the three types of information 
maintained in the HDM server, client-side 
programs can send messages to query and obtain 
the history and provenance information, so that 
users and administrators can pro le, debug and 
apply analysis to the deployed applications 
throughout their life cycles.  

3. DEMONSTRATION SCENARIOS  

In this demonstration, we will present to the 
audience the HDM framework1 from four main 
aspects: cluster re-source monitoring, visualisation 
data ow optimization, exe-cution history tracing, 
version-control and dependency man-agement. 
The demonstration will be conducted on AWS 
EC2 with one M3.Large instance as the master and 
10 nodes M3.XLarge instances as the workers. To 
show how HDM optimizes the data ow and 
provides data provenance support for its 
applications, we will present an example of 
Twitter analysis scenario that consists of the 
following two Tweets analysis programs 

Listing 1: Code Snippet of Finding out Tweets 
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Listing 2: Code Snippet of Hashtag Counting for 
Interested Tweets 

 

 

Cluster Resource Management. In the rst part of 
the demo, we will show the cluster resource 
monitor of the HDM manager. The HDM server 
maintains the resource-related information of all 
the workers within the cluster. In the 
HDMConsole, it is able to monitor the resource 
utilization information (such as CPU, Memory, 
Network and JVM) for each worker in real time. 
Therefore, cluster administrator is able to use 
these information and easily supervise and 
understand the status of every worker as well as 
the entire cluster. 

Data ow Optimizations. The second part of the 
demo shows how the Tweets programs are 
represented in the HDM DAG and how it is 
explained, optimized and parallelized by the 
planner. 

For the firrst program, the HDM optimizer applies 
op-erations reordering to lift the pruning operation 
find-ByKey to be in front of the shu e operation 
groupBy. Then the optimizer applies function 
fusion rule to com-bine map and findBy into a 
single composite operation. 

For the second program, the HDM optimizer 
applies operation reordering to move the 
findByKey operation to be in front of groupBy 
then applies local aggrega-tion count by adding 
local count in front of groupBy. Lastly, it detects 
the input tweets that are reused by two operations 
so that the optimizer can add a cache point after 
the compute operation that generates the output of 
tweets. 

The HDM server maintains all the related meta-
data (such as the creator, original program, logical 
plan, physical plan, etc.) to all the submitted HDM 
applications. In the demon-stration, the HDM 
console visualizes the original logical ow, 
optimized logical ow and parallelized physical 
graph 

 

 

 

 

 

 

Figure 3: Execution Traces of HDM Applications. 

 

 

 

 

 

 

 

 

Figure 4: Dependency Management and Version 
Control of HDM. 

for each execution instances of the HDM 
applications (Fig-ure 2). 

Execution History Tracing. In the third part of the 
demo, we will show how the execution process 
can be tracked dur-ing and after execution. The 
HDM server collects and stores the runtime 
information for each execution task and struc-tures 
them into DAG based on the task dependencies. 
Dur-ing or after the execution of the tasks, the 
HDM server also updates the status in the stored 
meta-data when it has re-ceived the noti cation 
messages. The HDM console also summarizes 
those information and presented it into a view of 
execution lanes for each core of the workers 
(Figure 3). 

Dependency Management and Version Control. In 
the last part of the demo, we will show how the 
HDM server manages the dependencies and 
provides version control for submitted 
applications. The dependency and history manager 
stores all the updating history of each HDM 
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applications and or-ganizes them into a tree based 
structure. As a result, ad-ministrator users are able 
to query, analyze and reproduce the historical 
HDM applications using those dependencies 
information (Figure 4). 

Besides the framework demonstration, we will 
also dis-cuss in more details about the design 
choices that we have made on de ning the di erent 
components of the framework. In addition, 
performance comparison with the Spark frame- 

work [6], using the example scenario, will be 
presented to demonstrate the e ciency of the HDM 
optimization tech-niques. 
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