

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 302

BIG DATA PROCESSING WITH DATA PROVENANCE

USING HDM FRAMEWORK

Mr.Rajat Bodankar
1
, Mrs.Roshani Talmale

2

2
M.Tech Student 2

nd
 Year Dept. of Computer Science and Engineering Tulsiramji Gaikwad-Patil College of

Engineering and Technology Nagpur, India

Contact No:9923135766

E-mail :rbodankar@gmail.com .

2nd
 Project Guide Dept. of Computer Science and Engineering Tulsiramji Gaikwad-Patil College of Engineering

and Technology Nagpur, India

Abstract:

Big Data applications are becoming more

complex and expe-riencing frequent changes and

updates. In practice, manual optimization of complex

big data jobs is time-consuming and error-prone.

Maintenance and management of evolving big data

applications is a challenging task as well. We

demon-strate HDM, Hierarchically Distributed Data

Matrix, as a big data processing framework with

built-in data ow op-timizations and integrated

maintenance of data provenance information that

supports the management of continuously evolving

big data applications. In HDM, the data ow of jobs

are automatically optimized based on the functional

DAG representation to improve the performance

during ex-ecution. Additionally, comprehensive

meta-data related to explanation, execution and

dependency updates of HDM ap-plications are stored

and maintained in order to facilitate the debugging,

monitoring, tracing and reproducing of HDM jobs

and programs.

Keywords:Big Data; Data Flow Optimization;
Provenance Manage-ment

I. Introduction

We are experiencing the era of big data that has been

fu-elled by the striking speed of the growth in the

amount of data that has been generated and

consumed. Several big data processing frameworks

(e.g., MapReduce [2], Spark [6] and Flink [1], etc.)

have been introduced to deal with the challenges of

processing the ever larger data sets [3]. These

frameworks signi cantly reduce the complexity of

writing large scale data-oriented applications.

However, in practice, as big data programs and

applications have become more and more

complicated, it is almost impossible to manually

optimize the performance of programs written by

diversi ed programmers. Therefore, built-in

optimizers are crucial for tackling the challenges of

improving the performance of ex-ecuting those hand-

written programs and applications. At the same time,

realistic data analytics applications are con-tinuously

evolving in order to deal with the non-stop changes

in the real world. In practice, managing and

analyzing those continuously evolving big data

applications have resulted in big technical debts [4].

Therefore, there are increasing re-quirements for data

provenance to support analyzing, trac-ing and

reproduction of historical versions of data analytics

applications. In this paper, we demonstrate HDM,

(Hierarchically Dis-tributed Matrix) [5], a big data

processing framework with built-in data

optimizations for execution and data prove-nance

supports for managing continuously evolving big

data applications. In particular, HDM is a

lightweight, functional and strongly-typed data

representation which contains com-plete information

(such as data format, locations, dependen-cies and

functions between input and output) to support

parallel execution of data-driven applications [5].

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 303

Exploit-ing the functional nature of HDM enables

deployed appli-cations of HDM to be natively

integrable and reusable by other programs and

applications. In addition, by analyzing the execution

graph and functional semantics of HDMs, mul-tiple

optimizations are provided to automatically improve

the execution performance of HDM data ows.

Moreover, by drawing on the comprehensive

information maintained by HDM graphs, the runtime

execution engine of HDM is also able to provide

provenance and history management for submitted

applications.

2. HDM FRAMEWORK

2.1 System Overview

 Fig 1 shows the system architecture of the
HDM runtime engine which is composed of three
main components: Runtime Engine: is responsible
for the management of HDM jobs such as
explaining, optimization, schedul-ing and
execution. Within the runtime engine, the
AppManager manages the information of all
deployed jobs. TaskManager maintains the
activated tasks for runtime scheduling in the
Schedulers; Planner and Op-timizers interpret and
optimize the execution plan of HDMs in the
explanation phases; HDM manager man-ages the
information and states of the HDM blocks in the
entire cluster; Execution Context is an abstraction
component to support the execution of scheduled
tasks on either local or remote nodes.
Coordination Service: is composed of three types
of co-ordinations: cluster coordination, block
coordination

and executor coordination. They are responsible
for the coordination and management of node
resources, distributed HDM data blocks and
executors on work-ers, respectively. Data
Provenance Manager: is responsible to interact

with the HDM runtime engine to collect and main-
tain data provenance information (such as
Dependen-cyTrace, JobPlanningTrace and
ExecutionTrace) for HDM applications. Those
information can be queried and obtained by client
programs through messages for the usage of
analysis or tracing.

2.2 HDM Data Flow Optimization

One key feature of HDM is that, the execution
engine contains built-in planners and optimizers to
automatically optimize the functional data ow of
submitted applications and jobs. During
explanation of HDM applications, the data ow are
represented as DAGs with functional
dependencies among operations. The HDM
optimizers traverse through the DAG to
reconstruct and modify the operations based on
optimization rules to obtain more optimal
execution plans. Currently, the optimization rules
implemented in the HDM optimizers include:
function fusion, local aggregation, oper-ation
reordering and data caching for iterative jobs [5].
Function fusion. During optimization, the HDM
plan-ner combines the lined-up non-shu e
operations into one operation with high-order
function so that the se-quence of operations can be
compute within one task rather than separate ones
to reduce redundant inter-mediate results and task
scheduling. This rule can be applied recursively on
a sequence of fusible operations to form a compact
combined operation. Local Aggregation. Shu e
operations are very expen-sive in the execution of
data-intensive applications. If a shu e operation is
followed with some aggregations, in some cases,
the aggregation or part of the aggrega-tion can be
applied before the shu ing stage. During
optimization, HDM planer tries to move those
aggre-gation operations forward before the shu ing
stage to reduce the amount of data that needs to be
transferred during shu ing. Operation
reordering/reconstruction. Apart from ag-
gregations, there are a group of operations which
l-ter out a subset of the input during execution.
Thoseoperations are called pruning operations1.
The HDM planner attempts to lift the priority of
the pruning op-erations while sinking the priority
of shu e-intensive operations to reduce the data
size that needs to be computed and transferred
across the network. Data Caching. For many
complicated and pipelined analytics jobs (such as
machine learning algorithms), some intermediate
results of the job could be reused multiple times
by the subsequent operations. There-fore, it is

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 304

necessary to cache those repetitively used data to
avoid redundant computation and communica-
tion. In this case, HDM planner counts the
reference for the output of each operation in the
functional DAG to detect the potential points that
intermediate results should be cached for reusing
by subsequent operations. During optimization
process, the rule above are applied one by one to
reconstruct the HDM DAG and the optimiza-tion
can last multiple iterations until there is no change
in the DAG or it has reached the maximum
number of itera-tions. The HDM optimizer is also
designed to be extendable by adding new
optimization rules by developers when it is
needed.

2.3 Data Provenance Supports in HDM

It is normally tedious and complicated to maintain
and manage applications that are continuously
evolving and be-ing updated. In HDM, drawing on
comprehensive meta-data information maintained
by HDM models, the runtime engine is able to
provide data provenance supports includ-ing
execution tracing, version control and job replay
in the dependency and execution history
management component. Basically, the HDM
server maintains three types of meta-data about
each submitted HDM jobs including Execution-
Trace, JobPlanningTrace and DependencyTrace.
DependencyTrace. For every submitted HDM
program, the server stores and maintains the
dependent libraries required for execution. The
dependencies and update history are maintained as
a tree structure. Based on this information, users
are able to reproduce any ver-sion of the submitted
applications in the history. JobPlanningTrace. The
HDM server also stores the explanation and
planning traces for every HDM appli-cations.
JobPlanningTrace includes the logical plan,
optimizations applied and nal physical execution
plan after being parallelized.

Figure 2: Data ow Visualization of HDM Applica-
tions.

ExecutionTrace. During execution, the HDM
server also maintains all the runtime information
(execution location, input/output, timestamps and
execution sta-tus, etc.) related to each executed
task and job. These information are very
meaningful to monitor and trace back the process
of execution of historical jobs and applications.
Drawing on the three types of information
maintained in the HDM server, client-side
programs can send messages to query and obtain
the history and provenance information, so that
users and administrators can pro le, debug and
apply analysis to the deployed applications
throughout their life cycles.

3. DEMONSTRATION SCENARIOS

In this demonstration, we will present to the
audience the HDM framework1 from four main
aspects: cluster re-source monitoring, visualisation
data ow optimization, exe-cution history tracing,
version-control and dependency man-agement.
The demonstration will be conducted on AWS
EC2 with one M3.Large instance as the master and
10 nodes M3.XLarge instances as the workers. To
show how HDM optimizes the data ow and
provides data provenance support for its
applications, we will present an example of
Twitter analysis scenario that consists of the
following two Tweets analysis programs

Listing 1: Code Snippet of Finding out Tweets

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 305

Listing 2: Code Snippet of Hashtag Counting for
Interested Tweets

Cluster Resource Management. In the rst part of
the demo, we will show the cluster resource
monitor of the HDM manager. The HDM server
maintains the resource-related information of all
the workers within the cluster. In the
HDMConsole, it is able to monitor the resource
utilization information (such as CPU, Memory,
Network and JVM) for each worker in real time.
Therefore, cluster administrator is able to use
these information and easily supervise and
understand the status of every worker as well as
the entire cluster.

Data ow Optimizations. The second part of the
demo shows how the Tweets programs are
represented in the HDM DAG and how it is
explained, optimized and parallelized by the
planner.

For the firrst program, the HDM optimizer applies
op-erations reordering to lift the pruning operation
find-ByKey to be in front of the shu e operation
groupBy. Then the optimizer applies function
fusion rule to com-bine map and findBy into a
single composite operation.

For the second program, the HDM optimizer
applies operation reordering to move the
findByKey operation to be in front of groupBy
then applies local aggrega-tion count by adding
local count in front of groupBy. Lastly, it detects
the input tweets that are reused by two operations
so that the optimizer can add a cache point after
the compute operation that generates the output of
tweets.

The HDM server maintains all the related meta-
data (such as the creator, original program, logical
plan, physical plan, etc.) to all the submitted HDM
applications. In the demon-stration, the HDM
console visualizes the original logical ow,
optimized logical ow and parallelized physical
graph

Figure 3: Execution Traces of HDM Applications.

Figure 4: Dependency Management and Version
Control of HDM.

for each execution instances of the HDM
applications (Fig-ure 2).

Execution History Tracing. In the third part of the
demo, we will show how the execution process
can be tracked dur-ing and after execution. The
HDM server collects and stores the runtime
information for each execution task and struc-tures
them into DAG based on the task dependencies.
Dur-ing or after the execution of the tasks, the
HDM server also updates the status in the stored
meta-data when it has re-ceived the noti cation
messages. The HDM console also summarizes
those information and presented it into a view of
execution lanes for each core of the workers
(Figure 3).

Dependency Management and Version Control. In
the last part of the demo, we will show how the
HDM server manages the dependencies and
provides version control for submitted
applications. The dependency and history manager
stores all the updating history of each HDM

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 306

applications and or-ganizes them into a tree based
structure. As a result, ad-ministrator users are able
to query, analyze and reproduce the historical
HDM applications using those dependencies
information (Figure 4).

Besides the framework demonstration, we will
also dis-cuss in more details about the design
choices that we have made on de ning the di erent
components of the framework. In addition,
performance comparison with the Spark frame-

work [6], using the example scenario, will be
presented to demonstrate the e ciency of the HDM
optimization tech-niques.

Acknowledgement

 We take privilege to greet our beloved parents

for their encouragement in every effort. Also,we

are happy to thank our college

management,principal,head of the department and

my colleagues for their sincere support in all

concerns of resources.

References

[1]P. Carbone, A. Katsifodimos, S. Ewen, V.
Markl,S.Haridi, and K. Tzoumas. Apache inkTM:
Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38(4):28{38, 2015.

[2]J. Dean and S. Ghemawat. MapReduce: simpli
ed data processing on large clusters. Commun.
ACM, 51(1), 2008.

[3]S. Sakr. Big Data 2.0 Processing Systems - A
Survey. Springer Briefs in Computer Science.
Springer, 2016.

[4]D. Sculley, G. Holt, D. Golovin, E. Davydov,

T.Phillips, D. Ebner, V. Chaudhary, and M.
Young. Machine learning: The high interest credit
card of technical debt. In SE4ML: Software
Engineering for Machine Learning, 2014.

[5]D. Wu, S. Sakr, L. Zhu, and Q. Lu.
Composable and E cient Functional Big Data
Processing Framework. In

IEEE Big Data, 2015.

[6]M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In HotCloud, 2010.

