

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2058

Sitar: Gui Test Script Repair

Gangadhar

P. Veera muthu

ABSTRACT — — The system tests of a

GUI-based application require that the test

cases, consisting of sequences of user

actions / events, be executed and the output

of the software verified. To allow a new

automated test, such test cases are

increasingly encoded as low-level test

scripts, to be automatically reproduced using

test harnesses. Every time the GUI changes,

the widgets move, the windows merge, some

scripts become unusable because they no

longer encode the valid input sequences. In

addition, because the software output may

have changed, it is possible that your test-

assertion oracles and checkpoints-encoded

in the scripts no longer correctly check the

desired GUI objects. Introducing ScrIpT

repAireR (SITAR), a technique to

automatically repair unusable low-level test

scripts. SITAR uses reverse engineering

techniques to create an abstract test for each

script, maps it to an annotated event flow

graph (EFG), uses reparative

transformations and human input to repair

the test, and synthesizes a new test script

"repaired." During this process, SITAR also

repairs the reference to the GUI objects used

in the control points, producing a final test

script that can be executed automatically to

validate the revised software. SITAR

amortizes the cost of human intervention in

multiple scripts by accumulating human

knowledge as annotations in the EFG. An

experiment using QTP test scripts suggests

that SITAR is effective because 41-89

percent of the unusable test scripts were

repaired. The annotations significantly

reduced the human cost after the 20 percent

test scripts were repaired.

Index terms: GUI test, GUI test script, test

script repair, human knowledge

accumulation

An important problem in the Autorun test

for graphical software applications is that a

large number of unacceptable tests may

become unusable each time the software is

modified [1], [2], [3]. However, the GUI test

can not be avoided: when the only way to

interact with a program is the graphical user

interface (GUI), the system test, ie the whole

program test, [4] requires testing using the

graphical user interface. The graphical user

interface (GUI) test case consists of strings

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2059

of user actions / events that are performed

on the program by graphical user interface

(GUI) elements and checkpoints that

determine whether the program was

executed correctly or not. These system tests

are closely related to the GUI structure,

meaning they refer to certain GUI tools and

encryption sequences ("First click the list of

files, click Open menu item, select a file,

then click Open button") allowed It is

through the GUI. During maintenance, if the

GUI changes, some tests become unusable

either because (1) the sequence of events

that the graphical user interface is modified

is no longer allowed, or (2) their test points

(assertions) no longer scan the objects

correctly GUI-oriented objects are unusable

and are not a problem when you manually

test the graphical user interface. The human

laboratory performs the test cases according

to the test plan and manually verifies the

validity of the outputs [5]. If what they see

in the GUI is different from what the test

plan describes, they are often able to use

common sense about minor changes,

whether they have encountered an error or a

deliberate change, and if necessary, review

the test plan. In contrast, unmanageable test

cases are a major problem of automation. If

you experience an automated test tool

(unexpected screen, UI) that is different

from what you expect, it simply fails or

stops. Although autorun is desirable because

text tests can run multiple times, their

benefits are rapidly diminished by high

maintenance costs when large numbers of

tests become unusable and require re-

encoding or re-registration [1] each time the

GUI is modified . In the previous work, we

dealt in part with the problem of unusable

test cases. However, we focused only on

high-level test cases based on models, which

were represented as abstract events, not as

scripts. Originally created with auto-built

methods [6], some of these test cases in our

previous work have become unusable due to

software modifications. We have corrected

the test cases based on this model [1] by

developing a new "fix" technique that

matches the unusable test cases at the model

level and converts them into new test cases

that are usable at the model level.

In SITAR design, we provide the following

research contributions. EFG format

mechanisms are automatic / imprecise

automatically with human input to repair

complex test texts while retaining the ability

of scripts to test AUT logic. Mechanisms to

deal with repairs without full knowledge of

the graphical user interface and their

changes. Based on the current

approximation of the EFG group, the reform

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2060

proposals are automatically sent to human

laboratories, which then choose to fix the

most applicable fix. Mechanisms to integrate

and synthesize human inputs into the overall

process that speed up the process and

produce a more accurate EFG model.

Mechanisms for the repair of checkpoints at

checkpoints. Most checkpoints remain valid

in the repaired scripts, indicating that the

logic of the encrypted business in the

original test scripts still exists after the fixes.

New explanations in EFG to facilitate

reforms. Specifically, we introduce a new

entry that controls the edges. Match the code

and model level to achieve code-to-form

translation and vice versa. Output the EFG

model annotated from AUT and is more

accurate than the model that was

automatically obtained by reverse

engineering. These annotations take the

form of definite events / edges added by a

human laboratory. EFG speeds up the

rigorous repair process as well as the ability

to improve test testing and repair for later

versions of AUT.

Existing System:

Most of the GUI tests used in the industry

are encrypted as text (eg, VBScript) or

manually recorded for exchange by the

testing device / tools (eg HPQuickTest

Professional (QTP), Selenium. These issues

have maintenance problems and need to be

hindered. Cases are very important and

relevant because they are usually based on

carefully selected cases and functional

requirements. Human testers invest their

time in transferring their knowledge and

experience in test texts and checkpoints to

business logic in a comprehensive manner,

Complex and valuable.

treatment of the reality surrounding the

development and maintenance of the test kit.

They discuss different real-life cases in

which test cases are added, removed and

reformulated in practice. They also point out

that, different from previous cases, repair

testing is more complex and difficult to

automate, and current testing methods that

focus on assertions may not be actually

applicable.

Disadvantages of existing system:

the problem of unusable test cases.

However, only focused on test cases based

on a high-level model, represented in

abstract events, not as scripts.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2061

modelbasedapproaches, some of these test

cases in earlier versions became unusable

due to software modifications.

on handwritten test cases for a number of

reasons. First, an event flow diagram (EFG)

- formed, the basis of the reform was

insufficient because it lacked vital

information (eg, status, annotations)

required to reform the text.

EFGs of the GUIs (using reverse

engineering via the Rippingbased GUI on

the rear - firsttraversal) was very limited.

analysis and therefore suffers from

incomplete underlying implicit analyzes,

resulting in partial EFGs. We can not use

partEFGs to fix the script because often,

these scripts contain events absent from

partial EFGs.

Proposed System:

vide ScrIpT repAireR

(SITAR), a technology for repairing low-

level test texts that are unusable. By

increasing the level of abstraction of

unusable test scripts - from the level of

script language to the form level - SITAR is

working on applying model-based

transformations for usable test cases at the

model level, and then synthesizing new low-

level usable scripts.

incomplete and inaccurate EFG models of

the GUIs, as well as human inputs.

and human inputs (as explanatory notes) to

fix test cases in ts0 that can execute and

confirm assertions on A1.

Advantages of the proposed system:

are also reforming the expected output (ie,

the Oracle test) as part of the test cases.

reforms without full knowledge of the GUI

and its changes,

Ann Annotations New Graphical User

Interface Incomplete To facilitate fixes,

level to access the translation from the code

to the model and vice versa, and

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2062

 mechanism involves the insertion and

removal of human inputs into the overall

process.SYSTEM ARCHITECTURE:

CONCLUSION & FUTURE RESEARCH

DIRECTIONS We described SITAR, a new

technique to repair low-level test scripts that

have become unusable due to GUI

modifications. Our work is unique in that we

developed (1) new mechanisms to handle

repairs without perfect knowledge of the

GUI and its changes, (2) new annotations in

an initially incomplete GUI model to

facilitate repairs, (3) mapping between the

code- and model-level to realize translation

from code to model and vice versa, and (4)

mechanisms to incorporate and cache human

input into the overall process. Our results on

three open-source software subjects are

promising. We were able to repair a non-

trivial fraction of an otherwise completely

unusable test suite. The work has laid the

foundation for much future research. Our

results showed that the stateless EFG model

that we used caused a number of test scripts

to remain unusable. For example, six scripts

in CrosswordSage and 10 scripts in OmegaT

could not be repaired because certain events

in these scripts required the software to be in

specific states to execute; however, this

state-based information was not encoded in

the EFG, which is why these test cases could

not be repaired. Our dominates edge

partially helps with the issue of state/context

by requiring the execution of specific events

to setup the state for certain subsequent

events. For example, in Crossword, a size of

the crossword is required in the new version

whereas all crosswords have a fixed default

size in the old version. By annotating EFG

edges along the path to ―size‖ as dominates,

testers ensured that the scripts setup the state

with correct size before performing other

events, resulting in usable repaired test

scripts. We will study the use of better

stateful models on the quality of repairs; at

the same time, we will need to study issues

of scalability and usability as state increases

the complexity and size of models. We will

also examine the benefits and potential

problems of additional automation. In our

current work, we take a conservative

approach to repair, i.e., all repair decisions

are made by a human tester. SITAR reuses

the manual decisions for subsequent repairs.

We hypothesize that this conservative

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2063

approach yields repaired scripts that are

―closer‖ to testing the business logic

originally intended by the script creator.

Indeed, this is somewhat validated by the

observation that all our checkpoints in the

scripts remained intact and useful. In

particular, we will examine three approaches

towards additional automation. First, we will

attempt to execute all scripts before

repairing them, even if they are only

partially executable, the intention being this

will increase the completeness of our initial

EFG model by adding more may-follow

edges covered by the partial executions.

However, such executions may also lead to

an incorrect initial model as the modified

software may be buggy and have incorrect

flows – parts of test scripts may execute

successfully when they should in fact have

not. Second, we will push our algorithms to

make certain decisions fully automatically

without human input. The risk, of course, is

that a fully automatic approach may lead to

a repair that breaks the business logic of the

original scripts. We recognize that there has

to be a balance between automation and

preservation of intent of test script to test a

certain business logic. Such an approach

requires empirical evaluation. Third, we will

explore approaches such as the one proposed

by Grechanik et al. [5] to identify changes in

GUI objects and report their locations in

GUI test scripts to assist manual test repair.

Additionally, analyzing text and finding

similarities before/after modifications in the

GUI may also help automate some repair of

certain types of broken scripts. The

challenges, of course, will be to come up

with effective dictionaries that work across a

range of software GUIs, text processing

algorithms that are applicable to GUI

lexicons, and image matching for widgets

that do not have text labels, e.g., icons and

toolbar buttons. Our empirical evaluation

demonstrated a range of modifications that

we may term as simple (e.g., change of title)

to complex (e.g., new context-based flow of

execution). Indeed, all the changes shown

under the Modify column, which make up

the majority of our repairs, in Table 14 may

be made by simply using text ―search and

replace‖. Hence, we may be able to map a

range of repair transformations, from simple

(finding and replacing title text) to complex

(detecting state-based relationships), which

we can use to develop a multi-step repair

process. We envision the tester starting with

the simplest transformation first, repairing

scripts quickly repairable, and then focusing

on scripts that are difficult to repair. We

intend to study the impact, cost, quality of

this process in future work. We expect

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 07

March 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2064

however that some simple transformations,

e.g., find/replace, if applied naively could in

fact make scripts unusable.

Author Details

Gangadhar

P. Veera muthu

