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Abstract:  

In this paper, we propose a novel data hiding 

algorithm for high dynamic range (HDR) 

images encoded by the OpenEXR file format. 

The proposed algorithm exploits each of three 

10-bit mantissa fields as an embedding unit in 

order to conceal k bits of a secret message 

using an optimal base which produces the 

least pixel variation. An aggressive bit 

encoding and decomposition scheme is 

recommended, which offers a high 

probability to convey (k+1) bits without 

increasing pixel variation caused by message 

concealment. In addition, we present a bit 

inversion embedding strategy to further 

increase the capacities when the probability 

of appearance of secret bit “1” is greater than 

0.5. Furthermore, we introduce an adaptive 

data hiding approach for concealing more 

secret messages in pixels with low luminance, 

exploiting the features of the human visual 

system to achieve luminance-aware adaptive 

data hiding. The stego HDR images produced 

by our algorithm coincide with the high 

dynamic range image file format, causing no 

suspicion from malicious eavesdroppers. The 

generated stego HDR images and their tone-

mapped low dynamic range (LDR) images 

reveal no perceptual differences when 

subjected to quantitative testing by Visual 

Difference Predictor. Our algorithm can 

resist steganalytic attacks from the HDR and 

LDR RS and SPAM steganalyzers. We 

present the first data hiding algorithm for 

OpenEXR HDR images offering a high 

embedding rate and producing high visual 

quality of the stego images. Our algorithm 

outperforms the current state-of-the-art 

works.  

 Keywords  

high dynamic range images, data hiding, 

OpenEXR, adaptive, optimal base, Visual 

Difference Predictor 

1. Introduction 

a hiding, also known as data embedding, is a 

method of using digital media to conceal critical 

messages [1]. In general, the object in which secret 

messages are intended to be embedded is referred to 

as the cover medium, and the object in which the 

messages are concealed is called the stego medium. 

An image data hiding technique is usually evaluated 

in terms of the embedding capacity, also known as 

the payload, and the quality of the stego image. On 

one hand, data hiding algorithms should maximize 

the quantity of messages that can be conveyed. 

Offering a large payload plays an important role for 

applications such as the annotation of images. On the 

other hand, the data hiding algorithms should 

minimize the embedding distortion, producing a high 

quality stego image to resist steganalytic attacks, 

which attempt to detect the presence of hidden 

messages. A data hiding algorithm which can 

provide a plausible stego image with a sufficient and 

secure payload raises no suspicion to a malicious 

eavesdropper and thus is suitable for applications 

such as covert communication. In recent years, 

interest in high dynamic range (HDR) images has 

increased dramatically [2] [3] [4]. The dynamic 

range of a scene is the contrast ratio between its 

brightest and darkest parts. HDR images represent a 

large range of luminance using floating-point 

numbers. This is in contrast to low dynamic range 

(LDR) images which represent a limited range of 

luminance using integers. A set of advanced image 

techniques allowing a far greater dynamic range of 

exposures than normal digital image techniques has 

been investigated herein. The scenario behind these 
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techniques involves accurately representing the wide 

range of intensity levels found in real scenes, ranging 

from direct sunlight to deepest shadows, in order to 

exhibit the accurate fidelity of a real scene. There are 

three main HDR image formats. The first is the 

RGBE format [5], which adopts 32 bits per pixel to 

represent both luminance and chromatic information. 

The second is the uncompressed LogLuv TIFF 

format [6], which uses 48 bits for one pixel. The 

third is the OpenEXR format [7], which also 

employs 48 bits for a pixel to represent a dynamic 

range of luminance and chromatic information. Over 

the past few years, the OpenEXR format, developed 

by Industrial Light & Magic (ILM), has become an 

industry standard for HDR image formats due to its 

flexible and expandable structure. This format is 

considered the de facto standard in the movie 

industry [2] [8]. For example, it was adopted by 

Hollywood film editors and special effects directors 

to produce the film Harry Potter and the Sorcerer’s 

Stone. The OpenEXR format covers the entire visible 

color gamut and the full range of perceivable 

luminance, thus providing optimal visual fidelity on 

a variety of output devices. Because of their great 

potential, HDR images encoded by the OpenEXR 

format are expected to replace LDR images, and will 

serve as one of the new image standards in the 

future. A number of data hiding algorithms have 

adopted LDR images, such as binary, grayscale, or 

color images, to conceal secret messages [9] [10]. 

Watermarking algorithms, which emerged as an 

enabling technology to protect the intellectual 

property of digital contents, were investigated for 

HDR images [11]-[18]. The current state-of-the-art 

HDR watermarking works can be referred to in 

recent papers [11] [12] [17]. Along with the wide 

availability of the distribution channels for providing 

applications such as video-on-demand and 

multimedia social networks, digital watermarking 

techniques aimed at preventing copyright violations 

for distribution channels have become more 

important than ever [19].  Unfortunately, research in 

HDR data hiding has not kept pace with advances 

made in HDR images, despite the fact that they 

provide great potential to become the leading image 

standard. To the best of the authors’ knowledge, 

research into data hiding algorithms for HDR images 

has been very limited. These algorithms fall within 

two basic categories. The first type is intended to 

yield high capacity data hiding [20] [21]. These 

algorithms convey a large amount of secret messages 

at the cost of producing a stego image with large 

distortion. They are current state-of-the-art 

algorithms, providing an embedding rate of at least 5 

bits per pixel.  The second type of algorithm is 

intended to yield high image quality of data hiding 

[22] [23] [24] [25]. These algorithms specifically 

exploit the RGBE HDR encoding format to conceal a 

small quantity of messages; unfortunately, the 

capacity offered by these algorithms is limited to less 

than 0.5 bits per pixel. They are also referred to as 

distortion-free algorithms because any distortion 

produced after the secret message embedding is so 

insignificant that the stego image generated after the 

tone-mapping operation is identical to the cover 

tone-mapped image. Since the capacity offered by 

these distortion-free algorithms is limited, it becomes 

difficult for them to support applications that require 

large capacity. Developing an HDR data hiding 

algorithm is a distinct challenge. Unlike the fixed 

range of luminance for an LDR image, each HDR 

image has a very different luminance range. An HDR 

data hiding algorithm must cope with a different 

luminance range that provides high capability while 

keeping the distortion of the stego image as small as 

possible. In addition, the encoding format of the 

stego HDR image should be coincident with the 

original HDR image, arousing no suspicion from 

malicious eavesdroppers.  Finally, when a cover and 

stego image are tone mapped for the purpose of 

visualization, the image quality should be visually 

plausible, and the difference between them should 

not be visible to a human observer. This paper 

presents a novel data hiding algorithm using optimal 

base, abbreviated as DHOB, which employs an 

optimal base to conceal a serial secret bit stream with 

least distortion in a high dynamic range image 

encoded by 48-bit OpenEXR file format. This type 

of HDR image consists of three 16-bit  

floating-point values in the red, green and blue 

channels, all of them being “half” data types with 1-

bit sign, 5-bit exponent and 10-bit mantissa field. 

The proposed algorithm takes advantage of 10-bit 

mantissa fields to convey secret messages, while 

leaving intact the sign and exponent fields. The main 

idea behind our algorithm is to derive an optimal 

base (OB) to decompose k secret bits into n secret 

digits in an M-ary notational system, where M is 

determined by the derived optimal base. Using an 

optimal base ensures that a stego image can be 

produced with the least image distortion when 

concealing these secret M-ary digits. In addition, we 

introduce an aggressive bit encoding and 

decomposition (ABED) scheme which offers a high 

probability to convey (k+1) bits rather than k secret 

bits, thereby providing a higher embedding capacity 

without increasing the pixel variation. We analyze 

the probability of message appearance and 

recommend a bit inversion embedding (BIE) scheme. 

When applicable, this scheme flips the secret bits 

before embedding, enabling the proposed aggressive 

bit encoding and decomposition scheme to carry 

extra payload for providing even higher embedding 

capacity. Considering a variety of luminance levels 
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in an HDR image, we propose an adaptive data 

hiding scheme using optimal base, abbreviated as 

ADHOB, which supports luminance-aware message 

embedding, where more secret messages are carried 

on pixels with low luminance, and vice versa. This 

scheme exploits the feature of the human visual 

system since human beings are less sensitive to 

luminance variation when a pixel has low luminance.  

The experimental results using two image databases 

containing 30 OpenEXR images show that the 

proposed algorithm is flexible enough to offer high 

embedding capacity. The tone-mapped stego image 

shows a high image quality. The HDR visual 

difference predictor (HDR-VDP-2) test reveals a 

small probability of detection that the difference 

between the cover and the stego image is visible for 

an average observer. Our algorithm and its adaptive 

extension are not detectable under the LDR and HDR 

RS steganalytic attacks [26]. They can resist attacks 

from the LDR or HDR SPAM steganalyzers [27]. An 

intensive comparison shows that the proposed 

algorithm provides better performance than the 

current state-of-the-art competitors [20] [21].  The 

major contribution of this work is in presenting the 

first data hiding algorithm in HDR images encoded 

by the OpenEXR format capable of providing a 

variety of capacities and producing high quality 

stego images feasible for real applications.  This 

paper is organized as follows. Related works are 

reviewed in Section II, and the proposed algorithm is 

presented in Section III. The experimental results and 

comparisons are detailed in Section IV. Section V 

offers conclusions and possible future work. Detailed 

experimental statistics are presented in the 

supplemental materials A-H. 

 

II. RELATED WORK This section surveys data 

hiding approaches for HDR images. First, a brief 

description of the OpenEXR encoding format is 

given, and then data hiding algorithms proposed in 

the literature are described.   

 A. An Overview of the OpenEXR Encoding 

 Format OpenEXR format or the Extended Range 

format recognized by the file name extension .exr is 

an open-source HDR image format developed by 

Industrial Light & Magic [2] [3] [4] [7] [8]. Starting 

in 1999, the format was developed for digital visual 

effects production, and the extended range format 

(.exr) was released as an open source C++ library in 

2003.  The bit breakdown for the OpenEXR half 

pixel encoding is shown in Fig. 1. Each color is 

encoded using a half precision floating point number, 

which is a 16-bit implementation of the IEEE 754 

standard. The formula of a pixel P converted from an 

encoded value is shown in (1), where SN represents 

the 1-bit sign, E indicates the 5-bit exponent and M 

denotes the 10-bit mantissa. Thus, the format is also 

known as S5E10. Note that when E=0 and M2 > 0, 

the value being represented is a subnormal number; 

when E is in the range of 1 and 30, a hidden one 

always exists to increase the representation precision. 

In addition, when E=31, the represented value is 

either a positive or negative infinity if M2=0 or not a 

number (NaN) if M2 > 0.  

 

 
The interpretation of the sign, exponent and 

mantissa is analogous to IEEE-754 floating-point 

numbers. The final format is 48 bits, covering around 

10.7 orders of magnitude. The range of 

representative numbers is roughly 5.96×10-8 to 

65504. One of the main advantages of OpenEXR 

encoding is that this format is implemented in 

graphics hardware, e.g., supported natively by the 

NVIDIA 3D GeForce FX graphics solutions 

allowing real-time applications for HDR images [4] 

[8]. Other advantages include that this format can be 

used by multiple lossless image compression 

algorithms, and it supports flexible extensibility to 

include new compression codes, image types and 

image attributes [4].  

  

B. A Survey of Data Hiding Algorithms 

 for HDR We examined several data hiding 

algorithms for HDR in the literature, focusing on 

algorithms which provide high embedding capacity, 

followed by those offering high quality of images.  

Cheng and Wang [20] pioneered in presenting an 

adaptive steganographic algorithm with 

authentication for an HDR image encoded by the 

RGBE format developed for radiance software [5]. 

The range of luminance intensity is decided by the 8-

bit exponent field (E) for all three color values in 

each pixel. Their algorithm took advantage of this to 

classify pixels into flat or boundary areas in order to 

convey different quantities of  

secret messages, thus achieving adaptive message 

embedding. They employed a two-sided approach 

which considers an input pixel and its two 

neighboring pixels (upper and left) in order to 

estimate the number of adaptive bits to be embedded 

on this input pixel. This two-sided approach was 
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extended to become an L-sided approach which 

considers three neighboring pixels (upper, left and 

upper-left), thereby offering a more accurate 

estimation. Their algorithm adopted a pixel as an 

embedding unit and provided an embedding rate in 

the range of 5.13 to 9.69 bits per pixel (bpp). The 

peak signal-to-noise ratio (PSNR) values for the 

tone-mapped stego images are only slightly greater 

than the 30 dB which are acceptable to human 

perception. Li et al. [21] proposed a data hiding 

scheme for HDR images which improves the 

embedding capacity of Cheng and Wang’s scheme. 

Instead of using HDR images encoded in 32-bit 

radiance RGBE coding, Li et al. used an HDR image 

encoded by a 48-bit TIFF format, where each 

channel has 16 bits, including a 1-bit sign field, a 5-

bit exponent field, and a 10-bit mantissa field. The 

secret messages are embedded into the mantissa 

field, leaving the sign and exponent fields intact. 

Based on the optimal pixel adjustment process 

(OPAP) [28], they introduced three data hiding 

strategies which offer an exquisite balance between 

high embedding capacity and the quality of the tone-

mapped stego images. Their algorithm adopted a 

pixel as an embedding unit and provided an average 

embedding rate of 26 bpps. The tone-mapped stego 

image has a PSNR value in the range of 30.47-37.00 

dB. Li et al.’s algorithm outperforms Cheng and 

Wang’s method in the embedding rate.  Several data 

hiding algorithms presented in the literature offer a 

low distortion manner of message concealment and 

produce a high image quality. All of them focus on 

the radiance RGBE format. Yu et al. [22] presented 

the first low distortion data hiding algorithm for 

HDR images. They observed that the exponent 

channel demonstrates more than one homogeneous 

representation. Thus, their scheme takes advantage of 

encoding secret messages to a pixel’s homogeneous 

representations, thus producing a tone-mapped stego 

image that is identical to the tone-mapped cover 

image. For the application of HDR image annotation, 

the average embedding rate offered by their method, 

using an image database with 125 HDR images, is in 

the range of 0.12-0.29 bpp. However, an average 

embedding rate is reduced to the range of 0.0010-

0.0026 bpp for the application of image 

steganography  because their algorithm exploits a 

small number of pixels to conceal secret messages so 

that the stego image complies with the radiance 

RGBE encoding format, remaining undetectable to 

malicious eavesdroppers. Wang et al. [25] introduced 

a segment-based data hiding scheme for HDR 

images encoded by the radiance RGBE format. A 

number of non-overlapping G pixels in the cover 

HDR image are grouped together to form a segment. 

In every segment, each pixel’s homogeneous 

representations are multiplied together, offering even 

more homogeneous representations. This allows their 

algorithm to exploit Yu et al.’s approach of 

concealing more secret bits. Given G=1000, the 

average embedding rate is in the range of 0.135-

0.140 bpp.  Chang et al. [23] proposed a distortion-

free data embedding scheme for HDR images. Their 

scheme takes advantage of the Cartesian product of 

all of the HDR pixels, thus exploiting all 

 

TABLE I 

THE ABBREVIATIONS 

 

Abbreviations Description 
ABCD 
 
ADHOB 
BIE 
DHOB 
 
EMSE 
HDR 
HDR-VDP-2 
IW-SSIM 
 
LDR 
 
OB 
PPCC 
 
PSNR 
Q(H) 
L((H) 
SSRC 
SSIM 
VSI 
 

Aggressive bit encoding and 
decomposition scheme  Adaptive data 
hiding algorithm using optimal base  
 Bit inversion embedding technique 
Data hiding algorithm using optimal 
base   
Expected mean squared error High 
dynamic range  
HDR visual difference predictor  
Information content weighted structural 
similarity measure 
 Low dynamic range NMSE Normalized 
mean squared error  
Optimal base  
 Pearson’s product-moment correlation 
coefficient  
PSNR Peak signal-to-noise ratio  
HDR image quality value  
 LDR image quality value 
 Spearman’s rank correlation coefficient  
Structural similarity index   
 Visual saliency-based index 

of the homogeneous representations. Their method 

provides an average embedding rate of 0.1355 bpp. 

Chang et al. [24] introduced a new distortion-free 

data embedding scheme for HDR images. They 

proposed a new homogeneity index table for 

homogeneity values of N=3, 5, 6, 7, which efficiently 

exploits all homogeneous representations of each 

pixel. Their scheme offers an average embedding 

rate of 0.1445 bpp.  A survey of the literature 

indicates that there are three drawbacks in the current 

data hiding algorithm for HDR images. First, while 

most algorithms target the 32-bit radiance RGBE or 

48-bit TIFF format, none of them is developed for 

the OpenEXR format. Second, while works reported 

by [23] [24] [25] constantly increase the embedding 

capacity, a stego HDR image generated by these 

algorithms does not preserve the radiance RGBE 

encoding format, thus becoming perceptible to 

eavesdroppers and vulnerable to steganalytic attack. 

Third, most algorithms do not consider how to 
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minimize pixel distortion incurred from message 

concealment, thus producing a tone-mapped stego 

image with a moderate image quality. This paper 

presents a novel data hiding algorithm for HDR 

images which is detailed in the next section.  

III. PROPOSED ALGORITHM This section 

describes the proposed DHOB algorithm. We list the 

abbreviations in Table I for quick reference. First, we 

highlight an overview of the algorithm in terms of 

the message embedding, and then describe the 

optimal base, a kernel concept of the algorithm, 

followed by the proposed aggressive bit encoding 

and decomposition scheme (ABED). The scheme 

aims to conceal an extra bit for secret messages 

represented by a serial bit stream. This scheme 

decomposes the encoded decimal value into n 

message digits. Next, the approach of embedding and 

extracting these n message digits is described. 

Furthermore, we describe an extension of the 

proposed algorithm to support luminance-aware 

adaptive data hiding. We present an analysis of our 

algorithm in the final section.   A. An Overview of 

the DHOB Algorithm  The flow chart of the message 

embedding in the proposed DHOB algorithm is 

shown in Fig. 2, which consists of three 

 

 
 

processes. Given a pixel group of n pixels and the 

desired embedding bits k, the first process 

determines an optimal base (OB) which provides 

minimal pixel distortion for message concealment. 

The second process adopts the aggressive bit 

encoding and decomposition (ABED) scheme to 

produce n secret digits. The third process embeds 

these n secret digits into a pixel group of n pixels 

producing a stego HDR image.  B. The Concept of 

the Optimal Base  A fundamental requirement of a 

message embedding algorithm is to satisfy various 

desirable capacities. The input of the DEOB 

algorithm is (n, k) which indicates that k secret bits 

are concealed in a pixel group of n pixels, offering 

the capacity of k/n bits per pixel. The proposed 

algorithm can thus provide a variety of capacities by 

altering n and k. We conceal secret messages through 

the use of the optimal base. Two examples, n=1 and 

n=3, are given before a formal definition for the 

optimal base is provided. Without loss of generality, 

take (n, k)=(1, 2) as an example; this  conceals 2 

secret bits in a single pixel P providing an 

embedding rate of 2.0 bpp. Take a base b=4≥22, 

which provides four pixel change patterns to convey 

four decimal secret messages 0, 1, 2 or 3, since k=2. 

For example, if P mod b = 0, the four pixel change 

patterns P+0, P+1, P+2, P-1 can convey secret 

messages 0, 1, 2 or 3, respectively, and the pixel 

distortion expressed in terms of the expected mean 

squared error (EMSE) has the smallest value of 

[02+12+22+(-1)2]/4=1.5, assuming secret messages 

have equal probability of appearance. Similarly, if P 

mod b = 1, 2 or 3, secret messages can still be 

concealed by four pixel change patterns using 

different orders, producing the same mean squared 

errors of 1.5. In this example, b=4 is an optimal base 

because it offers the requested embedding rate 

(⌊𝑙𝑜𝑔24⌋ bpp) and produces the least expected mean 

squared error, 1.5.  A more general case is 

considered by taking an optimal base b which 

provides b number of pixel change patterns to 

conceal secret messages 0, 1, …, b-1. The capacity 

offered by the optimal base b is shown in (2), and the 

expected mean squared error produced is shown in 

(3). The proof is detailed in Appendix A. Note that if 

b=2k, the capacity and the distortion provided equals 

the well-known OPAP message embedding scheme. 

In other words, OPAP is a special case of employing 

an optimal base b=2k:  

  

𝐶(𝑏)=⌊𝑙𝑜𝑔2𝑏⌋.                                                (2)                                                         

  

𝐸𝑀𝑆𝐸(𝑏) = [𝑏2 −(−2)[(𝑏+1)𝑚𝑜𝑑 2]]/12.        (3)                                  

  

Now consider the second example of n=3. 

Without loss of generality, take (n, k)=(3, 4) as an 

example which conceals 4 

secret bits in a pixel group of 3 pixels. Since k=4, 

the secret messages are decimal values from 0 to 15. 

Without loss of generality, assume OB=(b1, b2, b3) 

is an optimal base, where 𝑏1 ≤ 𝑏2 ≤ 𝑏3. Based on the 

first example, OB must satisfy the first inequality, 

b1×b2×b3≥24, in order to satisfy the requested 

embedding rate, 4/3 bpp. In addition, OB must 

produce the least expected mean squared error, 

min[∑ EMSE(𝑏𝑖) 3 𝑖=1 ]/3, when concealing secret 

messages. It is possible to approximate the first 

inequality using the inequality of arithmetic and 

geometric means (AM-GM inequality). In particular, 

when b1=b2=b3=√24 3 ≈2.5198, the equality 

b1×b2×b3=24 holds. Since bi is an integer, we derive 

the lower bound of bi using the floor function ⌊√24 3 

⌋ = 2 and the upper bound of bi using the ceiling 

function with a slightly larger range ⌈√24 3 ⌉+1=4. 

This indicates bi ∈{2, 3, 4}; there are a total of 33 

possible optimal bases, including (2, 2, 2), (2, 2, 3), 

…, (4, 4, 4). Consequently, the optimal base OB=(2, 

3, 3) is derived, where the embedding rate offered by 

this optimal base is ⌊𝑙𝑜𝑔2(𝑏1 ×𝑏2 × 𝑏3)⌋/3 =1.3333 
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bpp, satisfying the requested rate. In addition, the OB 

produces the smallest expected mean squared error, 

EMSE(2, 3, 3)=0.6111. Note that if 𝑏1 ≤ 𝑏2 ≤ 𝑏3is 

not restricted, then (3!/2!) optimal bases will be 

derived, including OB=(2, 3, 3,), (3, 2, 3) and (3, 3, 

2).   The two examples are now generalized by 

considering that the secret message is carried by a 

pixel group (PG) of n pixels, PG(P1, P2, …, Pn). 

Referring to the examples, given (n, k), an optimal 

base 𝑂𝐵 = (𝑏1,𝑏2,…,𝑏𝑛) must satisfy the first 

inequality shown in (4) in order to provide 2𝑘 pixel 

change patterns satisfying the requested embedding 

rate (k/n) bpp. Besides, the OB must produce the 

least pixel distortion, as shown in (5). We 

approximate the first inequality by finding the lower 

and upper bounds of each vector component (𝑏𝑖), as 

shown in (6). Then, we derive an optimal base from a 

total of 3𝑛 possible optimal bases. Equation (7) 

expresses the minimal embedding rate offered by OB 

in bpp, where 𝑇 = ∏ 𝑏𝑖 𝑛 𝑖=1 is called the maximal 

pixel change patterns and the expected mean squared 

error produced by OB is shown in (8).  

 

𝑇=∏𝑏𝑖𝑛𝑖=1≥2𝑘                                                             .(4)  

𝑂𝐵 =(𝑏1,𝑏2,…,𝑏𝑛) =𝑎𝑟𝑔 min{∑ EMSE(𝑏𝑖)/n} 𝑛 𝑖=1 

.                                                                               (5) 

⌊√2𝑘⌋≤ 𝑏1≤ 𝑏2≤ ⋯ ≤𝑏𝑛≤⌊√2𝑘⌋+2.                         (6)       

 

𝐶𝑚in(𝑏1,𝑏2,…,𝑏𝑛) = 𝑘/ 𝑛                                          (7) 

.                                                          

𝐸𝑀𝑆𝐸(𝑏1,𝑏2,…,𝑏𝑛)=1/𝑛×12∑[𝑏𝑖2−(−2)(𝑏𝑖+1)𝑚𝑜𝑑] 

𝑛 𝑖=1 .                                                                     (8) 

 

 The lower and upper bounds of n are n=1 and n= 

H×V, the resolutions of a cover image, respectively. 

The lower and upper bounds of k are k=1 and k=64, 

respectively, since 264 is the largest integer 

implemented by the C programming language. Table 

II shows a number of optimal bases for different 

parameters of (n, k), where n is in the range of 3 

and11, and k is in the range of 4 and 25, which offers 

the minimal embedding rate 𝐶𝑚in from 1.25 to 

2.2727 bpp. An aggressive bit encoding and 

decomposition scheme (ABED) is proposed, which 

offers a 

 

TABLE II 

 
larger capacity, as shown in the right column, 

which will be detailed later.  C. Aggressive Bit 

Encoding and Decomposition (ABED) The optimal 

base provides the maximal pixel change patterns T 

shown in (4), thus offering the embedding capacity 

of at least k bits in a pixel group of n pixels. When T 

is not a power of 2, the difference, h=T-2k, is a 

positive value, which represents pixel change 

patterns that still can be exploited. Thus, the 

embedding capacity offered in a pixel group 

becomes (k+1) bits, which is larger than the original 

payload. Inspired by this observation, we present an 

aggressive bit encoding and decomposition (ABED) 

scheme. Assume that given (n, k), the optimal base 

𝑂𝐵 = (𝑏1,𝑏2,…,𝑏𝑛) is derived, where themaximal 

pixel change pattern 𝑇 = ∏ 𝑏𝑖 𝑛 𝑖=1 is available. The 

ABED scheme first reads k bits of secret message 

and then determines whether it is possible to convey 

the next secret bit (𝑥2). The ABED scheme consists 

of three steps, as detailed below.   

  

Step 1: Read in k bits of secret message 𝑆2 and 

convert them into the decimal value 𝑆10. Step 2: 

Compare 𝑆10 with the threshold h=T-2k and produce 

two cases: Case 1: If 𝑆10<h, it is possible to exploit 

the residual pixel change patterns. We read in the 

next secret bit (𝑥2) and encode a total of (k+1) bits 

into the decimal value 𝑆10 ′ , where 𝑆10 ′ = 𝑥2 ×2𝑘 

+𝑆10. Case 2: If 𝑆10 ≥h, we cannot take advantage of 

the residual pixel change patterns, so simply set 𝑆10 ′ 

= 𝑆10.  Step 3: Decompose 𝑆10 ′ into n message 

digits 𝐷(𝑑1,𝑑2,…,𝑑n) using (9) by referring to the 

optimal base 𝑂𝐵 = (𝑏1,𝑏2,…,𝑏𝑛):  

  

𝑑𝑖 = { 

𝑆10                   mod 𝑏𝑖     if  𝑖 = 1 ⌊𝑆10 /∏ 𝑏𝑗 𝑖−1 

𝑗=1 ⌋    mod 𝑏𝑖    if  2 ≤ 𝑖 ≤ 𝑛.                    (9)  

  

Example 1: an example is presented to illustrate 

the ABED scheme. Given (n, k)=(3, 4), OB= (𝑏1, 𝑏2, 

𝑏3)=(2, 3, 3), the maximal pixel change pattern is 

T=2×3×3=18. Let (00011 011011001010…)2 be a 

serial secret bit stream to be concealed. In step 1, 
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since k=4, read 4 secret bits 𝑆2=(0001)2 and convert 

them into 𝑆10=1. In step 2, compare 𝑆10 and the 

threshold h=18-24=2. Since 𝑆10<h, case 1 holds. We 

read in the fifth secret bit 𝑥2=(1)2, shown with the 

underlining, and encode 5 secret bits “00011” into 

the decimal value 𝑆10 ′ =1×24+1=17. In  

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III 

 
step 3, decompose 𝑆10 ′ into 3 message digits 

𝐷(𝑑1,𝑑2,𝑑3)=(1, 2, 2), using (9). In particular, 

𝑑1=17 mod 2=1, 𝑑2= ⌊17/2⌋ mod 3 = 2, and 

𝑑3=⌊17/(2×3)⌋ mod 3=2. 

This example demonstrates that 5 secret bits are 

concealed.  This advances the original embedding 

capacity of conveying 4 secret bits, even though 

there are only T=18 maximal pixel change patterns. 

Note that if the 4 secret bits are (0000)2, it is still 

possible to convey an extra bit (𝑥2). In particular, if 

𝑥2=(0)2, we encode 5 secret bits “00000” into the 

decimal value 𝑆10 ′ =0. Alternatively if 𝑥2 =(1)2, the 

decimal value being encoded is 𝑆10 ′ =16. Table III 

lists detailed decimal values that are encoded and the 

3 message digits produced after the decomposition. 

Note that in this example, the ABED is able to carry 

an extra bit when the first 4 secret bits are (0000)2 or 

(0001)2.    D. Message Digit Embedding   Thus far, k 

or k+1 secret bits have been concealed and n 

message digits 𝐷(𝑑1,𝑑2,…,𝑑n) have been produced. 

This section embeds every message digit into every 

pixel in a pixel group. Since an OpenEXR HDR 

image has three chromatic channels, the embedding 

will follow the order of red, green and blue channels. 

Without loss of generality, take the red channel as an 

example. Let 𝑃𝑖 represent the i-th cover pixel in a 

pixel group;  it has the corresponding sign value 

(𝑆𝑁𝑖), exponent value (𝐸𝑖) and mantissa value (𝑀𝑖). 
The scenario of embedding the message digit 𝑑𝑖 into 

𝑀𝑖  involves producing the stego mantissa 𝑀𝑖 ′ such 

that (𝑀𝑖′ mod 𝑏𝑖)= 𝑑𝑖 and the variation (𝑀𝑖 ′ −𝑀𝑖 )2 

is minimized. Three steps are required to accomplish 

the message digit embedding.   

  

Step 1: Compute the current remainder  𝑟𝑖  using 

(10). Note that since the mantissa field contains 10 

bits, the decimal value of  𝑀𝑖  is in the range 

between 0 and 1023.  Step 2: Derive the difference 𝑣𝑖 
using (11). Note that 𝑏𝑖 is added to ensure that the 

difference is positive. Step 3: Produce the stego 

mantissa 𝑀𝑖 ′ using (12). This takes advantage of the 

modulus operator ensuring to minimize the variation 

(𝑀𝑖 ′ −𝑀𝑖 )2.   

  

𝑟𝑖=𝑀𝑖mod𝑏𝑖.                                                  (10)                     

  

𝑣𝑖=[(𝑑𝑖−𝑟𝑖)+𝑏𝑖]mod𝑏𝑖.                                   (11)                 

  

𝑀𝑖 ′ = {𝑀𝑖 if    𝑣𝑖 = 0   𝑀𝑖 +𝑣𝑖 if    0 < 𝑣𝑖 < ⌊𝑏𝑖/2⌋ 
𝑀𝑖 +𝑣𝑖 −𝑏𝑖 if  ⌊𝑏𝑖/2⌋ ≤ 𝑣𝑖 < 𝑏𝑖.                            (12)  

  

Example 2: an example is presented to illustrate 

the digit message embedding. Given (n, k)=(3, 4), 

OB=(𝑏1, 𝑏2, 𝑏3)=(2, 3, 3), message digits 

𝐷(𝑑1,𝑑2,𝑑3)=(1, 2, 2) are produced when concealing 

a secret 5-bit stream (00011)2. Without loss of 

generality, let (𝑃1,𝑃2,𝑃3)=(0.49902343750, 

0.80517578125, 1.01074218750) be three cover 

pixels in a pixel group, as shown in Table IV. 

Referring to (1), we derive the decimal value of 

(𝑆𝑁1,𝑆𝑁2,𝑆𝑁3)= (0, 0, 0), (𝐸1,𝐸2,𝐸3)=(13, 14, 15), 

and (𝑀1,𝑀2,𝑀3)= (1020, 625, 11), respectively. We 

employ three steps to conceal (𝑑1,𝑑2,𝑑3)=(1, 2, 2) 

into (𝑀1,𝑀2,𝑀3)= (1020, 625, 11). In the first step, 

we compute (𝑟1, 𝑟2, 𝑟3)=(1020 mod 2, 625 mod 3, 

11 mod 3)=(0, 1, 2). Then, we derive the difference 

(𝑣1,𝑣2,𝑣3)=(1, 1, 0) in the second step. Finally, we 

produce the stego mantissa (𝑀1 ′,𝑀2 ′,𝑀3 

′)=(1020+1-2, 625+1-3, 11)=(1019, 623, 11). It is 

possible to derive the floating point value of three 

stego pixels (𝑃1 ′,𝑃2 ′,𝑃3 ′) = (0.49877929688, 

0.80419921875, 1.01074218750).  E. Message 

Extraction The message extraction is performed in  

the reverse order. Assume that the decoder is given 

the same embedding parameters (n, k), has been 

notified that the ABED scheme was employed, and 

holds the pixel embedding order derived from secret 

keys.  Secret messages can be extracted using the 

following three steps, as shown in Fig. 3. First, given 

(n, k), the decoder produces the optimal base 

OB=(𝑏1,𝑏2,…,𝑏𝑛) and the maximal pixel change 

patterns T=∏ 𝑏𝑖 𝑛 𝑖=1 . Then, the first pixel group of 

n pixels is accessed to derive the mantissa value, 

where n message digits can be extracted using (13), 
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and the encoded decimal value 𝑆10 ′ can be derived 

by (14). Finally, the concealed binary secret bit 𝑆2 ′ 

is derived using (15). Note that the decimal-to-binary 

function DB(𝑆10 ′ ,𝑡) converts the decimal value 𝑆10 

′ into t bits of binary bit 𝑆2 ′ . In this equation, the 

operator “+” conjoins k bits and a single bit 𝑥2 = 

(0)2 or (1)2.   

  

TABLE IV 

 
 

 
 

 
Example 2: an example is presented to illustrate 

the digit message embedding. Given (n, k)=(3, 4), 

OB=(𝑏1, 𝑏2, 𝑏3)=(2, 3, 3), message digits 

𝐷(𝑑1,𝑑2,𝑑3)=(1, 2, 2) are produced when concealing 

a secret 5-bit stream (00011)2. Without loss of 

generality, let (𝑃1,𝑃2,𝑃3)=(0.49902343750, 

0.80517578125, 1.01074218750) be three cover 

pixels in a pixel group, as shown in Table IV. 

Referring to (1), we derive the decimal value of 

(𝑆𝑁1,𝑆𝑁2,𝑆𝑁3)= (0, 0, 0), (𝐸1,𝐸2,𝐸3)=(13, 14, 15), 

and (𝑀1,𝑀2,𝑀3)= (1020, 625, 11), respectively. We 

employ three steps to conceal (𝑑1,𝑑2,𝑑3)=(1, 2, 2) 

into (𝑀1,𝑀2,𝑀3)= (1020, 625, 11). In the first step, 

we compute (𝑟1, 𝑟2, 𝑟3)=(1020 mod 2, 625 mod 3, 

11 mod 3)=(0, 1, 2). Then, we derive the difference 

(𝑣1,𝑣2,𝑣3)=(1, 1, 0) in the second step. Finally, we 

produce the stego mantissa (𝑀1 ′,𝑀2 ′,𝑀3 

′)=(1020+1-2, 625+1-3, 11)=(1019, 623, 11). It is 

possible to derive the floating point value of three 

stego pixels (𝑃1 ′,𝑃2 ′,𝑃3 ′) = (0.49877929688, 

0.80419921875, 1.01074218750).  E. Message 

Extraction The message extraction is performed in  

the reverse order. Assume that the decoder is given 

the same embedding parameters (n, k), has been 

notified that the ABED scheme was employed, and 

holds the pixel embedding order derived from secret 

keys.  Secret messages can be extracted using the 

following three steps, as shown in Fig. 3. First, given 

(n, k), the decoder produces the optimal base 

OB=(𝑏1,𝑏2,…,𝑏𝑛) and the maximal pixel change 

patterns T=∏ 𝑏𝑖 𝑛 𝑖=1 . Then, the first pixel group of 

n pixels is accessed to derive the mantissa value, 

where n message digits can be extracted using (13), 

and the encoded decimal value 𝑆10 ′ can be derived 

by (14). Finally, the concealed binary secret bit 𝑆2 ′ 

is derived using (15). Note that the decimal-to-binary 

function DB(𝑆10 ′ ,𝑡) converts the decimal value 𝑆10 

′ into t bits of binary bit 𝑆2 ′ . In this equation, the 

operator “+” conjoins k bits and a single bit 𝑥2 = 

(0)2 or (1)2 

 

𝑑𝑖′=𝑀𝑖′𝑚𝑜𝑑𝑏𝑖,i=1,2,…,n.                               (13)                                         

  

𝑆10′=𝑑1′+∑[𝑑𝑖𝑛′𝑖=2×(∏𝑏𝑗𝑖−1𝑗=1)].              (14)   

                                 

  

𝐷𝐵(𝑆10′,𝑘)+(0)2,   if  0 ≤ 𝑆10 ′ < 𝑇 −2𝑘, 

 S2=         𝐷𝐵(𝑆10 ′ ,𝑘)        if  𝑇 −2𝑘 ≤ 𝑆10 ′ < 2𝑘, 

             𝐷𝐵(𝑆10 ′ −2𝑘,𝑘) +(1)2       if  𝑆10 ′ ≥ 2𝑘.                    

(15).   

 Example 3: an example is presented to illustrate 

the message extraction. Given (n, k)=(3, 4), OB=(𝑏1, 

𝑏2, 𝑏3)=(2, 3, 3), and a stego pixel group (𝑃1 ′,𝑃2 

′,𝑃3′)=(0.4987792968750,0.804199218750,1.010742

18750). In the first step, we derive the stego mantissa 

value (𝑀1 ′,𝑀2 ′,𝑀3 ′ )=(1019, 623, 11) and extract 

three message digits  𝐷(𝑑1 ′,𝑑2 ′,𝑑3 ′)=(1, 2, 2) using 

(13). Next, we derive the encoded decimal value  𝑆10 

′ = 1+2×2+2× (2×3)=17 using (14). Finally, since 

𝑆10 ′ ≥ 24, the third formula shown in (15) is applied 

to derive secret bits 𝑆2 ′=𝐷𝐵(17− 

24,4)+(1)2=(0001)2+(1)2=(00011)2. Other pixel 

groups are similarly extracted.  F. An Analysis of the 

ABED Scheme We analyze the expected embedding 

rate in bit per pixel (bpp) offered by the ABED 

scheme, which has a close relation to the appearance 

of the secret bits “0” or “1.” Let p represent the 

appearance probability of secret bit “1.” First, we 

discuss the case for p=0.5. The appearance 

probability of k bits of “1” is (1/2)k. Referring to the 

ABED scheme shown in Case 1, when 𝑆10< (T-2k), 

it is possible to conceal (k+1) bits, so the expected 

capacity in this case is C1 =[(𝑇 −2𝑘)/2𝑘]×(k+1). 

Referring to Case 2, when  𝑆10 ≥T-2k, it is only 

possible to embed k bits, so the expected payload in 

this case is C2=[(2𝑘+1 −𝑇)/2𝑘]×k. Consequently, the 

expected embedding rate in bpp offered by the 

ABED scheme is to sum two terms over n pixels, as 

shown in (16), where 𝑘 = ⌊log2 𝑇⌋ and 𝑇 = ∏ 𝑏𝑖. 𝑛 

𝑖=1   
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𝐶ABED(𝑛,𝑘,𝑇) = 𝐶1+𝐶2/ 𝑛 = 1/ 𝑛(𝑘 + 𝑇−2𝑘 /2𝑘 ). 

                                                                         (16) 

  

This equation demonstrates two important 

features. First, the proposed ABED scheme can 

conceal an extra rate of (𝑇 − 2𝑘)/(𝑛×2𝑘) bpp when 

the secret bits “0” or “1” have an equal probability of 

appearance, i.e., p=0.5. Second, the pixel variation 

caused by concealing this extra payload does not 

increase because the same optimal base is used. In 

other words, the ABED scheme provides a 

significant benefit, increasing payload without 

augmenting the pixel variation. Some expected 

capacities using different optimal bases are given in 

the right column of Table II. Following Example 1, 

the expected embedding rate 𝐶ABED(3, 4, 

18)=1.375 bpp  is higher than the minimal rate 

𝐶𝑚in=1.3333 of only using 24 pixel change patterns 

rather than exploiting a total of T=18 pixel change 

patterns. If a cover HDR image has the resolution of 

3672×3338, the ABED scheme can conceal 510436 

additional bits. Statistics show that the range of 

additional bits concealed is between 83743 and 

650806 bits. The general case for the variable p is 

now discussed, where 0≤p≤1. Take (n, k)=(3, 4) as 

an example, which has the derived OB=(𝑏1, 𝑏2, 

𝑏3)=(2, 3, 3) and T=2×3×3=18. Table V shows the 

bit patterns, decimal values (i) and corresponding 

 

 
TABLE V 

 
appearance probability (𝑃𝑖) from 𝑃0 to 𝑃15, 

where 𝐶𝑖 indicates the bits that can be concealed. For 

example, the bit pattern “0001” equivalent to the 

decimal i=1 has the corresponding appearance 

probability 𝑃1 =(1-p)3p. The previous discussion 

indicates that it is possible to conceal 5 secret bits 

when the bit patterns are “0000” or “0001” 

equivalent to the decimal value of i=0 and 1. Other 

bit patterns can only conceal 4 secret bits equivalent 

to the decimal value of i=2 to 15. Consequently, (17) 

is a polynomial function derived in the variable p to 

represent the expected capacity offered by the 

proposed ABED scheme for the parameters (n, 

k)=(3, 4), OB=(2, 3, 3) and T=18. 

   

𝐸𝐶ABED(𝑝)=13∑(𝑃𝑖15 𝑖=0 ×𝐶𝑖) = 13(5−3𝑝+3𝑝2               

−𝑝3).                                                               (17)  

  

When p=0.5, the expected embedding rate is 

𝐸𝐶ABED(𝑝 = 0.5) =1.375 bpp, which is coincident 

with the value calculated by (16). When p=0.0, 

𝐸𝐶ABED(𝑝 = 0.0) has the maximal expected rate 

(5/3) equivalent to ⌈log2 18⌉/3. However, when 

p=1.0, 𝐸𝐶ABED(𝑝 = 1.0) has the minimal expected 

rate (4/3) equivalent to ⌊𝑙𝑜𝑔2 18⌋/3. The embedding 

rate in bpp offered by the ABED scheme must be 

within these two extremes.   The polynomial function 

𝐸𝐶ABED(𝑝) reveals that the smaller the p value, the 

larger the expected capacity, and vice versa. Inspired 

by this feature, we introduce the bit inversion 

embedding (BIE) technique. In particular, when a 

serial secret bit stream to be concealed has the 

characteristic that the appearance probability of 

secret bit “1” is greater than 0.5 (p>0.5), we can 

activate the BIE technique. First, we invert all of the 

secret bits from “0” to “1” or “1” to “0” before 

concealing them. This means that all secret bits are 

conveyed using a new probability 𝑝′ where 𝑝′=1-p, 

which produces a larger expected capacity 

𝐸𝐶ABED(𝑝′). As an example, assume p=0.65; we 

activate the BIE scheme for message embedding. 

Thus, the expected embedding rate produced 

is𝐸𝐶ABED(𝑝′ = 0.35)=1.424875 bpp, which is 

greater than 𝐸𝐶ABED(𝑝 = 0.65) =1.347625, 

increasing by 5.73% of the expected embedding rate.   

 

 
 

G. An Extension to Adaptive Message Embedding  

Our algorithm can be extended to achieve 

adaptive message embedding, as shown in Fig. 4. 

The main scenario of adaption is conveying more 

secret bits in pixels with low luminance, and vice 

versa. This takes advantage of the human visual 

sensitivity (HVS) because human beings are less 

sensitive to the alternation of pixels with low 

luminance. The embedding parameters of the 

adaptive algorithm (ADHOB) include (g1, g2), (n, 
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k1, k2, k3) and a serial secret bit stream (S2). It takes 

five steps to convey secret messages.  Step 1: 

Transform every pixel Pi  represented in the RGB 

color space to the YUV color space Qi, i=1, 2, …, 

H×V represented by the IEEE 754 standard single-

precision floating-point format, which contains 1-bit 

sign (sn), 8-bit exponent (e), and 23-bit mantissa (m).  

Step 2: Sort all of the exponent values (e) in the Y 

channel from the largest to the smallest and break 

ties by the scan-line sequential order followed by the 

pixel position in a scan-line. This produces sorted 

pixels SQi, i=1, 2, …, H×V. Accordingly, we update 

the order of pixels in the RGB colors pace to produce 

sorted pixels (SPi). Step 3: Referring to the 

parameters (g1, g2), we conduct the pixel luminance 

classification process 
 

 

 

TABLE VI 

 
classify luminance of the sorted pixels SPi into 

high, middle and low luminance levels. For 

simplicity, represent pixels in the high, middle and 

low level by {L1}, {L2} and {L3}, respectively. 

{L1} contains g1 percentage of pixels, {L2} has (g2-

g1) percentage of pixels, and {L3} consists of (100-

g2) percentage of pixels. Step 4: Determine three 

optimal bases, 𝑂𝐻1,𝑂𝐻2 and 𝑂𝐻3  corresponding to 

{L1}, {L2} and {L3} according to the embedding 

parameters (n, k1), (n, k2) and (n, k3). Step 5: 

Referring to the secret bit stream (S2), embed k1, k2 

and k3 bits into every pixel group at {L1}, {L2} and 

{L3} using the proposed data hiding algorithm. This 

produces the stego OpenEXR HDR image.  

  

The message extraction procedure operates in 

reverse. Note that since the exponent field is not 

altered during the message embedding, the exponent 

sorting and pixel classification produces the same 

{L1}, {L2} and {L3} in comparison to those 

conducted in the message embedding process 

 
       IV. EXPERIMENTAL RESULTS AND 

COMPARISONS  

We implemented our scheme in C++ programming 

language and conducted the experiments in a 

platform with the Linux operating system. We 

present the experimental results and compare our 

algorithm with the state-of-the-art algorithms in the 

literature.   

A. Embedding Capacity Results  

     Experiments were conducted using two image 

database (group-1 and group-2), each of which 

contains 15 images selected from NCHU HDR-EXR 

database which contains 95 HDR OpenEXR images. 

Detailed information on the image database is given 

in the supplemental material A. We remark that 

while most of them were downloaded from the 

Internet available to the public [7] [31] [32], seven 

HDR images in the group-2 image database are 

derived from real scenes corresponding to the actual 

measured luminance. The binary contents of the 

Open EXR image, 507, represent a serial secret bit 

stream to be concealed. 

Table VI show fundamental features of the test 

images in two image databases, indexed from 1 to 

15. In addition, minimal and maximal pixel values 

and the pixel patterns used in our experiments are 

shown in supplemental material B. Reinhard et al. 

[18] first classified HDR images α based on the 

logarithmic average luminance with respect to the 

minimal and maximal luminance values [22] [29] 

[30]. Later, Akyuz and Reinhard adopted the 

normalized log-average luminance of an HDR image 

to approximate the key value (𝑘𝑦) of the scene [31] 

[32]. Both α and 𝑘𝑦 indicate whether a scene is 

subjectively light, normal, or dark. In our 

experiments, we selected images with a variety of  

𝑘𝑦 values.    

 
TABLE VII 
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The embedding capacities for group-1 and group-2 

image databases are shown in the first four columns 

of Table VIII. Detailed statistics for k=3 to 21 are 

shown in supplemental material C. We remark that 

HDR test images in group-1 have a larger resolution, 

thus offering higher embedding capacity when using 

the same embedding parameter.  When adopting bit 

inversion embedding (BIE) in both algorithms by 

flipping the bits first before embedding, we obtain a 

larger embedding capacity. Using k=7 in group-1, for 

example, 122569 extra bits can be concealed, 

producing an embedding rate of 7.1808 bits per 

pixel. Our experiment shows that the average 

appearance of the probability for bit “1” in the 

contents of the HDR “507” image is p=0.5056076. 

Since p>0.5, it is beneficial to activate the BIE 

scheme to increase the embedding capacity. It is 

interesting to note that when k= 9, 12, 15, 18, or 21, 

the maximal pixel change patterns (T) derived from 

the optimal base is a power of 2. It is not possible to 

encode an extra bit, nor is the capacity influenced by 

the probability p. Consequently, the capacity does 

not change when activating the BIE.  The embedding 

capacities using ADHOB algorithm are shown in the 

first four columns of Table VIII. The threshold (g1, 

g2)=(25%, 60%) is set, which means that 25% of 

pixels are classified into the high luminance level, 

another 35% of pixels are classified into the middle 

luminance level and the remaining pixels are in the 

low luminance level. At each level, (k1, k2, k3)  

bits are concealed in a pixel group of 3 pixels 

(n=3). These statistics confirm that the BIE scheme 

does offer an advantage in providing greater 

embedding capacities.  
TABLEVIII 

 
 

B. Image Quality Results  

While the inverse tone mapping converts low 

dynamic range (LDR) images to HDR ones [33], 

tone mapping addresses the problem of strong 

contrast reduction from scene radiance to the 

displayable ranges while preserving the image details 

and color appearance [34]. We adopt an open source 

package, Luminance HDR [35], as our HDR test 

software. Formerly Qtpfsgui, this graphics software 

supports several graphic formats, including 

OpenEXR and Radiance RGBE. Various tone 

mapping operators (TMOs) are implemented 

including Mantiuk06 and Mantiuk08. Users can 

exchange experience and information through 

community websites such as Flickr and Facebook.  

The next three columns of Table VII show the image 

quality results for group-1 and group-2 image 

databases using DHOB algorithm.We display visual 

saliency-based index (VSI) between the cover and 

stego tone-mapped images [36] [37] using the default 

settings, which is perceptual image quality 

assessment aiming to use computational models to 

measure the image quality. The VSI values are close 

to 1.0 showing that the stego images are similar to 

the cover image with a high perceptual image 

quality. The image quality measured from the 

structural similarity index (SSIM) [38] and 

information content weighted SSIM index (IW-

SSIM) [39] produces similar results, which are 

detailed in the supplemental material C. Pearson’s 

product-moment correlation coefficient (PPCC) [40] 

and Spearman’s rank correlation coefficient (SRCC) 

[41] between the histogram of tone-mapped cover 

and stego images are close to 1.0, showing a strong 

linear dependency between cover and stego images. 

Finally, shown in the last column, the execution time 
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required to embed secret messages is less than 502.4 

seconds. Our experiment indicates that nine-tenth of 

the time is spent in Input/Out, including reading and 

storing an HDR image and constructing dynamic 

data structures to process the mantissa field for 

message embedding and extraction 

 
TABLE IX 

 
 

image quality results for group-1 and group-2 

image databases using ADHOB algorithm are shown 

in the next three columns of Table IX. The VSI, 

PPCC and SRCC values are displayed, while SSIM 

and IW-SSIM statistics are shown in the 

supplemental material C. All statistics are close to 

1.0 which demonstrates a high similarity between 

cover and stego images. This is due to the fact that 

secret messages are concealed in the mantissa field 

with 10 bits of length, thus producing a small 

distortion. Finally, while the execution time is less 

than 558.7 seconds, the time required to process 

images in group-2 is faster since they have smaller 

resolutions. In general, adaptive message embedidng 

requires longer time because more steps are needed 

to conceal messages. 

 

C. The HDR-VDP-2 Results 

 An HDR visual difference predictor [42] [43] 

[44] compares a pair of host and test images. We 

adopted the HDR-VDP-2 (version 2.2.1) which is a 

major revision of the original HDR-VDP to improve 

the accuracy of the predictions. This metric is based 

on a calibrated visual model that can reliably predict 

visibility and quality differences between image 

pairs. A two-dimensional map with the probability of 

detection at each pixel point is produced to exhibit 

the likelihood that an average observer would notice 

a difference between cover and stego images.  We 

show the statistics of both tone-mapped stego LDR 

image and stego HDR image. Detailed statistics for 

k=3 to 21 are shown in the supplemental material D. 

Since HDR-VDP-2 does not provide an option to 

automatically output the ratio of pixels, we collected 

these statistics based on the probability of the 

detection map. We presented the LDR image quality 

values, Q(L), which shows the visual quality of the 

tone-mapped stego images. An HDR image quality 

value, Q(H), which reveals the visual quality of an 

HDR stego image was also given. The higher the 

image quality value (up to 100), 

 
TABLE X 

 
the greater the perceptual similarity between the 

cover and stego images.  The tone-mapped statistics 

show that when k≤20, r≥97.4% for p≤0.5 and Q(L) is 

over 63.01. When k=18-20, r≤8.01% for p≥0.75. In 

addition, the HDR statistics show that when k≤20, 

r=100.0% for p≤0.25 and Q(L) is over 79.33. This 

indicates a significantly low probability that the 

differences between the cover and stego images are 

visible to an average observer. We suggest that the 

largest parameter setting for k is no greater than 20 

for the DHOB algorithm.   

  

D. The tone-mapped statistics  

     show that when the embedding parameters 

(𝑘1,𝑘2,𝑘3)=(14, 15, 16), r≥95.17% for p≤0.5 and 

r≤3.18% for p>0.75. The Q(L) is over 79.12. In 

addition, the HDR statistics show that when k≤16, 

r=100.0% for p≤0.25 and the Q(H) are over 96.85. 

Statistics show a small ratio of pixels for a high 

probability of detection, which means that the 

differences between the cover and stego images are 

not visible to an average viewer.  Fig. 5 presents the 

probability of detection maps reported by the HDR-

VDP-2 using tone-mapped stego LDR (VDPL) and 
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stego HDR images (VDPH) for the group-1 image 

database. Images with a larger resolution are shown 

in the supplemental materials D and E. Most maps 

show all blue, indicating a low detection probability 

of visual difference between the cover and stego 

images. The tone-mapping operator shrinks the 

luminance to the displayable range resulting; thus, 

the VDPL is more senstive than VDPH in revealing 

the visual difference between the cover and stego 

images 

 

 

 

 
 

 
Fig. 5.  Results produced by HDR-VDP-2 using both 

tone-mapped stego LDR (VDPL) and stego HDR images 

(VDPH) in group-1 image database 

 

colors seem to be more faithful when employing 

the TMO iCAM06.   

. The experimental results are shown in Table XI,  

G. The embedding capacity, 

 ranging from 1.04 to 21.65 million bits, is smaller 

due to the limited 8-bit storage space in the RGBE 

format. . All of the statistics of VSI, PPCC and 

SRCC are close to 1.0, showing a strong linear 

dependency between cover and stego images. 

Finally, the execution time is between 2.1 and 32.9 

seconds which are mainly affected by the resolutions 

of the test images.  Our experiment shows that the 

conversion between 48-bit OpenEXR and 32-bit 

RGBE formats produces a significant change in pixel 

value. Detailed statistics are presented in the 

supplemental material H. Under this circumstance,  

 

 
 

The experimental results are shown in Table XI, 

 
TABLE XI 
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D. The LDR and HDR Steganalysis Results  

We present the results of the steganalysis which 

aim to detect any messages conveyed in an HDR 

OpenEXR image. We remark that since the stego 

HDR images generated by our algorithms comply 

with the OpenEXR pixel encoding format, no 

suspicion is raised when checking the legality of the 

he HDR encoding format. Nevertheless, concealing 

secret messages in the mantissa field is similar to 

adopting the least significant bit substitution 

approach in the LDR image. Thus, we adopted the 

RS steganalysis [26] using tone-mapped LDR stego 

images to evaluate the detectability of our 

algorithms.   The experimental results of the LDR RS 

steganalysis in three channels are shown in the top 

part of Table XIII. In the detection processing, the 

absolute difference of a regular group (DIR) and that 

of a singular group (DIS) are computed in the using 

the recommended default parameters. The proposed 

algorithms reveal a small absolute difference in both 

DIR and DIS, indicating that the tone-mapped stego 

LDR image produced is secure against the LDR RS 

steganalytic attack.  To the best of the authors’ 

knowledge, there are no steganalytic algorithms 

directly available to detect the existence of concealed 

messages for high dynamic range images. 

Nevertheless, we conducted the HDR RS 

steganalytic attack by directly detecting the mantissa 

field of HDR stego images since it is the place where 

we concealed secret messages. In particular, the 

maximal optimal base we adopted is (323, 323, 323) 

for k=25. This means that the maximal magnitude of 

distortion in the 10-bit mantissa field is less than 

⌊323/2⌋. Such a distortion does not affect the two 

most significant bits in the mantissa field. Therefore, 

we extracted eight least significant bits in the 

mantissa field in an HDR stego image and 

constructed a stego HDR-RGB mantissa image, on 

which we were able to conduct HDR steganalytic 

attacks to detect any hidden messages within a stego 

HDR image. The bottom part of Table XII shows the 

results of the HDR RS steganalysis. The statistics 

reveal more or less the similar range of values for 

RM, R-M, SM and S-M. In addition, there is a small 

absolute difference for DIR and DIS in three 

channels using either DHOB or ADHOB algorithms. 

The experimental results demonstrate that the stego 

HDR images produced by our algorithms are also 

secure against the HDR RS steganalyzer.  We 

conducted steganalysis of our algorithm under the 

LDR SPAM steganalyzer [27] using the tone-

mapped stego LDR images. First, we trained the 

SPAM steganalyzer on the NCHU HDR-EXR 

database, where we employed the LIBSVM 

integrated software [45] for training. We adopted the 

range of differences T=4 and T=3 for the first- and 

second-order of the Markov chain; thus, in the 

training process, the first- and second–order features 

have dimensions 162 and 686, respectively. 

 

TABLE XII 

 
 

Once the training was completed, we evaluated 

the SPAM steganalyzer performance on the testing 

set by computing the error rate (PErr) under different 

parameters; k for DHOB algorithm and (k1, k2, k3) 

for ADHOB algorithms, which conceal various 

quantities of secret messages. The error rate is 

derived by PErr = (PFp+PFn)/2, where PF and PFn 

stand for the probability of false positive (detection 

cover as stego) and probability of false negative 

(missed detection). We conducted the training and 

evaluation process five times and reported the 

average error rates. We remark that the higher the 

average error rates, the lower the detectability. Note 
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that the SPAM performs the steganalysis of the 

grayscale images. Thus, we conducted the 

steganalysis on tone-mapped stego images in three 

individual channels using the kernel parameters γ1= 

1/162, γ2 = 1/686, and the cross-validation cv = 5.  

The top part of Table XIII shows the LDR SPAM 

steganalytic results using the DHOB algorithm, 

where the training model is images in our database 

concealed with secret messages using the embedding 

parameter k=20. The SPAM steganalyzer shows a 

high average error rate for the target stego images in 

the range of PErr=[0.425, 0.588] for the first-order 

and PErr=[0.425, 0.563] for the second-order, 

respectively. The average error rates for the second-

order are smaller than those of the first-order, 

indicating that the second-order SPAM features 

provide greater accuracy of the steganalysis. 

Nevertheless, both orders show high average error 

rates representing that our DHOB algorithm is not 

detectable, despite having dimensions as high as 686 

features.   The bottom of Table XIII shows the LDR 

SPAM steganalytic results for the ADHOB 

algorithm, where we adopted images with the 

embedding parameter (𝑘1,𝑘2,𝑘3)=(18, 19, 20) as our 

training model. For the target stego images, the 

 
 TABLE XIII 

 
 

average error rate is in the range of PErr=[0.425, 

0.563] for the first-order and in the range of 

PErr=[0.425, 0.538] for the second-order. These high 

average error rates led to the low accuracy of the 

steganalysis. Consequently, the stego images 

generated by our ADHOB algorithms are also 

undetectable by the SPAM steganalyzer.   Similarly, 

we performed HDR SPAM steganalysis tests where 

the training models were constructed by extracting 

eight least significant bits in the mantissa field from 

an OpenEXR HDR image with k=16 

 

TABLE  XIV 

 
 

The top part of Table XV shows the HDR 

SAPAM steganalytic results with the penalization 

parameters (C1, C2)=(190000, 10100) using the 

DHOB algorithm. A high average error rate is 

reported for the target stego HDR images in the 

range of PErr=[0.442, 0.536] for the first-order and 

PErr=[0.446, 0.568] for the second-order, 

respectively. Both orders show a high average error 

rate around 0.5, which represents that the SPAM 

steganalyzer is unable to detect stego HDR images 

produced by the DHOB algorithm.  We further 

performed HDR SPAM steganalysis tests for the 

ADHOB algorithm using the embedding parameters 

(𝑘1, 𝑘2, 𝑘3)=(15, 16, 17). The bottom part of Table 

XIV shows the results where a high average error 

rate is reported for the target stego HDR images in 

the range of PErr=[0.444, 0.564] for the first-order 

and PErr=[0.439, 0.559] for the second-order, 

respectively. Both orders show a high average error 

rate around 0.5, which represents that the HDR 

SPAM steganalyzer is unable to directly detect stego 

HDR images produced by the ADHOB algorithm. 

The steganalytic statistics indicate that our proposed 

DHOB and ADHOB algorithms are secure against 

the LDR RS, HDR RS, LDR SPAM and HDR 

SPAM steganalysis. 

Since the magnitude of the embedding rate in bpp 

is affected by the maximal space originated from 

different HDR formats, we instead compared the 

concealed field ratio (CFR) to provide a fair 

comparison. The CFR, which is independent of the 

HDR format, represents the ratio of the bpp over the 

maximal space (bpp/maximal space). Thus, CFR 

denotes the percentages of a unit of a one-bit space 

that can be exploited. Our proposed schemes offer 
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the highest CFR, being in the range 8.11% and 

66.67%, while Wang and Cheng’s method provides 

the smallest range of CFR. The comparison shows 

that our algorithms demonstrate the most effective 

data hiding method.  With regard to the image 

quality, our scheme produces the highest PSNR, 

lowest normalized mean squared error (NMSE) and 

largest range of PPCC and SRCC, which is close to 

1.0. The experiment shows that the message 

embedding or extraction occupies one-tenth of the 

execution time, while most of the time is spent in 

processing the input/out and constructing the 

dynamic data structures for message concealment. 

Not surprisingly, it takes a longer time for our 

algorithm to conceal and extract secret messages 

when using a larger image resolution for testing. The 

comparison shows that our algorithm provides the 

best performance, outperforming the current state-of-

the-art methods.   

 

 

 
 

Fig.7. The VDP-2 comparison for results 

produced by our algorithm, Wang and Cheng’s, and 

Li et al.’s works 

Fig. 7 shows the HDR-VDP-2 comparison results 

for Wang and Cheng’s algorithm, Li et al.’s method 

and our DHOB algorithm. Detailed statistics and 

images with a larger resolution are shown in the 

supplemental material F. Our algorithm reveals the 

ratio of pixels r=5.04% for the probability of 

detection p>0.75, where pixels shown with red 

represent the probability of detection map p>0.75. A 

small r for p>0.75 indicates low visual image 

differences between the cover and stego images. In 

contrast, the best result is r=23.16% for Wang and 

Cheng’s algorithm and r=87.08% for Li et al.’s 

method, both under the condition for p>0.75. In 

addition, our algorithm produces a high Q(L) value 

over 63.01. The comparison shows that our 

algorithm outperforms the current state-of-the-art 

methods.   

 

V. CONCLUSIONS AND FUTURE WORK  

This paper presents a novel data hiding algorithm 

for HDR images encoded by the OpenEXR format. 

The proposed algorithm conceals secret messages in 

the 10-bit mantissa field in each pixel, while the 1-bit 

sign and 5-bit exponent fields are kept intact. We 

recommend an optimal base allowing secret 

messages to be concealed with the least pixel 

distortion. An aggressive bit encoding and 

decomposition scheme is introduced herein, which 

offers the benefit for concealing an extra bit in a 

pixel group without incurring pixel distortion. The 

influence of the message probability is analyzed, and 

the embedding capacity is further increased by taking 

advantage of the recommended bit inversion 

embedding scheme.  The proposed algorithm is 

extended to support luminance-aware adaptive data 

hiding, where the luminance of an HDR image is 

classified into high, middle and low levels. More 

secret bits are conveyed in pixels with a low 

luminance level and vice versa. We adopted two 

groups of image databases for testing, each of which 

contains 15 HDR images with different luminance. 

The results of the HDR visual difference predictor 

demonstrate that the tone-mapped stego LDR images 

or stego HDR images have high image quality with a 

low probability of detection that differences between 

the cover and stego images are difficult to be visible 

to an average viewer. A stego HDR image generated 

by our algorithm preserves the original file format 

and is unlikely to arouse suspicion from 

eavesdroppers. The analysis indicates that the 

proposed algorithm can resist attacks from the LDR 

and HDR RS steganalyzer and the LDR and HDR 

SPAM steganalysis.  The contribution of this work is 

in presenting the first data hiding algorithm for 

OpenEXR HDR images. The proposed algorithm 

provides a high embedding capacity, which makes 

use of an aggressive bit encoding and decomposition 

scheme, as well as the bit inversion technique. Our 

scheme produces a stego image with high quality, 

taking advantage of the optimal bases to produce the 

least pixel distortion. The comparison shows that our 

algorithm has the best results, outperforming the 

current state-of-the-art schemes. The proposed 

scheme provides advantages for data hiding 
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applications such as image annotation and covert 

communications.   While our algorithm already 

performs well, some further improvements are still 

possible. Future study will investigate a more 

effective message encoding method to further 

increase the embedding capacity.   

 

APPEDIX A 

 

We prove in this section that (3) represents the 

expected mean squared error for an optimal base b. 

Without loss of generality, let M represent the 

mantissa part of a pixel and r=M mod b = 0. 

Referring to (12), when b is an even integer (b≥2), 

we can conceal secret digits v=0, 1, …, 𝑏/2, 

(𝑏/2)+1…, b-1 and produce the stego mantissa 

𝑀′=M, M+1, …, M+𝑏/2, M-(𝑏/2−1), .., M-1. Thus, 

we can derive 𝐸𝑀𝑆𝐸(𝑏) in (A-1). When 1≤r≤(b-1), 

we produce the same result because of the 

commutative law of addition  

 

 
 
𝐸𝑀𝑆𝐸(𝑏) = 

*02+12+⋯+(𝑏2)2+[−(𝑏 2−1)] 2+⋯+(−1)2} 
 

                                       b 

 

 =      𝑏2+2 

            12                                                       (A-1) 

We now consider the case when b is an odd 

integer (b≥1). Referring to (12), we can conceal 

secret digits v=0, 1, …, (b-1)/2, (b-1)/2+1, …, b-1 

and produce the stego mantissa 𝑀′=M, M+1, …, 

M+(b-1)/2, M-(b-1)/2, …, M-1. We can derive 

𝐸𝑀𝑆𝐸(𝑏) in (A-2). When 1≤r≤(b-1), we produce the 

same result.   

 
𝐸𝑀𝑆𝐸(𝑏) =   {02+12+⋯+[𝑏−1 2 ] 2+[−(𝑏−1 2 )]2 

+⋯+(−1)2} 

                                            𝑏 

= 𝑏2−1/ 12                                                     (A-2) 

 

𝐸𝑀𝑆𝐸(𝑏) =   𝑏2−(−2)[(𝑏+1)mod 2]/  12 

                                                                        (A-3) 
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