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Abstract:

In this paper, we propose a novel data hiding
algorithm for high dynamic range (HDR)
images encoded by the OpenEXR file format.
The proposed algorithm exploits each of three
10-bit mantissa fields as an embedding unit in
order to conceal k bits of a secret message
using an optimal base which produces the
least pixel variation. An aggressive bit
encoding and decomposition scheme is
recommended, which offers a high
probability to convey (k+1) bits without
increasing pixel variation caused by message
concealment. In addition, we present a bit
inversion embedding strategy to further
increase the capacities when the probability
of appearance of secret bit “1” is greater than
0.5. Furthermore, we introduce an adaptive
data hiding approach for concealing more
secret messages in pixels with low luminance,
exploiting the features of the human visual
system to achieve luminance-aware adaptive
data hiding. The stego HDR images produced
by our algorithm coincide with the high
dynamic range image file format, causing no
suspicion from malicious eavesdroppers. The
generated stego HDR images and their tone-
mapped low dynamic range (LDR) images
reveal no perceptual differences when
subjected to quantitative testing by Visual
Difference Predictor. Our algorithm can
resist steganalytic attacks from the HDR and
LDR RS and SPAM steganalyzers. We
present the first data hiding algorithm for
OpenEXR HDR images offering a high
embedding rate and producing high visual
quality of the stego images. Our algorithm

outperforms the current state-of-the-art
works.
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ICIREST-2018Conference can be
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1. Introduction

a hiding, also known as data embedding, is a
method of using digital media to conceal critical
messages [1]. In general, the object in which secret
messages are intended to be embedded is referred to
as the cover medium, and the object in which the
messages are concealed is called the stego medium.
An image data hiding technique is usually evaluated
in terms of the embedding capacity, also known as
the payload, and the quality of the stego image. On
one hand, data hiding algorithms should maximize
the quantity of messages that can be conveyed.
Offering a large payload plays an important role for
applications such as the annotation of images. On the
other hand, the data hiding algorithms should
minimize the embedding distortion, producing a high
quality stego image to resist steganalytic attacks,
which attempt to detect the presence of hidden
messages. A data hiding algorithm which can
provide a plausible stego image with a sufficient and
secure payload raises no suspicion to a malicious
eavesdropper and thus is suitable for applications
such as covert communication. In recent years,
interest in high dynamic range (HDR) images has
increased dramatically [2] [3] [4]. The dynamic
range of a scene is the contrast ratio between its
brightest and darkest parts. HDR images represent a
large range of luminance using floating-point
numbers. This is in contrast to low dynamic range
(LDR) images which represent a limited range of
luminance using integers. A set of advanced image
techniques allowing a far greater dynamic range of
exposures than normal digital image techniques has
been investigated herein. The scenario behind these
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techniques involves accurately representing the wide
range of intensity levels found in real scenes, ranging
from direct sunlight to deepest shadows, in order to
exhibit the accurate fidelity of a real scene. There are
three main HDR image formats. The first is the
RGBE format [5], which adopts 32 bits per pixel to
represent both luminance and chromatic information.
The second is the uncompressed LoglLuv TIFF
format [6], which uses 48 bits for one pixel. The
third is the OpenEXR format [7], which also
employs 48 bits for a pixel to represent a dynamic
range of luminance and chromatic information. Over
the past few years, the OpenEXR format, developed
by Industrial Light & Magic (ILM), has become an
industry standard for HDR image formats due to its
flexible and expandable structure. This format is
considered the de facto standard in the movie
industry [2] [8]. For example, it was adopted by
Hollywood film editors and special effects directors
to produce the film Harry Potter and the Sorcerer’s
Stone. The OpenEXR format covers the entire visible
color gamut and the full range of perceivable
luminance, thus providing optimal visual fidelity on
a variety of output devices. Because of their great
potential, HDR images encoded by the OpenEXR
format are expected to replace LDR images, and will
serve as one of the new image standards in the
future. A number of data hiding algorithms have
adopted LDR images, such as binary, grayscale, or
color images, to conceal secret messages [9] [10].
Watermarking algorithms, which emerged as an
enabling technology to protect the intellectual
property of digital contents, were investigated for
HDR images [11]-[18]. The current state-of-the-art
HDR watermarking works can be referred to in
recent papers [11] [12] [17]. Along with the wide
availability of the distribution channels for providing
applications such as video-on-demand and
multimedia social networks, digital watermarking
techniques aimed at preventing copyright violations
for distribution channels have become more
important than ever [19]. Unfortunately, research in
HDR data hiding has not kept pace with advances
made in HDR images, despite the fact that they
provide great potential to become the leading image
standard. To the best of the authors’ knowledge,
research into data hiding algorithms for HDR images
has been very limited. These algorithms fall within
two basic categories. The first type is intended to
yield high capacity data hiding [20] [21]. These
algorithms convey a large amount of secret messages
at the cost of producing a stego image with large
distortion. They are current state-of-the-art
algorithms, providing an embedding rate of at least 5
bits per pixel. The second type of algorithm is
intended to yield high image quality of data hiding
[22] [23] [24] [25]. These algorithms specifically
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exploit the RGBE HDR encoding format to conceal a
small quantity of messages; unfortunately, the
capacity offered by these algorithms is limited to less
than 0.5 bits per pixel. They are also referred to as
distortion-free algorithms because any distortion
produced after the secret message embedding is so
insignificant that the stego image generated after the
tone-mapping operation is identical to the cover
tone-mapped image. Since the capacity offered by
these distortion-free algorithms is limited, it becomes
difficult for them to support applications that require
large capacity. Developing an HDR data hiding
algorithm is a distinct challenge. Unlike the fixed
range of luminance for an LDR image, each HDR
image has a very different luminance range. An HDR
data hiding algorithm must cope with a different
luminance range that provides high capability while
keeping the distortion of the stego image as small as
possible. In addition, the encoding format of the
stego HDR image should be coincident with the
original HDR image, arousing no suspicion from
malicious eavesdroppers. Finally, when a cover and
stego image are tone mapped for the purpose of
visualization, the image quality should be visually
plausible, and the difference between them should
not be visible to a human observer. This paper
presents a novel data hiding algorithm using optimal
base, abbreviated as DHOB, which employs an
optimal base to conceal a serial secret bit stream with
least distortion in a high dynamic range image
encoded by 48-bit OpenEXR file format. This type
of HDR image consists of three 16-bit

floating-point values in the red, green and blue
channels, all of them being “half” data types with 1-
bit sign, 5-bit exponent and 10-bit mantissa field.
The proposed algorithm takes advantage of 10-bit
mantissa fields to convey secret messages, while
leaving intact the sign and exponent fields. The main
idea behind our algorithm is to derive an optimal
base (OB) to decompose k secret bits into n secret
digits in an M-ary notational system, where M is
determined by the derived optimal base. Using an
optimal base ensures that a stego image can be
produced with the least image distortion when
concealing these secret M-ary digits. In addition, we
introduce an aggressive bit encoding and
decomposition (ABED) scheme which offers a high
probability to convey (k+1) bits rather than k secret
bits, thereby providing a higher embedding capacity
without increasing the pixel variation. We analyze
the probability of message appearance and
recommend a bit inversion embedding (BIE) scheme.
When applicable, this scheme flips the secret bits
before embedding, enabling the proposed aggressive
bit encoding and decomposition scheme to carry
extra payload for providing even higher embedding
capacity. Considering a variety of luminance levels
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in an HDR image, we propose an adaptive data
hiding scheme using optimal base, abbreviated as
ADHOB, which supports luminance-aware message
embedding, where more secret messages are carried
on pixels with low luminance, and vice versa. This
scheme exploits the feature of the human visual
system since human beings are less sensitive to
luminance variation when a pixel has low luminance.
The experimental results using two image databases
containing 30 OpenEXR images show that the
proposed algorithm is flexible enough to offer high
embedding capacity. The tone-mapped stego image
shows a high image quality. The HDR visual
difference predictor (HDR-VDP-2) test reveals a
small probability of detection that the difference
between the cover and the stego image is visible for
an average observer. Our algorithm and its adaptive
extension are not detectable under the LDR and HDR
RS steganalytic attacks [26]. They can resist attacks
from the LDR or HDR SPAM steganalyzers [27]. An
intensive comparison shows that the proposed
algorithm provides better performance than the
current state-of-the-art competitors [20] [21]. The
major contribution of this work is in presenting the
first data hiding algorithm in HDR images encoded
by the OpenEXR format capable of providing a
variety of capacities and producing high quality
stego images feasible for real applications. This
paper is organized as follows. Related works are
reviewed in Section I, and the proposed algorithm is
presented in Section 1. The experimental results and
comparisons are detailed in Section IV. Section V
offers conclusions and possible future work. Detailed
experimental statistics are presented in the
supplemental materials A-H.

Il. RELATED WORK This section surveys data
hiding approaches for HDR images. First, a brief
description of the OpenEXR encoding format is
given, and then data hiding algorithms proposed in
the literature are described.

JENNNNANNNENENED

Mantissa 10-hit

Sign Exponent 5-bit

Fig. 1. The OpenEXR format represents pixel values using the “half” data
type with 1-bit in the sign field, 5-bit in the exponent field, and 10-bit in
the mantissa field in the red, green and blue channels,

A. An Overview of the OpenEXR Encoding

Format OpenEXR format or the Extended Range
format recognized by the file name extension .exr is
an open-source HDR image format developed by
Industrial Light & Magic [2] [3] [4] [7] [8]. Starting
in 1999, the format was developed for digital visual
effects production, and the extended range format
(.exr) was released as an open source C++ library in
2003. The bit breakdown for the OpenEXR half
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pixel encoding is shown in Fig. 1. Each color is
encoded using a half precision floating point number,
which is a 16-bit implementation of the IEEE 754
standard. The formula of a pixel P converted from an
encoded value is shown in (1), where SN represents
the 1-bit sign, E indicates the 5-bit exponent and M
denotes the 10-bit mantissa. Thus, the format is also
known as S5E10. Note that when E=0 and M2 > 0,
the value being represented is a subnormal number;
when E is in the range of 1 and 30, a hidden one
always exists to increase the representation precision.
In addition, when E=31, the represented value is
either a positive or negative infinity if M2=0 or not a
number (NaN) if M2 > 0.

0 if (E=08&M=0)
(1) 1%0.My)  If(E=08&M>0)
P= (—I)WZE—]S(].MZ) if (1=E=230) 1))
+00 if (E=31&M =0)
NaN f(E=31&M >0).

The interpretation of the sign, exponent and
mantissa is analogous to IEEE-754 floating-point
numbers. The final format is 48 bits, covering around
10.7 orders of magnitude. The range of
representative numbers is roughly 5.96x10-8 to
65504. One of the main advantages of OpenEXR
encoding is that this format is implemented in
graphics hardware, e.g., supported natively by the
NVIDIA 3D GeForce FX graphics solutions
allowing real-time applications for HDR images [4]
[8]. Other advantages include that this format can be
used by multiple lossless image compression
algorithms, and it supports flexible extensibility to
include new compression codes, image types and
image attributes [4].

B. A Survey of Data Hiding Algorithms

for HDR We examined several data hiding
algorithms for HDR in the literature, focusing on
algorithms which provide high embedding capacity,
followed by those offering high quality of images.
Cheng and Wang [20] pioneered in presenting an
adaptive steganographic algorithm with
authentication for an HDR image encoded by the
RGBE format developed for radiance software [5].
The range of luminance intensity is decided by the 8-
bit exponent field (E) for all three color values in
each pixel. Their algorithm took advantage of this to
classify pixels into flat or boundary areas in order to
convey different quantities of

secret messages, thus achieving adaptive message
embedding. They employed a two-sided approach
which considers an input pixel and its two
neighboring pixels (upper and left) in order to
estimate the number of adaptive bits to be embedded
on this input pixel. This two-sided approach was
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extended to become an L-sided approach which
considers three neighboring pixels (upper, left and
upper-left), thereby offering a more accurate
estimation. Their algorithm adopted a pixel as an
embedding unit and provided an embedding rate in
the range of 5.13 to 9.69 bits per pixel (bpp). The
peak signal-to-noise ratio (PSNR) values for the
tone-mapped stego images are only slightly greater
than the 30 dB which are acceptable to human
perception. Li et al. [21] proposed a data hiding
scheme for HDR images which improves the
embedding capacity of Cheng and Wang’s scheme.
Instead of using HDR images encoded in 32-bit
radiance RGBE coding, Li et al. used an HDR image
encoded by a 48-bit TIFF format, where each
channel has 16 bits, including a 1-bit sign field, a 5-
bit exponent field, and a 10-bit mantissa field. The
secret messages are embedded into the mantissa
field, leaving the sign and exponent fields intact.
Based on the optimal pixel adjustment process
(OPAP) [28], they introduced three data hiding
strategies which offer an exquisite balance between
high embedding capacity and the quality of the tone-
mapped stego images. Their algorithm adopted a
pixel as an embedding unit and provided an average
embedding rate of 26 bpps. The tone-mapped stego
image has a PSNR value in the range of 30.47-37.00
dB. Li et al.’s algorithm outperforms Cheng and
Wang’s method in the embedding rate. Several data
hiding algorithms presented in the literature offer a
low distortion manner of message concealment and
produce a high image quality. All of them focus on
the radiance RGBE format. Yu et al. [22] presented
the first low distortion data hiding algorithm for
HDR images. They observed that the exponent
channel demonstrates more than one homogeneous
representation. Thus, their scheme takes advantage of
encoding secret messages to a pixel’s homogeneous
representations, thus producing a tone-mapped stego
image that is identical to the tone-mapped cover
image. For the application of HDR image annotation,
the average embedding rate offered by their method,
using an image database with 125 HDR images, is in
the range of 0.12-0.29 bpp. However, an average
embedding rate is reduced to the range of 0.0010-
0.0026 bpp for the application of image
steganography because their algorithm exploits a
small number of pixels to conceal secret messages so
that the stego image complies with the radiance
RGBE encoding format, remaining undetectable to
malicious eavesdroppers. Wang et al. [25] introduced
a segment-based data hiding scheme for HDR
images encoded by the radiance RGBE format. A
number of non-overlapping G pixels in the cover
HDR image are grouped together to form a segment.
In every segment, each pixel’s homogeneous
representations are multiplied together, offering even

more homogeneous representations. This allows their
algorithm to exploit Yu et al’s approach of
concealing more secret bits. Given G=1000, the
average embedding rate is in the range of 0.135-
0.140 bpp. Chang et al. [23] proposed a distortion-
free data embedding scheme for HDR images. Their
scheme takes advantage of the Cartesian product of
all of the HDR pixels, thus exploiting all

TABLE |

THE ABBREVIATIONS

Abbreviations Description

ABCD Aggressive bit encoding and
decomposition scheme Adaptive data

ADHOB hiding algorithm using optimal base

BIE Bit inversion embedding technique

DHOB Data hiding algorithm using optimal
base

EMSE Expected mean squared error High

HDR dynamic range

HDR-VDP-2 HDR visual difference predictor

IW-SSIM Information content weighted structural
similarity measure

LDR Low dynamic range NMSE Normalized
mean squared error

OB Optimal base

PPCC Pearson’s product-moment correlation
coefficient

PSNR PSNR Peak signal-to-noise ratio

Q(H) HDR image quality value

L((H) LDR image quality value

SSRC Spearman’s rank correlation coefficient

SSIM Structural similarity index

VSl Visual saliency-based index

of the homogeneous representations. Their method
provides an average embedding rate of 0.1355 bpp.
Chang et al. [24] introduced a new distortion-free
data embedding scheme for HDR images. They
proposed a new homogeneity index table for
homogeneity values of N=3, 5, 6, 7, which efficiently
exploits all homogeneous representations of each
pixel. Their scheme offers an average embedding
rate of 0.1445 bpp. A survey of the literature
indicates that there are three drawbacks in the current
data hiding algorithm for HDR images. First, while
most algorithms target the 32-bit radiance RGBE or
48-bit TIFF format, none of them is developed for
the OpenEXR format. Second, while works reported
by [23] [24] [25] constantly increase the embedding
capacity, a stego HDR image generated by these
algorithms does not preserve the radiance RGBE
encoding format, thus becoming perceptible to
eavesdroppers and vulnerable to steganalytic attack.
Third, most algorithms do not consider how to
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minimize pixel distortion incurred from message
concealment, thus producing a tone-mapped stego
image with a moderate image quality. This paper
presents a novel data hiding algorithm for HDR
images which is detailed in the next section.

I1l. PROPOSED ALGORITHM This section
describes the proposed DHOB algorithm. We list the
abbreviations in Table | for quick reference. First, we
highlight an overview of the algorithm in terms of
the message embedding, and then describe the
optimal base, a kernel concept of the algorithm,
followed by the proposed aggressive bit encoding
and decomposition scheme (ABED). The scheme
aims to conceal an extra bit for secret messages
represented by a serial bit stream. This scheme
decomposes the encoded decimal value into n
message digits. Next, the approach of embedding and
extracting these n message digits is described.
Furthermore, we describe an extension of the
proposed algorithm to support luminance-aware
adaptive data hiding. We present an analysis of our
algorithm in the final section. A. An Overview of
the DHOB Algorithm The flow chart of the message
embedding in the proposed DHOB algorithm is
shown in Fig. 2, which consists of three

.-”'f Cover HDR

. 2. Aggressive Bit
|
Lt L Optlma ﬁase = Encoding and
Determination

(n, k) Decomposition

Secret Bits

Stego HDR
Image

Fig. 2. Flowchart of embedding & secret bits into a pixel group of n pixels
in the proposed DHOB algorithm.

3. Message Digits
Embedding

processes. Given a pixel group of n pixels and the
desired embedding bits Kk, the first process
determines an optimal base (OB) which provides
minimal pixel distortion for message concealment.
The second process adopts the aggressive bit
encoding and decomposition (ABED) scheme to
produce n secret digits. The third process embeds
these n secret digits into a pixel group of n pixels
producing a stego HDR image. B. The Concept of
the Optimal Base A fundamental requirement of a
message embedding algorithm is to satisfy various
desirable capacities. The input of the DEOB
algorithm is (n, k) which indicates that k secret bits
are concealed in a pixel group of n pixels, offering
the capacity of k/n bits per pixel. The proposed
algorithm can thus provide a variety of capacities by
altering n and k. We conceal secret messages through
the use of the optimal base. Two examples, n=1 and
n=3, are given before a formal definition for the
optimal base is provided. Without loss of generality,
take (n, k)=(1, 2) as an example; this conceals 2
secret bits in a single pixel P providing an

Papers presented in

ICIREST-2018Conference can be
https://edupediapublications.org/journals/index.php/1JR/issue/archive

embedding rate of 2.0 bpp. Take a base b=4>22,
which provides four pixel change patterns to convey
four decimal secret messages 0, 1, 2 or 3, since k=2.
For example, if P mod b = 0, the four pixel change
patterns P+0, P+1, P+2, P-1 can convey secret
messages 0, 1, 2 or 3, respectively, and the pixel
distortion expressed in terms of the expected mean
squared error (EMSE) has the smallest value of
[02+12+22+(-1)2]/4=1.5, assuming secret messages
have equal probability of appearance. Similarly, if P
mod b = 1, 2 or 3, secret messages can still be
concealed by four pixel change patterns using
different orders, producing the same mean squared
errors of 1.5. In this example, b=4 is an optimal base
because it offers the requested embedding rate
(|log24] bpp) and produces the least expected mean
squared error, 1.5. A more general case is
considered by taking an optimal base b which
provides b number of pixel change patterns to
conceal secret messages 0, 1, ..., b-1. The capacity
offered by the optimal base b is shown in (2), and the
expected mean squared error produced is shown in
(3). The proof is detailed in Appendix A. Note that if
b=2k, the capacity and the distortion provided equals
the well-known OPAP message embedding scheme.
In other words, OPAP is a special case of employing
an optimal base b=2k:

C(b)=|log2b. )
EMSE(b) = [b2 —(-2)[(b+1)mod 2])/12.  (3)

Now consider the second example of n=3.
Without loss of generality, take (n, k)=(3, 4) as an
example which conceals 4

secret bits in a pixel group of 3 pixels. Since k=4,
the secret messages are decimal values from 0 to 15.
Without loss of generality, assume OB=(b1, b2, b3)
is an optimal base, where b1 < b2 < b3. Based on the
first example, OB must satisfy the first inequality,
b1xb2xb3>24, in order to satisfy the requested
embedding rate, 4/3 bpp. In addition, OB must
produce the least expected mean squared error,
min[y. EMSE(bi) 3 i=1 ]/3, when concealing secret
messages. It is possible to approximate the first
inequality using the inequality of arithmetic and
geometric means (AM-GM inequality). In particular,
when bl=b2=b3=\24 3 225198, the equality
b1xb2xb3=24 holds. Since bi is an integer, we derive
the lower bound of bi using the floor function [V24 3
| = 2 and the upper bound of bi using the ceiling
function with a slightly larger range [\24 3 ]+1=4.
This indicates bi €{2, 3, 4}; there are a total of 33
possible optimal bases, including (2, 2, 2), (2, 2, 3),
..., (4, 4, 4). Consequently, the optimal base OB=(2,
3, 3) is derived, where the embedding rate offered by
this optimal base is |log2(b1 xb2 x b3)|/3 =1.3333
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bpp, satisfying the requested rate. In addition, the OB
produces the smallest expected mean squared error,
EMSE(2, 3, 3)=0.6111. Note that if b1 < b2 < b3is
not restricted, then (3!1/2!) optimal bases will be
derived, including OB=(2, 3, 3,), (3, 2, 3) and (3, 3,
2). The two examples are now generalized by
considering that the secret message is carried by a
pixel group (PG) of n pixels, PG(P1, P2, ..., Pn).
Referring to the examples, given (n, k), an optimal
base OB = (bl,b2,....bn) must satisfy the first
inequality shown in (4) in order to provide 2k pixel
change patterns satisfying the requested embedding
rate (k/n) bpp. Besides, the OB must produce the
least pixel distortion, as shown in (5). We
approximate the first inequality by finding the lower
and upper bounds of each vector component (bi), as
shown in (6). Then, we derive an optimal base from a
total of 3n possible optimal bases. Equation (7)
expresses the minimal embedding rate offered by OB
in bpp, where T =[] bi n i=1 is called the maximal
pixel change patterns and the expected mean squared
error produced by OB is shown in (8).

T=[1bini=1>2k (4
OB =(b1,b2,...,bn) =arg min{>. EMSE(bi)/n} n i=1
: (5)
|N2k|< b1< b2< -+ <bn<|\N2k|+2. (6)
Cmin(b1,b2,....bn) = k/ n (7)

EMSE(bL,b2.....bn)=1/nx125 [bi2—(~2)(bi+1)mod]
ni=1. (8)

The lower and upper bounds of n are n=1 and n=
HxV, the resolutions of a cover image, respectively.
The lower and upper bounds of k are k=1 and k=64,
respectively, since 264 is the largest integer
implemented by the C programming language. Table
Il shows a number of optimal bases for different
parameters of (n, k), where n is in the range of 3
and11, and k is in the range of 4 and 25, which offers
the minimal embedding rate Cmin from 1.25 to
2.2727 bpp. An aggressive bit encoding and
decomposition scheme (ABED) is proposed, which
offers a
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TABLE 11
ALIST OF VARIOUS CAPACITIES PROVIDED BY THE ABED SCHEME FOR
THE GIVEN (N, K) AND THE DERIVED OPTIMAL BASE (OB)

nok Conig 0B T Cppp  Extra
304 13333 235 18 13730 510436
4 5 12500 (2233 36 12813 382817
3 8 1.6000 (33334 324 16331 630806
6 11 1833 (333449 2160 18424 111638
713 18571 (3334449 8640 18630 83707
g 15 18730 (33344445 34360 18818 83743
9 19 21111 (334555353535 362300 2.1192 99206

2222000 (3455553355 4687300 22118 144030

511717 (4555333333575 30062300 22877 182814

—_——
—

larger capacity, as shown in the right column,
which will be detailed later. C. Aggressive Bit
Encoding and Decomposition (ABED) The optimal
base provides the maximal pixel change patterns T
shown in (4), thus offering the embedding capacity
of at least k bits in a pixel group of n pixels. When T
is not a power of 2, the difference, h=T-2k, is a
positive value, which represents pixel change
patterns that still can be exploited. Thus, the
embedding capacity offered in a pixel group
becomes (k+1) bits, which is larger than the original
payload. Inspired by this observation, we present an
aggressive bit encoding and decomposition (ABED)
scheme. Assume that given (n, k), the optimal base
OB = (b1,b2,...,bn) is derived, where themaximal
pixel change pattern T =[] bi n i=1 is available. The
ABED scheme first reads k bits of secret message
and then determines whether it is possible to convey
the next secret bit (x2). The ABED scheme consists
of three steps, as detailed below.

Step 1: Read in k bits of secret message S2 and
convert them into the decimal value S10. Step 2:
Compare 510 with the threshold h=T-2k and produce
two cases: Case 1: If S10<h, it is possible to exploit
the residual pixel change patterns. We read in the
next secret bit (x2) and encode a total of (k+1) bits
into the decimal value S10 ', where S10 ' = x2 x2k
+510. Case 2: If S10 >h, we cannot take advantage of
the residual pixel change patterns, so simply set S10 '
= 510. Step 3: Decompose S10 ' into n message
digits D(d1,d2,...,dn) using (9) by referring to the
optimal base OB = (b1,b2,...,bn):

di={
510 mod bi if i=1]S10/[] bj i-1
j=1] modbi if 2<i<n. ©)

Example 1: an example is presented to illustrate
the ABED scheme. Given (n, k)=(3, 4), OB= (b1, b2,
b3)=(2, 3, 3), the maximal pixel change pattern is
T=2x3x3=18. Let (00011 011011001010...)2 be a
serial secret bit stream to be concealed. In step 1,
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since k=4, read 4 secret bits $2=(0001)2 and convert
them into $10=1. In step 2, compare S10 and the
threshold h=18-24=2. Since 510<h, case 1 holds. We
read in the fifth secret bit x2=(1)2, shown with the
underlining, and encode 5 secret bits “00011” into
the decimal value S10 ' =1x24+1=17. In

TABLE Il

GIVEN (N, K)=(3, 4), THE ABED SCHEME FIRST ENCODES 4-35 SECRET

BIT$ AND THEN DECOMPOSES THEIR DECIMAL VALUE §;, INTO 3

MESSAGE DIGITS (d,, d,. d,) USING THE OPTIMAL BASE OB=(2,3, 3)

51 5, (dpdyd)  Si, 5, dy, dy.dy
0 0000=0  0,0,0 9 1001 L1
1 000140 1,0,0 10 1010 0,2,1
2 0010 0,1,0 1 1011 12,1
3 oott 1,1,0 12 1100 0,0,2
4 0100 0,2,0 1310 1,0,2
5 0101 1,2,0 14 1110 0,1,2
6 0110 0,0,1 15 11 11,2
7 0111 1,0,1 16 0000+1  0,2,2
8 1000 0,1,1 17 0001+1 1,2,2

step 3, decompose S10 ’ into 3 message digits
D(d1,d2,d3)=(1, 2, 2), using (9). In particular,
d1=17 mod 2=1, d2= |17/2] mod 3 = 2, and
d3=]17/(2x3)| mod 3=2.

This example demonstrates that 5 secret bits are
concealed. This advances the original embedding
capacity of conveying 4 secret bits, even though
there are only T=18 maximal pixel change patterns.
Note that if the 4 secret bits are (0000)2, it is still
possible to convey an extra bit (x2). In particular, if
x2=(0)2, we encode 5 secret bits “00000” into the
decimal value S10 ' =0. Alternatively if x2 =(1)2, the
decimal value being encoded is S10 ' =16. Table III
lists detailed decimal values that are encoded and the
3 message digits produced after the decomposition.
Note that in this example, the ABED is able to carry
an extra bit when the first 4 secret bits are (0000)2 or
(0001)2. D. Message Digit Embedding Thus far, k
or k+1 secret bits have been concealed and n
message digits D(d1,d2,...,dn) have been produced.
This section embeds every message digit into every
pixel in a pixel group. Since an OpenEXR HDR
image has three chromatic channels, the embedding
will follow the order of red, green and blue channels.
Without loss of generality, take the red channel as an
example. Let Pi represent the i-th cover pixel in a
pixel group; it has the corresponding sign value
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(SNi), exponent value (Ei) and mantissa value (Mi).
The scenario of embedding the message digit di into
Mi involves producing the stego mantissa Mi ' such
that (Mi' mod bi)= di and the variation (Mi ' —Mi )2
is minimized. Three steps are required to accomplish
the message digit embedding.

Step 1: Compute the current remainder ri using
(10). Note that since the mantissa field contains 10
bits, the decimal value of Mi is in the range
between 0 and 1023. Step 2: Derive the difference vi
using (11). Note that bi is added to ensure that the
difference is positive. Step 3: Produce the stego
mantissa Mi ' using (12). This takes advantage of the
modulus operator ensuring to minimize the variation
(Mi'—Mi)2.

ri=Mimodbi. (10)

vi=[(di~ri)+bi]modbi. (11)
Mi'={Miif vi=0 Mi+viif 0<uvi<|bil2]
Mi +vi —bi if |bil2] < vi < bi. (12)

Example 2: an example is presented to illustrate
the digit message embedding. Given (n, k)=(3, 4),
OB=(bl, b2, b3)=(2, 3, 3), message digits
D(d1,d2,d3)=(1, 2, 2) are produced when concealing
a secret 5-bit stream (00011)2. Without loss of
generality, let (P1,P2,P3)=(0.49902343750,
0.80517578125, 1.01074218750) be three cover
pixels in a pixel group, as shown in Table IV.
Referring to (1), we derive the decimal value of
(SN1,SN2,SN3)= (0, 0, 0), (E1,E2,E3)=(13, 14, 15),
and (M1,M2,M3)= (1020, 625, 11), respectively. We
employ three steps to conceal (d1,d2,d3)=(1, 2, 2)
into (M1,M2,M3)= (1020, 625, 11). In the first step,
we compute (rl, r2, r3)=(1020 mod 2, 625 mod 3,
11 mod 3)=(0, 1, 2). Then, we derive the difference
(v1,v2,v3)=(1, 1, 0) in the second step. Finally, we
produce the stego mantissa (M1 ',M2 ',M3
N=(1020+1-2, 625+1-3, 11)=(1019, 623, 11). It is
possible to derive the floating point value of three
stego pixels (P1 ',P2 ',P3 ') = (0.49877929688,
0.80419921875, 1.01074218750). E. Message
Extraction The message extraction is performed in
the reverse order. Assume that the decoder is given
the same embedding parameters (n, k), has been
notified that the ABED scheme was employed, and
holds the pixel embedding order derived from secret
keys. Secret messages can be extracted using the
following three steps, as shown in Fig. 3. First, given
(n, k), the decoder produces the optimal base
OB=(b1,b2,...,bn) and the maximal pixel change
patterns T=[] bi n i=1 . Then, the first pixel group of
n pixels is accessed to derive the mantissa value,
where n message digits can be extracted using (13),
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and the encoded decimal value S10 ' can be derived
by (14). Finally, the concealed binary secret bit S2 '
is derived using (15). Note that the decimal-to-binary
function DB(S10 ' ,t) converts the decimal value S10
" into t bits of binary bit S2 ' . In this equation, the
operator “+” conjoins k bits and a single bit x2 =
(0)2 or (1)2.

TABLE IV
EMBEDDING THREE MESSAGE DIGITS (1, 2, 2) INTO A COVER PIEL
GROUP (Py, P;, P;) TO PRODUCE A STEGO PIXEL GROUF (P}, Pi. P})

Type Pixel Floating Value Sign Deci. Exponent Deci. Mantissa Deci.

P, 049902343750 5N, 0  E, 13 M, 1020
Cover P, 0.80517578125 SN, E, 14 My 623
Py 101074218750 SN, E, 15 M, 11

P, 0.49877929688 SN, E, 13 M} 1019
Stego P 0.80419921875 SN, E, 14 M, 61
E 15 M 11

oo ol o

P; 1.01074218750 SN,

1. Optimal Base
Determination

Stego HDR
Image
Secret
Bits

Fig. 3. Flowchart of message extraction in three processes

Extraction

3. Message Digits
Decoding

M, if v=0
M; = Mf ‘I‘ 'U't'
Ml ‘I' ['I; = bl if leIZJ < 'Ut- < bll.

Example 2: an example is presented to illustrate
the digit message embedding. Given (n, K)=(3, 4),
OB=(bl, b2, b3)=(2, 3, 3), message digits
D(d1,d2,d3)=(1, 2, 2) are produced when concealing
a secret 5-bit stream (00011)2. Without loss of
generality, let (P1,P2,P3)=(0.49902343750,
0.80517578125, 1.01074218750) be three cover
pixels in a pixel group, as shown in Table IV.
Referring to (1), we derive the decimal value of
(SN1,SN2,SN3)= (0, 0, 0), (E1,E2,E3)=(13, 14, 15),
and (M1,M2,M3)= (1020, 625, 11), respectively. We
employ three steps to conceal (d1,d2,d3)=(1, 2, 2)
into (M1,M2,M3)= (1020, 625, 11). In the first step,
we compute (rl, r2, r3)=(1020 mod 2, 625 mod 3,
11 mod 3)=(0, 1, 2). Then, we derive the difference
(v1,v2,v3)=(1, 1, 0) in the second step. Finally, we
produce the stego mantissa (M1 ',M2 ',M3
N=(1020+1-2, 625+1-3, 11)=(1019, 623, 11). It is
possible to derive the floating point value of three
stego pixels (P1 ',P2 ',P3 ') = (0.49877929688,
0.80419921875, 1.01074218750). E. Message
Extraction The message extraction is performed in
the reverse order. Assume that the decoder is given
the same embedding parameters (n, k), has been
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notified that the ABED scheme was employed, and
holds the pixel embedding order derived from secret
keys. Secret messages can be extracted using the
following three steps, as shown in Fig. 3. First, given
(n, k), the decoder produces the optimal base
OB=(b1,b2,...,bn) and the maximal pixel change
patterns T=[] bi n i=1 . Then, the first pixel group of
n pixels is accessed to derive the mantissa value,
where n message digits can be extracted using (13),
and the encoded decimal value S10 ' can be derived
by (14). Finally, the concealed binary secret bit S2 ’
is derived using (15). Note that the decimal-to-binary
function DB(S10 ' ,t) converts the decimal value $10
" into t bits of binary bit S2 ' . In this equation, the
operator “+” conjoins k bits and a single bit x2 =
(02or(1)2

di'=Mi'modbi,i=12,...,n. (13)

$10'=d1'+Y [din'i=2x([]bji-1j=1)]. (14)

DB(S10,k)+(0)2, if 0<S10'<T —2k,

S2=< DB(S10',k) if T—2k<S10'<2k,
DB(S10 ' —2k,k) +(1)2  if S10'>2k.
(15).

Example 3: an example is presented to illustrate
the message extraction. Given (n, k)=(3, 4), OB=(b1,
b2, b3)=(2, 3, 3), and a stego pixel group (P1 ',P2
",P3')=(0.4987792968750,0.804199218750,1.010742
18750). In the first step, we derive the stego mantissa
value (M1 ',M2 ',M3 ' )=(1019, 623, 11) and extract
three message digits D(d1 ',d2 ',d3 ")=(1, 2, 2) using
(13). Next, we derive the encoded decimal value S10
"= 1+2x242x (2x3)=17 using (14). Finally, since
S10 ' > 24, the third formula shown in (15) is applied
to derive  secret  bhits = S2 '=DB(17-
24,4)+(1)2=(0001)2+(1)2=(00011)2. Other pixel
groups are similarly extracted. F. An Analysis of the
ABED Scheme We analyze the expected embedding
rate in bit per pixel (bpp) offered by the ABED
scheme, which has a close relation to the appearance
of the secret bits “0” or “l1.” Let p represent the
appearance probability of secret bit “1.” First, we
discuss the case for p=0.5. The appearance
probability of k bits of “1” is (1/2)k. Referring to the
ABED scheme shown in Case 1, when $10< (T-2Kk),
it is possible to conceal (k+1) bits, so the expected
capacity in this case is C1 =[(T —2k)/2k]x(k+1).
Referring to Case 2, when S10 >T-2k, it is only
possible to embed k bits, so the expected payload in
this case is C2=[(2k+1 —T)/2k]xk. Consequently, the
expected embedding rate in bpp offered by the
ABED scheme is to sum two terms over n pixels, as
shown in (16), where k = |log2 T] and T =[] bi. n
i=1
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CABED(n,k,T) = C1+C2/ n = 1/ n(k + T2k 2k ).
(16)

This equation demonstrates two important
features. First, the proposed ABED scheme can
conceal an extra rate of (T — 2k)/(nx2k) bpp when
the secret bits “0” or “1” have an equal probability of
appearance, i.e., p=0.5. Second, the pixel variation
caused by concealing this extra payload does not
increase because the same optimal base is used. In
other words, the ABED scheme provides a
significant benefit, increasing payload without
augmenting the pixel variation. Some expected
capacities using different optimal bases are given in
the right column of Table II. Following Example 1,
the expected embedding rate CABED(3, 4,
18)=1.375 bpp is higher than the minimal rate
Cmin=1.3333 of only using 24 pixel change patterns
rather than exploiting a total of T=18 pixel change
patterns. If a cover HDR image has the resolution of
3672%3338, the ABED scheme can conceal 510436
additional bits. Statistics show that the range of
additional bits concealed is between 83743 and
650806 bits. The general case for the variable p is
now discussed, where 0<p<1. Take (n, k)=(3, 4) as
an example, which has the derived OB=(b1, b2,
b3)=(2, 3, 3) and T=2x3x3=18. Table V shows the
bit patterns, decimal values (i) and corresponding

TABLE V
THE PROBABILITY FOR DIFFERENT BIT PATTERNS WITH (V. K)-(3,4)
Pattern P Pattem i b
00 0 (g § 000§ plp) 4
00t 1 (p)p 51009 () 4
00 2 (p)p 4 1000 10 gl 4
or 3 (L 410 p(lp) 4
000 4 (p)p 4 100 11 pllg) 4
000 5 (p)p 4 10013 pllg) 4
00 6 (1) 4 110 W plg) 4
o7 (g 4115 g

appearance probability (Pi) from PO to P15,
where Ci indicates the bits that can be concealed. For
example, the bit pattern “0001” equivalent to the
decimal =1 has the corresponding appearance
probability P1 =(1-p)3p. The previous discussion
indicates that it is possible to conceal 5 secret bits
when the bit patterns are “0000” or “0001”
equivalent to the decimal value of i=0 and 1. Other
bit patterns can only conceal 4 secret bits equivalent
to the decimal value of i=2 to 15. Consequently, (17)
is a polynomial function derived in the variable p to
represent the expected capacity offered by the

Papers presented in

ICIREST-2018Conference can be
https://edupediapublications.org/journals/index.php/IJR/issue/archive

proposed ABED scheme for the parameters (n,
k)=(3, 4), OB=(2, 3, 3) and T=18.

ECABED(p)=13Y(Pi15 i=0 xCi) = 13(5-3p+3p2
—p3). (17)

When p=0.5, the expected embedding rate is
ECABED(p = 0.5) =1.375 bpp, which is coincident
with the value calculated by (16). When p=0.0,
ECABED(p = 0.0) has the maximal expected rate
(5/3) equivalent to [log2 18]/3. However, when
p=1.0, ECABED(p = 1.0) has the minimal expected
rate (4/3) equivalent to [log2 18]/3. The embedding
rate in bpp offered by the ABED scheme must be
within these two extremes. The polynomial function
ECABED(p) reveals that the smaller the p value, the
larger the expected capacity, and vice versa. Inspired
by this feature, we introduce the bit inversion
embedding (BIE) technique. In particular, when a
serial secret bit stream to be concealed has the
characteristic that the appearance probability of
secret bit “1” is greater than 0.5 (p>0.5), we can
activate the BIE technique. First, we invert all of the
secret bits from “0” to “1” or “1” to “0” before
concealing them. This means that all secret bits are
conveyed using a new probability p’ where p'=1-p,
which produces a larger expected capacity
ECABED(p’). As an example, assume p=0.65; we
activate the BIE scheme for message embedding.
Thus, the expected embedding rate produced
iISECABED(p’ = 0.35)=1.424875 bpp, which is
greater than ECABED(p = 0.65) =1.347625,
increasing by 5.73% of the expected embedding rate.

(m, Ky, K, ks) N 1. Transformation | »
(g1, 8:) RGB to YUV
Cover HDR ¢
Image 3. Pixel
Luminance
e_’ Secret Bits i i Classification
Stego HOR 5. DHOB
e 08 e
Image Algorithm

Fig. 4. Flowchart of adaptive message embedding in the proposed
ADHOB algorithm

2. Expanent
Sorting (Y)

4, Three-Level OB
Determination

G. An Extension to Adaptive Message Embedding
Our algorithm can be extended to achieve
adaptive message embedding, as shown in Fig. 4.
The main scenario of adaption is conveying more
secret bits in pixels with low luminance, and vice
versa. This takes advantage of the human visual
sensitivity (HVS) because human beings are less
sensitive to the alternation of pixels with low
luminance. The embedding parameters of the
adaptive algorithm (ADHOB) include (g1, g2), (n,
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k1, k2, k3) and a serial secret bit stream (S2). It takes
five steps to convey secret messages. Step 1:
Transform every pixel Pi represented in the RGB
color space to the YUV color space Qi, i=1, 2, ...,
HxV represented by the IEEE 754 standard single-
precision floating-point format, which contains 1-bit
sign (sn), 8-bit exponent (e), and 23-bit mantissa (m).
Step 2: Sort all of the exponent values (e) in the Y
channel from the largest to the smallest and break
ties by the scan-line sequential order followed by the
pixel position in a scan-line. This produces sorted
pixels SQi, i=1, 2, ..., HxV. Accordingly, we update
the order of pixels in the RGB colors pace to produce
sorted pixels (SPi). Step 3: Referring to the
parameters (g1, g2), we conduct the pixel luminance
classification process

TABLE VI
FEATURES OF 15 TEST HDR IMAGES WITH DIFFERENT DYNAMIC RANGE
(DR) IN LOG.s AND KEY VALUE (k) FOR GROUP-1(LEFT) AND GROUP-2
(RICGHT) IMAGE DATABASES

Width Height DR ky 1 Width Height DR fey

4288 2848 3.88320 0.7090 760 1016 3.00818 04130
2848 4288 6.23260 04162 760 1016 2.19367 04752
2845 4275 693963 03664 1024 676 133613 03423
4288 2412 6.96010 0.5991 1536 2048 340376 0.2171
4288 2412 528386 04558 1536 2043 3.03978 0.3062
2848 4288 333957 04919 720 480 442570 0.3894
4288 2412 4.07376 04510 767 1023 3.73443 03711
8 4288 2412 7.59602 03725 644 874 4.67840 0.4415
9 4288 2412 2.24800 0.5847 1024 1024 2.50882 0.6817
10 4288 2412 471188 05133 312 768 3.81602 0.3413
11 4288 2412 433039 05267 (11 720 480 4.12020 0.2979
12 4288 2847 433695 0622012 2048 1536 1.88605 0.4190
13 4288 2848 425682 0536213 1024 1024 2.50383 0.3010
14 4288 2848 6.07420 04763 (14 575 575 917681 0.8672
15 4288 2848 4.10395 0579115 3720 1396 2.23073 0.6009

B - N L

Wooa -l O LA b L B e

—
=

classify luminance of the sorted pixels SPi into
high, middle and low luminance levels. For
simplicity, represent pixels in the high, middle and
low level by {L1}, {L2} and {L3}, respectively.
{L1} contains g1 percentage of pixels, {L2} has (g2-
gl) percentage of pixels, and {L3} consists of (100-
g2) percentage of pixels. Step 4: Determine three
optimal bases, OH1,0H2 and OH3 corresponding to
{L1}, {L2} and {L3} according to the embedding
parameters (n, k1), (n, k2) and (n, k3). Step 5:
Referring to the secret bit stream (S2), embed k1, k2
and k3 bits into every pixel group at {L1}, {L2} and
{L3} using the proposed data hiding algorithm. This
produces the stego OpenEXR HDR image.

The message extraction procedure operates in
reverse. Note that since the exponent field is not
altered during the message embedding, the exponent
sorting and pixel classification produces the same
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{L1}, {L2} and {L3} in comparison to those
conducted in the message embedding process

IV. EXPERIMENTAL RESULTS AND
COMPARISONS

We implemented our scheme in C++ programming
language and conducted the experiments in a
platform with the Linux operating system. We
present the experimental results and compare our
algorithm with the state-of-the-art algorithms in the
literature.
A. Embedding Capacity Results

Experiments were conducted using two image
database (group-1 and group-2), each of which
contains 15 images selected from NCHU HDR-EXR
database which contains 95 HDR OpenEXR images.
Detailed information on the image database is given
in the supplemental material A. We remark that
while most of them were downloaded from the
Internet available to the public [7] [31] [32], seven
HDR images in the group-2 image database are
derived from real scenes corresponding to the actual
measured luminance. The binary contents of the
Open EXR image, 507, represent a serial secret bit
stream to be concealed.
Table VI show fundamental features of the test
images in two image databases, indexed from 1 to
15. In addition, minimal and maximal pixel values
and the pixel patterns used in our experiments are
shown in supplemental material B. Reinhard et al.
[18] first classified HDR images o based on the
logarithmic average luminance with respect to the
minimal and maximal luminance values [22] [29]
[30]. Later, Akyuz and Reinhard adopted the
normalized log-average luminance of an HDR image
to approximate the key value (ky) of the scene [31]
[32]. Both a and ky indicate whether a scene is
subjectively light, normal, or dark. In our
experiments, we selected images with a variety of
ky values.

TABLE VII
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THE CAPACITY OFFERED BY OUR DHOB ALGORITHM IN GROUP-1 (TOP)
AND GROUP-2 (BOTTOM) IMAGE DATABASES

THE CAPACITY OFFERED BY OUR. ADHOB ALGORITHM IN GROUP-1 (TOP)
AND GROUP-2 (BOTTOM) IMAGE DATABASES

I k ABED ABED-BIE VSI PPCC__ SRCC  Tis) I k-k, ABED ABED-BIE VSl  PPCC  SRCC  T(s)
13 38139960 383239630 0999979 0599925 0.899924 3349 7 35 46126523 46247629 0999998 0998502 0997431 4133
35 62312076 62429606 0.999954 0999944 0.999921 3TLL 4 57 50923800 60002560 0.999986 0998032 0997622 3657
38 84244080 34378136 0.999974 0.999819 0.999843 34389 5 740 03356111 98490490 0999909 0999003 0997523 4383
711 114308438 114600359 0.999918 0999812 0999818 3375 g 10,13 111578813 111659564 0.999983 0999419 0.999228 396.9
9 14 145001872 143148460 0999391 0.999741 0.999824 3763 19 13.13 172389162 172306604 0.999840 0.999310 0.999715 443.0
1117 175942133 173970287 0.999730 0999735 0.999340 4021 45 1330 228306201 228307476 0996168 0999216 0.999022 5180
13 19 232043664 232043620 0.997430 0.999640 0998512 4792 14 224 276828421 276831140 0.990024 0998733 0.998328 3543
13 21 236456683 236436683 0.983669 0999630 0.997441 3024 15 2375 288042932 288046640 0972725 0997015 0997418 558.7
I & ABED ABEDBIE VSI  PPCC  SRCC T(s) 1 bk ABED ABED-BIE VSI  PPCC  SRCC  T(s)
23 2413825 2418571 0.999384 0.599940 0.999927 39.0 I 24 2148813 2151079 0999960 0999813 0999844 72356
4 5 16113549 16146177 (0999884 0999925 0.999917 1490 3 4§ 3261169 3266863 0999968 0999720 0999113 6592
6 7 2478707 2481168 0986751 0.999822 0.999827 463 5 g 21036596 21051014 0.999861 0999922 0.998004 170.97
§ 9 5063636 5065636 0.999930 0.999806 0.999713 341 9 ggp 6918525 6922941 0.999760 0999316 0999624 72.68
10 11 4353995 4336410 0998329 0.999833 0.999623 490 9 10,17 11295899 11303030 0999741 0999022 0.999113 8345
12 13 40969947 40984182 0999956 0.999814 0999111 1642 1y 1314 4363473 4363865 0988710 0999095 0.999187 5377
14134939360 4939360 0999306 0999710 0.998791 482 13 1416 15427919 15430391 0989069 0998611 0.998330 82.24
15 16 83004288 83004368 0998389 0999622 0997423 2451 15 1513 86564731 36369609 0998790 0997002 0.997405 328.57
The embedding capacities for group-1 and group-2

image databases are shown in the first four columns
of Table VIII. Detailed statistics for k=3 to 21 are
shown in supplemental material C. We remark that
HDR test images in group-1 have a larger resolution,
thus offering higher embedding capacity when using
the same embedding parameter. When adopting bit
inversion embedding (BIE) in both algorithms by
flipping the bits first before embedding, we obtain a
larger embedding capacity. Using k=7 in group-1, for
example, 122569 extra bits can be concealed,
producing an embedding rate of 7.1808 bits per
pixel. Our experiment shows that the average
appearance of the probability for bit “1” in the
contents of the HDR “507” image is p=0.5056076.
Since p>0.5, it is beneficial to activate the BIE
scheme to increase the embedding capacity. It is
interesting to note that when k=9, 12, 15, 18, or 21,
the maximal pixel change patterns (T) derived from
the optimal base is a power of 2. It is not possible to
encode an extra bit, nor is the capacity influenced by
the probability p. Consequently, the capacity does
not change when activating the BIE. The embedding
capacities using ADHOB algorithm are shown in the
first four columns of Table VIII. The threshold (g1,
g2)=(25%, 60%) is set, which means that 25% of
pixels are classified into the high luminance level,
another 35% of pixels are classified into the middle
luminance level and the remaining pixels are in the
low luminance level. At each level, (k1, k2, k3)

bits are concealed in a pixel group of 3 pixels
(n=3). These statistics confirm that the BIE scheme
does offer an advantage in providing greater
embedding capacities.

TABLEVIII
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B. Image Quality Results

While the inverse tone mapping converts low
dynamic range (LDR) images to HDR ones [33],
tone mapping addresses the problem of strong
contrast reduction from scene radiance to the
displayable ranges while preserving the image details
and color appearance [34]. We adopt an open source
package, Luminance HDR [35], as our HDR test
software. Formerly Qtpfsgui, this graphics software

supports  several graphic formats, including
OpenEXR and Radiance RGBE. Various tone
mapping operators (TMOs) are implemented

including Mantiuk06 and Mantiuk08. Users can
exchange experience and information through
community websites such as Flickr and Facebook.
The next three columns of Table VII show the image
quality results for group-1 and group-2 image
databases using DHOB algorithm.We display visual
saliency-based index (VSI) between the cover and
stego tone-mapped images [36] [37] using the default
settings, which is perceptual image quality
assessment aiming to use computational models to
measure the image quality. The VSI values are close
to 1.0 showing that the stego images are similar to
the cover image with a high perceptual image
quality. The image quality measured from the
structural ~ similarity index (SSIM) [38] and
information content weighted SSIM index (IW-
SSIM) [39] produces similar results, which are
detailed in the supplemental material C. Pearson’s
product-moment correlation coefficient (PPCC) [40]
and Spearman’s rank correlation coefficient (SRCC)
[41] between the histogram of tone-mapped cover
and stego images are close to 1.0, showing a strong
linear dependency between cover and stego images.
Finally, shown in the last column, the execution time
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required to embed secret messages is less than 502.4
seconds. Our experiment indicates that nine-tenth of
the time is spent in Input/Out, including reading and
storing an HDR image and constructing dynamic
data structures to process the mantissa field for
message embedding and extraction

TABLE IX
PL{EL RATIOS (R%) UNDER DIFFERENT DETECTION PROBABILITY (P)
USING DHOB ALGORITHM FOR STEGO LDR IMAGES (TOP) AND STEGO
HDR IMAGES (BOTTOM) IN THE GROUP-1 IMAGE DATABASE

ko op=025 255 573 7595 95 QL)

I

2 4 10000 000 0.00 0.00 0.00 99.93
4 7 10000 000 0.00 0.00 0.00 99.54
6 10 10000 000 0.00 0.00 0.00 96.73
8 13 10000 000 0.00 0.00 0.00 922
10 16 9775 172 043 0.08 0.00 75.07
12 18 78.68 7.84 546 478 323 69.38
14 20 9014 4.81 245 143 1.17 63.01

I b p<025 255 575 595 p295  Q(H)
2 4 10000 000 0.00 0.00 0.00 99.99
4 7 10000 000 0.00 0.00 0.00  100.00
6 10 10000 000 0.00 0.00 0.00 99.83
g 13 10000  0.00 0.00 0.00 0.00 9391
10 16 10000  0.00 0.00 0.00 0.00 83.54
1218 10000  0.00 0.00 0.00 0.00 79.33
14 20 10000 000 0.00 0.00 0.00 83.52

image quality results for group-1 and group-2
image databases using ADHOB algorithm are shown
in the next three columns of Table IX. The VSI,
PPCC and SRCC values are displayed, while SSIM
and IW-SSIM statistics are shown in the
supplemental material C. All statistics are close to
1.0 which demonstrates a high similarity between
cover and stego images. This is due to the fact that
secret messages are concealed in the mantissa field
with 10 bits of length, thus producing a small
distortion. Finally, while the execution time is less
than 558.7 seconds, the time required to process
images in group-2 is faster since they have smaller
resolutions. In general, adaptive message embedidng
requires longer time because more steps are needed
to conceal messages.

C. The HDR-VDP-2 Results

An HDR visual difference predictor [42] [43]
[44] compares a pair of host and test images. We
adopted the HDR-VDP-2 (version 2.2.1) which is a
major revision of the original HDR-VDP to improve
the accuracy of the predictions. This metric is based
on a calibrated visual model that can reliably predict
visibility and quality differences between image
pairs. A two-dimensional map with the probability of
detection at each pixel point is produced to exhibit
the likelihood that an average observer would notice
a difference between cover and stego images. We
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show the statistics of both tone-mapped stego LDR
image and stego HDR image. Detailed statistics for
k=3 to 21 are shown in the supplemental material D.
Since HDR-VDP-2 does not provide an option to
automatically output the ratio of pixels, we collected
these statistics based on the probability of the
detection map. We presented the LDR image quality
values, Q(L), which shows the visual quality of the
tone-mapped stego images. An HDR image quality
value, Q(H), which reveals the visual quality of an
HDR stego image was also given. The higher the
image quality value (up to 100),

TABLE X
PIEL RATIOS (R%) UNDER DIFFERENT DETECTION PROBABILITY (P) USING
ADHOB ALGORITHM FOR STEGO LDR IMAGES (TOP) AND STEGO HDR
IMAGES (BOTTOM) I THE GROUP-2 IMAGE DATABASE

kb p=025 25-5 575 7595 p295 QD)
(2,3,4 10000 000 000 000 000 9942
(4,56) 10000 000 000 000 000 9913
(6,7,8) 10000 000 000 000 000 9968
(89,10) 10000 000 000 000 000 9777
9 (10,11,12) 10000 000 000 000 000 9093
11 (12,13,14) 9907 053 017 009 014 8363
13 (141516 9166 351 165 102 216 7912
I kb p=025 255 5.75 7595 p=05 Q(H)
I (23,4 10000 000 000 000 000 9996
3 (4,56 10000 000 000 000 000 9998
<

—1 wh W e e

(6,7.8) 10000 000 000  0.00 0.00 9992
7 (&10,11) 10000 000 000 000 0.00  96.83
9 (11,1316) 10000 000 000  0.00 0.00 9920
11 (17,18,19y 10000 000 000 000 0.00 9834
13 (14,15,16) 10000 000 000 000 0.00 9872

the greater the perceptual similarity between the
cover and stego images. The tone-mapped statistics
show that when k<20, 1>97.4% for p<0.5 and Q(L) is
over 63.01. When k=18-20, r<8.01% for p>0.75. In
addition, the HDR statistics show that when k<20,
r=100.0% for p<0.25 and Q(L) is over 79.33. This
indicates a significantly low probability that the
differences between the cover and stego images are
visible to an average observer. We suggest that the
largest parameter setting for k is no greater than 20
for the DHOB algorithm.

D. The tone-mapped statistics

show that when the embedding parameters
(k1,k2,k3)=(14, 15, 16), 1295.17% for p<0.5 and
r<3.18% for p>0.75. The Q(L) is over 79.12. In
addition, the HDR statistics show that when k<16,
r=100.0% for p<0.25 and the Q(H) are over 96.85.
Statistics show a small ratio of pixels for a high
probability of detection, which means that the
differences between the cover and stego images are
not visible to an average viewer. Fig. 5 presents the
probability of detection maps reported by the HDR-
VDP-2 using tone-mapped stego LDR (VDPL) and
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e

stego HDR images (VDPH) for the group-1 image RGBE formats produces a significant change in pixel
database. Images with a larger resolution are shown value. Detailed statistics are presented in the
in the supplemental materials D and E. Most maps supplemental material H. Under this circumstance,
show all blue, indicating a low detection probability
of visual difference between the cover and stego
images. The tone-mapping operator shrinks the
luminance to the displayable range resulting; thus,
the VDPL is more senstive than VDPH in revealing
the visual difference between the cover and stego
images

DHOB Algorithm
Mantivk08 HDR VDPy iCAMO6

Stego ADHOB, (17, 18, 19)

Rand10, (ky, ko, k3)~(14, 15, 16)

Prosabiity of detection
mlg l.'. \2§ o . ’
I o %% sow %% 100% I
—

The experimental results are shown in Table XI,

Fig. 5. Results produced by HDR-VDP-2 using both
tone-mapped stego LDR (VDPL) and stego HDR images
(VDPH) in group-1 image database

TABLE XI

colors seem to be more faithful when employing
the TMO iCAMOS.

. The experimental results are shown in Table XI,
G. The embedding capacity,
ranging from 1.04 to 21.65 million bits, is smaller
due to the limited 8-bit storage space in the RGBE
format. . All of the statistics of VSI, PPCC and
SRCC are close to 1.0, showing a strong linear
dependency between cover and stego images.
Finally, the execution time is between 2.1 and 32.9
seconds which are mainly affected by the resolutions
of the test images. Our experiment shows that the
conversion between 48-bit OpenEXR and 32-bit
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CONCEALING SECRET MESSAGES D-'EO THE RADIANCE RGBE HDR

IMAGES USING OUR. DHOB ALGORITHM (V=3 ¥=1-3)

Index k ABED-BIE VSI PPCC SRCC  T(s)
1 2 1544320 0999993  (0.90605  0.99684 36
2 3 2447680 0999992 099790  0.99307 il
34 2886522 0999993 099752  0.99643 48
4 5 16263178 0999996  0.99640 099629 222
5 2 6291456 00999996 099591 099693 264
6 3 1093526 0.999961  0.99513  0.99431 23
T4 3271894 0999985  0.99701  0.99195 i3
8 5 2009923 (.999880  0.99989  0.99304 38
9 2097152 0999778  0.93604  0.95275 5.2
10 3 1246465 0999943  (0.99503  0.99295 26
11 1441126 0999966  0.99931  0.99328 23
12 16263178 0999997 009786 098265 208
13 2 2097152 0999974  0.97209  0.99007 id
14 3 1048056 0999974  0.99619  0.99285 21
15 4 21654922 0999992  0.97552 0.96953 3290

D. The LDR and HDR Steganalysis Results

We present the results of the steganalysis which
aim to detect any messages conveyed in an HDR
OpenEXR image. We remark that since the stego
HDR images generated by our algorithms comply
with the OpenEXR pixel encoding format, no
suspicion is raised when checking the legality of the
he HDR encoding format. Nevertheless, concealing
secret messages in the mantissa field is similar to
adopting the least significant bit substitution
approach in the LDR image. Thus, we adopted the
RS steganalysis [26] using tone-mapped LDR stego
images to evaluate the detectability of our
algorithms. The experimental results of the LDR RS
steganalysis in three channels are shown in the top
part of Table XIlII. In the detection processing, the
absolute difference of a regular group (DIR) and that
of a singular group (DIS) are computed in the using
the recommended default parameters. The proposed
algorithms reveal a small absolute difference in both
DIR and DIS, indicating that the tone-mapped stego
LDR image produced is secure against the LDR RS
steganalytic attack. To the best of the authors’
knowledge, there are no steganalytic algorithms
directly available to detect the existence of concealed
messages for high dynamic range images.
Nevertheless, we conducted the HDR RS
steganalytic attack by directly detecting the mantissa
field of HDR stego images since it is the place where
we concealed secret messages. In particular, the
maximal optimal base we adopted is (323, 323, 323)
for k=25. This means that the maximal magnitude of
distortion in the 10-bit mantissa field is less than
[323/2]. Such a distortion does not affect the two
most significant bits in the mantissa field. Therefore,
we extracted eight least significant bits in the
mantissa field in an HDR stego image and
constructed a stego HDR-RGB mantissa image, on
which we were able to conduct HDR steganalytic
attacks to detect any hidden messages within a stego
in
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HDR image. The bottom part of Table XII shows the
results of the HDR RS steganalysis. The statistics
reveal more or less the similar range of values for
RM, R-M, SM and S-M. In addition, there is a small
absolute difference for DIR and DIS in three
channels using either DHOB or ADHOB algorithms.
The experimental results demonstrate that the stego
HDR images produced by our algorithms are also
secure against the HDR RS steganalyzer. We
conducted steganalysis of our algorithm under the
LDR SPAM steganalyzer [27] using the tone-
mapped stego LDR images. First, we trained the
SPAM steganalyzer on the NCHU HDR-EXR
database, where we employed the LIBSVM
integrated software [45] for training. We adopted the
range of differences T=4 and T=3 for the first- and
second-order of the Markov chain; thus, in the
training process, the first- and second—order features
have dimensions 162 and 686, respectively.

TABLE XII
LDR RS (TOP) AND HDR RS (BOTTOM) STEGANALYTIC RESULTS FOR
THE “GENERAL GRANT" IMAGE USING DHOB (k=17) AND ADHOB
ALGORITHMS (K=17, E:=18, K:=19)

T}'pe Channel RM R M DIR SM SM DIS
) (R 8 (%) %) (%)

LDR Red 3780 3877 097 1341 1312 020
Cover Green 3620 3628 008 1416 1413 003
Blue 3668 3673 003 1475 1480 005

Red 3604 3507 203 1891 1782 1.09

DHOB Green 3504 3517 013 1130 21.24 006
Blue 3585 3395 010 1965 19.62 003

Red 3584 3795 1201 2034 1907 LI7

ADHOB  Green 3481 349 014 2288 2281 007
Blue 3571 3378 007 2043 12043 000

HDR Red 3511 3393 082 349 3416 080
Caver Green 3330 3366 036 3422 3388 03
Blue 3597 3643 046 3368 3322 Q47

Red 3524 3373 049 3487 340 048

DHOB Green 3500 3335 047 3445 3400 043
Blue 3543 3384 041 3408 3365 043

Red 3516 3377 061 3480 3430 06l

ADHOB  Green 3508 3361 033 3447 3396 031
Blue 3547 3586 039 3403 3363 041

Once the training was completed, we evaluated
the SPAM steganalyzer performance on the testing
set by computing the error rate (PErr) under different
parameters; k for DHOB algorithm and (k1, k2, k3)
for ADHOB algorithms, which conceal various
guantities of secret messages. The error rate is
derived by PErr = (PFp+PFn)/2, where PF and PFn
stand for the probability of false positive (detection
cover as stego) and probability of false negative
(missed detection). We conducted the training and
evaluation process five times and reported the
average error rates. We remark that the higher the
average error rates, the lower the detectability. Note
be
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that the SPAM performs the steganalysis of the
grayscale images. Thus, we conducted the
steganalysis on tone-mapped stego images in three
individual channels using the kernel parameters y1=
1/162, y2 = 1/686, and the cross-validation cv = 5.
The top part of Table XIII shows the LDR SPAM
steganalytic results using the DHOB algorithm,
where the training model is images in our database
concealed with secret messages using the embedding
parameter k=20. The SPAM steganalyzer shows a
high average error rate for the target stego images in
the range of PErr=[0.425, 0.588] for the first-order
and PErr=[0.425, 0.563] for the second-order,
respectively. The average error rates for the second-
order are smaller than those of the first-order,
indicating that the second-order SPAM features
provide greater accuracy of the steganalysis.
Nevertheless, both orders show high average error
rates representing that our DHOB algorithm is not
detectable, despite having dimensions as high as 686
features. The bottom of Table XIII shows the LDR
SPAM steganalytic results for the ADHOB
algorithm, where we adopted images with the
embedding parameter (k1,k2,k3)=(18, 19, 20) as our
training model. For the target stego images, the

TABLE XI1lII
THE AVERAGE ERROR RATES 1Y PERCENTAGE COLLECTED FROM THE
LDR SPAM STEGANALYZER USING THE DHOB (TOP) AND ADHOB
ALGORITHMS (BOTTOM) FOR. THE GROUP-1 IMAGE DATABASE

Channel k 3 3 8 11 14 17 19
Red 1% 388 363 373 513 323 463 4TS
™55 513 563 475 475 425 450
Green 1" 538 525 538 488 488 430 425
#0538 513 338 473 475 438 425
Blue 1" 550 363 525 338 338 450 438
2 513 488 488 463 463 463 425

ky i 3 7 10 11 16 17

Channel &k, 4 ] 8 11 13 17 18
ky 5 1 10 13 16 18 19

Red " 563 350 338 300 500 430 463
2538 513 513 488 488 425 450

Green 1" 350 338 350 488 488 430 488
2 525 500 525 500 300 438 475

Blue 1" 363 363 350 325 325 425 463
538 500 513 473 475 438 438

average error rate is in the range of PErr=[0.425,
0.563] for the first-order and in the range of
PErr=[0.425, 0.538] for the second-order. These high
average error rates led to the low accuracy of the
steganalysis. Consequently, the stego images
generated by our ADHOB algorithms are also
undetectable by the SPAM steganalyzer. Similarly,
we performed HDR SPAM steganalysis tests where
the training models were constructed by extracting
eight least significant bits in the mantissa field from
an OpenEXR HDR image with k=16
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TABLE XIV
THE AVERAGE ERROR RATES [N PERCENTAGE COLLECTED FROM THE
HDR SPAM STEGANALYZER USING THE DHOB (TOP) AND ADHOB
ALGORITEMS (BOTTOM) FOR THE GROUP-2 IMAGE DATABASE
Chamsel & 2 4 6 9 12 14 16
Red 1% 301 491 512 34 328 507 468
™ o400 519 493 1 59 5100 R
Green 1% 400 305 523 514 536 317 0l
™ 507 400 514 461 501 560 520
Blue 1% 300 300 507 465 521 450 442
2500 514 5120 333 483 446 6B
k2 2 3 6 7 10 11 1
Channel &, 3 4 7 A 11 12 15
kk 4 5 8 9 12 13 1
Red 1% 401 494 501 512 45% 406 364
M 508 496 486 309 490 480 339
Green 1% 407 482 502 511 497 323 44
™ 510 306 508 473 454 487 439
Blue 1" 486 508 496 325 452 M 496
™ 519 480 478 466 536 485 458

The top part of Table XV shows the HDR
SAPAM steganalytic results with the penalization
parameters (C1, C2)=(190000, 10100) using the
DHOB algorithm. A high average error rate is
reported for the target stego HDR images in the
range of PErr=[0.442, 0.536] for the first-order and
PErr=[0.446, 0.568] for the second-order,
respectively. Both orders show a high average error
rate around 0.5, which represents that the SPAM
steganalyzer is unable to detect stego HDR images
produced by the DHOB algorithm. We further
performed HDR SPAM steganalysis tests for the
ADHOB algorithm using the embedding parameters
(k1, k2, k3)=(15, 16, 17). The bottom part of Table
XIV shows the results where a high average error
rate is reported for the target stego HDR images in
the range of PErr=[0.444, 0.564] for the first-order
and PErr=[0.439, 0.559] for the second-order,
respectively. Both orders show a high average error
rate around 0.5, which represents that the HDR
SPAM steganalyzer is unable to directly detect stego
HDR images produced by the ADHOB algorithm.
The steganalytic statistics indicate that our proposed
DHOB and ADHOB algorithms are secure against
the LDR RS, HDR RS, LDR SPAM and HDR
SPAM steganalysis.

Since the magnitude of the embedding rate in bpp
is affected by the maximal space originated from
different HDR formats, we instead compared the
concealed field ratio (CFR) to provide a fair
comparison. The CFR, which is independent of the
HDR format, represents the ratio of the bpp over the
maximal space (bpp/maximal space). Thus, CFR
denotes the percentages of a unit of a one-bit space
that can be exploited. Our proposed schemes offer
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the highest CFR, being in the range 8.11% and
66.67%, while Wang and Cheng’s method provides
the smallest range of CFR. The comparison shows
that our algorithms demonstrate the most effective
data hiding method. With regard to the image
quality, our scheme produces the highest PSNR,
lowest normalized mean squared error (NMSE) and
largest range of PPCC and SRCC, which is close to
1.0. The experiment shows that the message
embedding or extraction occupies one-tenth of the
execution time, while most of the time is spent in
processing the input/out and constructing the
dynamic data structures for message concealment.
Not surprisingly, it takes a longer time for our
algorithm to conceal and extract secret messages
when using a larger image resolution for testing. The
comparison shows that our algorithm provides the
best performance, outperforming the current state-of-
the-art methods.

VDP,

Fig. 4(d): Sunset [9]

Fig. 6(c): Sunset N [10]

Mrobability of detection
Eivrm
Fig.7. The VDP-2 comparison for results
produced by our algorithm, Wang and Cheng’s, and
Li et al.”s works
Fig. 7 shows the HDR-VDP-2 comparison results
for Wang and Cheng’s algorithm, Li et al.’s method
and our DHOB algorithm. Detailed statistics and
images with a larger resolution are shown in the
supplemental material F. Our algorithm reveals the
ratio of pixels r=5.04% for the probability of
detection p>0.75, where pixels shown with red
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represent the probability of detection map p>0.75. A
small r for p>0.75 indicates low visual image
differences between the cover and stego images. In
contrast, the best result is r=23.16% for Wang and
Cheng’s algorithm and r=87.08% for Li et al.’s
method, both under the condition for p>0.75. In
addition, our algorithm produces a high Q(L) value
over 63.01. The comparison shows that our
algorithm outperforms the current state-of-the-art
methods.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel data hiding algorithm
for HDR images encoded by the OpenEXR format.
The proposed algorithm conceals secret messages in
the 10-bit mantissa field in each pixel, while the 1-bit
sign and 5-bit exponent fields are kept intact. We
recommend an optimal base allowing secret
messages to be concealed with the least pixel
distortion. An aggressive bit encoding and
decomposition scheme is introduced herein, which
offers the benefit for concealing an extra bit in a
pixel group without incurring pixel distortion. The
influence of the message probability is analyzed, and
the embedding capacity is further increased by taking
advantage of the recommended bit inversion
embedding scheme. The proposed algorithm is
extended to support luminance-aware adaptive data
hiding, where the luminance of an HDR image is
classified into high, middle and low levels. More
secret bits are conveyed in pixels with a low
luminance level and vice versa. We adopted two
groups of image databases for testing, each of which
contains 15 HDR images with different luminance.
The results of the HDR visual difference predictor
demonstrate that the tone-mapped stego LDR images
or stego HDR images have high image quality with a
low probability of detection that differences between
the cover and stego images are difficult to be visible
to an average viewer. A stego HDR image generated

- by our algorithm preserves the original file format
and is

unlikely to arouse suspicion from
eavesdroppers. The analysis indicates that the
proposed algorithm can resist attacks from the LDR
and HDR RS steganalyzer and the LDR and HDR
SPAM steganalysis. The contribution of this work is
in presenting the first data hiding algorithm for
OpenEXR HDR images. The proposed algorithm
provides a high embedding capacity, which makes
use of an aggressive bit encoding and decomposition
scheme, as well as the bit inversion technique. Our
scheme produces a stego image with high quality,
taking advantage of the optimal bases to produce the
least pixel distortion. The comparison shows that our
algorithm has the best results, outperforming the
current state-of-the-art schemes. The proposed
scheme provides advantages for data hiding
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applications such as image annotation and covert
communications. While our algorithm already
performs well, some further improvements are still
possible. Future study will investigate a more
effective message encoding method to further
increase the embedding capacity.

APPEDIX A

We prove in this section that (3) represents the
expected mean squared error for an optimal base b.
Without loss of generality, let M represent the
mantissa part of a pixel and r=M mod b = 0.
Referring to (12), when b is an even integer (b>2),
we can conceal secret digits v=0, 1, ..., b/2,
(b/2)+1..., b-1 and produce the stego mantissa
M'=M, M+1, ..., M+b/2, M-(b/2-1), .., M-1. Thus,
we can derive EMSE(b) in (A-1). When 1<r<(b-1),
we produce the same result because of the
commutative law of addition

EMSE(b) =
024124+ (b2)2+[— (b 2—1)] 24-+(—1)2}
b
= p2+2
12 (A-1)

We now consider the case when b is an odd
integer (b>1). Referring to (12), we can conceal
secret digits v=0, 1, ..., (b-1)/2, (b-1)/2+1, ..., b-1
and produce the stego mantissa M'=M, M+1, ...,
M+(b-1)/2, M-(b-1)/2, ..., M-1. We can derive
EMSE(b) in (A-2). When 1<r<(b-1), we produce the
same result.

EMSE(b)= {02+12+--+[b—12 ] 2+[~(b-12)]2
+eoH(—1)2)

b
= b2-1/12 (A-2)

EMSE(b) = b2—(-2)[(b+1)mod 2]/ 12
(A-3)
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