

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1709

Efficient Cache-Supported Path Planning on Roads
1T. Yashasree, 2M. Joshna, 3C. Sravani, 4Ch. Vyshnavi

1Assistant Professor, 2,3,4B.Tech,
1,2,3,4Department of Computer Science and Engineering,

1,2,3,4Vignan Institute of technology and Science.

ABSTRACT

In mobile navigation services, on-road path

planning is a basic function that finds a

route between a queried start location and a

destination. While on roads, a path planning

query may be issued due to dynamic factors

in various scenarios, such as a sudden

change in driving direction, unexpected

traffic conditions, or lost of GPS signals. In

these scenarios, path planning needs to be

delivered in a timely fashion. The

requirement of timeliness is even more

challenging when an overwhelming number

of path planning queries is submitted to the

server, e.g., during peak hours. As the

response time is critical to user satisfaction

with personal navigation services, it is a

mandate for the server to efficiently handle

the heavy workload of path planning

requests. To meet this need, we propose a

system, namely, Path Planning by Caching

(PPC), that aims to answer a new path

planning query efficiently by caching and

reusing historically queried paths (queried-

paths in short). Unlike conventional cache-

based path planning systems where a cached

query is returned only when it matches

completely with a new query, PPC leverages

partially matched queried-paths in cache to

answer part(s) of the new query. As a result,

the server only needs to compute the

unmatched path segments, thus significantly

reducing the overall system workload.

Keywords: Spatial Database, Path Planning,

Cache.

INTRODUCTION

Due to advances in big data analytics, there

is a growing need for scalable parallel

algorithms. These algorithms encompass

many domains including graph processing,

machine learning, and signal processing.

However, one of the most challenging

algorithms liein graph processing. Graph

algorithms are known to exhibit low

locality, data dependence memory accesses,

and high memory requirements. Even their

parallel versions do not scale seamlessly,

with bottlenecks stemming from

architectural constraints, such as cache

effects and on-chip network traffic. Path

Planning algorithms, such as the famous

Dijkstra’s algorithm, fall in the domain of

graph analytics, and exhibit similar issues.

These algorithms are given a graph

containing many vertices, with some

neighboring vertices to ensure connectivity,

and are tasked with finding the shortest path

from a given source vertex to a destination

vertex. Parallel implementations assign a set

of vertices or neighboring vertices to

threads, depending on the parallelization

strategy. These strategies naturally introduce

input dependence. Uncertainty in selecting

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1710

the subsequent vertex to jump to, results in

low locality for data accesses.

Moreover, threads converging onto the same

neighboring vertex sequentialize procedures

due to synchronization and communication.

Partitioned data structures and shared

variables ping-pong within on-chip caches,

causing coherence bottlenecks. All these

mentioned issues make parallel path

planning a challenge. Prior works have

explored parallel path planning problems

from various architectural angles. Path

planning algorithms have been implemented

in graph frameworks. These distributed

settings mostly involve large clusters, and in

some cases smaller clusters of CPUs.

However, these works mostly optimize

workloads across multiple sockets and

nodes, and mostly constitute either complete

shared memory or message passing (MPI)

implementations.

In the case of single node (or single-chip)

setup, a great deal of work has been done for

GPUs are a few examples to name a few.

These works analyze sources of bottlenecks

and discuss ways to mitigate them.

Summing up these works, we devise that

most challenges remain in the fine-grain

inner loops of path planning algorithms. We

believe that analyzing and scaling path

planning on single-chip setup can minimize

the fine-grain bottlenecks. Since shared

memory is efficient at the hardware level,

we proceed with parallelization of the path

planning workload for single-chip multi-

cores. The single-chip parallel

implementations can be scaled up at

multiple nodes or clusters granularity, which

we discuss.

To meet existing need, we propose a system,

namely, Path Planning by Caching (PPC),

that aims to answer a new path planning

query efficiently by caching and reusing

historically queried paths

(queried-paths in short). The proposed

system consists of three main components:

(i) PPattern Detection, (ii) Shortest Path

Estimation, and (iii) Cache Management.

Given a path planning query, which contains

a source location and a destination location,

PPC firstly determines and retrieves a

number of historical paths in cache, called

PPatterns, that may match this new query

with high probability. The idea of PPatterns

is based on an observation that similar

starting and destination nodes of two queries

may result in similar shortest paths (known

as the path coherence property).

In the component PPatern Detection, we

propose a novel probabilistic model to

estimate the likelihood for a cached queried-

path to be useful for answering the new

query by exploring their geospatial

characteristics. To facilitate quick detection

of PPatterns, instead of exhaustively

scanning all the queried paths in cache, we

design a grid-based index for the PPattern

Detection module. Based on these detected

PPatterns, the Shortest Path Estimation

module constructs candidate paths for the

new query and chooses the best (shortest)

one.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1711

In this component, if a PPattern perfectly

matches the query, we immediately return it

to the user; otherwise, the server is asked to

compute the unmatched path segments

between the PPattern and the query .Because

the unmatched segments are usually only a

smaller part of the original query, the server

only processes a “smaller subquery”, with a

reduced workload.

Once we return the estimated path to the

user, the Cache Management module is

triggered to determine which queried-paths

in cache should be evicted if the cache is

full. An important part of this module is a

new cache replacement policy which takes

into account the unique characteristics of

road networks. In this paper, we provide a

new framework for reusing the previously

cached query results as well as an effective

algorithm for improving the query

evaluation on the server.

LITERATURE SURVEY

An enhanced version [10] adds easy route

curves to lessen vertices from being gone to

and utilizes halfway trees to diminish the

pre-processing time. This work additionally

joins the advantages of the achieve based

and ATL ways to deal with decrease the

quantity of vertex visits and the pursuit

space. The examination demonstrates that

the cross breed approach gives a

predominant outcome as far as diminishing

question preparing time. Jung and Pramanik

[11] propose the HiTi diagram model to

structure a huge street organize display.

HiTi expects to decrease the look space for

the briefest way calculation. While HiTi

accomplishes superior on street weight

overhauls and lessens stockpiling overheads,

it brings about higher calculation costs when

processing the most brief ways than the

HEPV and the Hub Indexing strategies

[12][13][14].

To process time-subordinate quick ways,

Demiryurek et al. [15] propose the B-TDFP

calculation by utilizing in reverse inquiries

to diminish the hunt space. It receives a

territory level parcel plot which uses a street

progressive system to adjust every zone. Be

that as it may, a client may incline toward a

course with better driving knowledge to the

briefest way. Consequently, Gonzalez et al.

propose a versatile quick way calculation

which uses speed and driving examples to

enhance the nature of courses [16]. The

algorithm utilizes a road hierarchical

partition and pre-computation to enhance the

execution of the course calculation. The

little street redesign is a novel way to deal

with enhancing the nature of the route

computation.

In order to enhance the recovery efficiency

of the way arranging framework, Thomsen

et al. [17] propose another reserve

administration arrangement to store the

aftereffects of continuous questions for

reuse later on. To upgrade the hit proportion,

an advantage esteem capacity is utilized to

score the ways from the question logs.

Thusly, the hit proportion is expanded,

henceforth diminishing the execution times.

Be that as it may, the cost of developing a

store is high, since the framework must

compute the advantage values for all sub-

ways in a full-way of inquiry results. For on-

line, delineate applications, preparing a

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1712

substantial number of concurrent way

questions is an essential issue. In this paper,

we give another system to reusing the

already reserved inquiry comes about and a

successful calculation for enhancing the

question assessment on the server.

SYSTEM ARCHITECTURE

PATH PLANNING ALGORITHMS AND PARALLELIZATIONS

Baseline used in path planning applications. However, several heuristic based variations exist

those trade-off parameters such as parallelism and accuracy. Δ-stepping is one example

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1713

Fig.1. Dijkstra’s Algorithm Parallelization’s. Vertices Allocated to Threads Shown in Different

Colors.

Dijkstra’s Algorithm and Structure

Dijkstra’s algorithm consists of two main

loops, an outer loop that traverses each

graph vertex once, and an inner loop that

traverses the neighboring vertices of the

vertex selected by the outer loop. The most

efficient generic implementation of

Dijkstra’s algorithm utilizes a heap

structure, and has a complexity of O (E + V

logV). However, in parallel

implementations, queues are used instead of

heaps, to reduce overheads associated with

re-balancing the heap after each parallel

iteration. Algorithm 1 shows the generic

pseudo-code skeleton for Dijkstra’s

algorithm. For each vertex, each

neighboring vertex is visited and compared

with other neighboring vertices in the

context of distance from the source vertex

(the starting vertex). The neighboring vertex

with the minimum distance cost is selected

as the next best vertex for the next outer

loop iteration. The distances from the source

vertex to the neighboring vertices are then

updated in the program data structures, after

which the algorithm repeats for the next

selected vertex. A larger graph size means

more outer loop iterations, while a large

graph density means more inner loop

iterations. Consequently, these iterations

translate into parallelism, with the graph’s

size and density dictating how much

parallelism is exploitable. We discuss the

parallelizations in subsequent subsections

and show examples in Fig 1.

CONCLUSION

Path Planning by Caching (PPC), to answer

a new path planning query with rapid

response by efficiently caching and reusing

the historical queried-paths. Unlike the

conventional cache-based path planning

systems, where a queried-path in cache is

used only when it matches perfectly with the

new query, PPC leverages the partially

matched cached queries to answer part(s) of

a new query. As a result, the server only

needs to compute the unmatched segments,

thus significantly reducing the overall

system workload. Comprehensive

experimentation on a real road network

database shows that our system outperforms

the state-of-the-art path planning techniques

by reducing 32% of the computational

latency on average.

REFERENCES

[1]. H. Mahmud, A.M. Amin, M.E. Ali and

T. Hashem, “Shared Executionof Path

Queries on road Networks,” Clinical

OrthopaedicsRelated Research, Vol.

abs/1210.6746, (2012).

[2]. L. Zammit, M. Attard, and K. Scerri,

“Bayesian HierarchicalModelling of Traffic

Flow - With Application to Malta’s

RoadNetwork,” in Proceedings of

International IEEE Conference on Intelligent

Transportation System, pp. 1376-

1381(2013).

[3]. S. Jung and S. Pramanik, “An Efficient

path Computation Model for Hierarchically

Structured Topographical Road Maps,”

IEEE Transportation Knowledge Data

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1714

Engineering, Vol. 14, No. 5, pp. 1029-1046,

September, (2002).

[4]. E.W. Dijkstra, “A Note on Two

problems in Connexion with Graphs,”

Numerical Mathematics, Vol. 1, No. 1, pp.

269-271, (1959).

[5]. U. Zwick, “Exact and Approximate

Distances in Graphs – a survey,” in

Proceedings of 9th Annual European

Symposium Algorithms, Vol. 2161, pp. 33-

48(2001).

[6]. A.V. Goldberg and C. Silverstein,

“Implementations of Dijkstra’s Algorithm

based on Multi-level Buckets,” Network

Optimization, Vol. 450, pp. 292-327,

(1997).

[7]. P. Hart, N. Nilsson, and B. Raphael, “A

formal basis for the heuristic determination

of minimum cost paths,” IEEE

Transportation System Science and

Cybernetics, Vol. SSC-4, No. 2, pp. 100-

107, July, (1968).

[8]. A.V. Goldberg and C. Harrelson,

“Computing the Shortest path: A Search

meets Graph Theory,” in Proceedings of

ACM Symposium on Discrete Algorithms,

pp. 156-165, (2005).

[9]. R. Gutman, “Reach-based routing: A

New Approach to Shortest path Algorithms

Optimized for Road Networks,” in

Proceedings of Workshop Algorithm

Engineering Experiments, pp. 100-111,

(2004).

[10]. A.V. Goldberg, H. Kaplan, and R. F.

Werneck, “Reach for A*: Efficient Point-to-

Point shortest path Algorithms,” in

Proceedings of Workshop Algorithm

Engineering Experiments, pp. 129-143,

(2006).

[11]. S. Jung and S. Pramanik, “An Efficient

Path Computation Model for Hierarchically

Structured Topographical Road Maps,”

IEEE Transportation Knowledge Data

Engineering, Vol. 14, No. 5, pp. 1029-1046,

September, (2002).

[12]. R. Goldman, N. Shivakumar, S.

Venkatasubramanian, and H. Garcia-Molina,

“Proximity Search in Databases,” in

Proceedings ofthe International Conference

on Very Large Data Bases, pp. 26-

37,(1998).

[13]. N. Jing, Y.W. Huang and E.A.

Rundensteiner, “Hierarchical Optimization

of Optimal Path Finding for Transportation

Applications,” in Proceedings of ACM

Conferenceon Information Knowledge

Management, pp. 261-268, (1996).

[14]. N. Jing, Y. Wu Huang and E.A.

Rundensteiner, “Hierarchical encoded path

views for path query processing: An

Optimal Model and its Performance

Evaluation,” IEEE Transportation

Knowledge Data Engineering, Vol. 10, No.

3, pp. 409-432, May/June, (1998).

[15]. U. Demiryurek, F. Banaei-Kashani, C.

Shahabi, and A. Ranganathan, “Online

Computation of Fastest Path in Time-

dependent Spatial Networks,” in

Proceedings of 12th International

Conference on Advanced Spatial Temporal

Databases, pp. 92-111, (2011).

[16]. H. Gonzalez, J. Han, X. Li, M.

Myslinska and J.P. Sondag, “Adaptive

Fastest Path Computation on a Road

Network: A Traffic Mining Approach,” in

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1715

Proceedings of 33rd International

Conference on Very Large Data Bases, pp.

794-805, (2007).

[17]. J.R. Thomsen, M.L. Yiu, and C.S.

Jensen, “Effective caching of shortest paths

for location-based services,” in Proceedings

of ACM SIGMOD International Conference

Management Data, pp. 313-324, (2012).

[18]. T.H. Cormen, C.E. Leiserson, R.L.

Rivest and C. Stein, “Introduction to

Algorithms”, 3rd ed. Cambridge, MA, USA:

MIT Press. (2009).

[19]. E. Markatos, “On Caching Search

Engine Query Results,”

ComputerCommunication, Vol. 24, No. 2,

pp. 137-143, (2001).

[20]. R. Ozcan, I.S.Altingovde and O.

Ulusoy, “A Cost-aware Strategy for Query

Result Caching in Web Search Engines,” in

Proceedings of Advanced Information

Retrieval, Vol. 5478, pp. 628–636,(2009).

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

