

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1818

Implementation and Validation of Skien Cryptographic Hash

Function Using High Speed Reversible Adders in Verilog Hdl
Sravya Degala & Dandamudi.Vijendra Kumar

1 (M.Tech) 2 (M.tech), assistant.professor
1 Email-id: degala.sravya@gmail.com , GIET an autonomous institute, Rajamundry, East godavari

2 Email-id: Vijendra.dandamudi@gmail.com , GIET an autonomous institute, Rajamundry, East godavari

Abstract: Security has become a curial aspect in

the design and use of computer system and network. Hash

functions are used for many applications in cryptography

mainly in digital signatures and message authentication

code and in network security. Hash functions play a

significant role in today's cryptographic applications. SHA

(Secure Hash Algorithm) is a famous message compress

standard used in computer cryptography, it can compress a

long message to become a short message abstract. In this

paper, SHA is implemented using Verilog HDL. In this

paper encryption and decryption of the of the cipher text is

implemented using SHA algorithm, where different types of

adders are used in the process of encryption and compared.

The proposed work deals with the construction of high

speed adder circuits. Design and modeling of various

adders like Ripple Carry Adder, Kogge Stone Adder, and

Brent Kung Adder is done by using CMOS and GDI logic

and comparative analysis is coated.

Keywords—Ripple Carry Adder (RCA), Kogge Stone

Adder (KSA), Brunt Kung Adder (BKA), Multiplier using

adder, Gate count, number of transistors, Power, and

Delay.

I. INTRODUCTION

ADDERS are a key building block in

arithmetic and logic units (ALUs) and hence

increasing their speed and reducing their

power/energy consumption strongly affect the speed

and power consumption of processors. The variations

increase uncertainties in the aforesaid performance

parameters. In addition, the small sub threshold

current causes a large delay for the circuits operating

in the sub threshold region. Recently, the near-

threshold region has been considered as a region that

provides a more desirable tradeoff point between

delay and power dissipation compared with that of

the sub threshold one, because it results in lower

delay compared with the sub threshold region and

significantly lowers switching and leakage powers

compared with the super threshold region. There are

many adder families with different delays, power

consumptions, and area usages. Examples include

ripple carry adder (RCA), carry increment adder

(CIA), carry skip adder (CSKA), carry select adder

(CSLA), and parallel prefix adders (PPAs). In

electronic, an adder is a digital circuit that performs

addition of number. In many computers and other

kind of processors, adders are used not only in the

Arithmetic Logic unit (ALU), but also in other parts

of the processors. In this paper a different set of

adders like RCA, KSA, BKA are of the adders are

tabulated. Addition is the most fundamental operation

in any digital system. A simple adder performs the

addition of given two numbers and the result is sum

of those two numbers. Multiplication operation

greatly depends on adder operation as it is one of the

key hardware block in most digital signal processing

system. Its main block is Arithmetic unit. The

number of multiplication operation is performed by a

series or parallel addition concept.

With the advances in Very Large Scale

Integration (VLSI) technology, arithmetic operations

are penetrating into more and more applications. The

basic operation found in most arithmetic components

is the binary addition and Multiplication.

Computations needs to be performed using low-

power, area-efficient circuits operating at greater

speed. Addition is the most basic arithmetic

operation; and adder is the most fundamental

arithmetic component of the processor. In addition,

each of the resulting output bits are depending on its

corresponding inputs. It is very important operation

because it involves a carry ripple step i.e the carry

from the previous bits addition should propagates to

next bits of addition.

Multiplication is an operation that occurs

frequently in digital signal processing and many other

applications. The present development in processor

designs aim is design of low power multiplier. So, the

need for low power multipliers has increased.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:degala.sravya@gmail.com
mailto:Vijendra.dandamudi@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1819

Generally the computational performance of DSP

processors is affected by its multipliers performance..

The architecture of Adders like Ripple Carry Adder,

Carry Look Ahead Adder, Kogge Stone Adder and

Brent-Kung Adders have advantages with respect to

power, area and complexity.

II. RELATED WORK

Cryptography is one of the most useful fields in

the wireless communication area and personal

communications yet e ms, where information security

has become more and more important area of interest

.Cryptographic algorithms take care of specific

information on security requirements such as data

integrity, confidentiality a nd data origin

authentication. To assure that a communication is

authentic, the authentication service is of much

concern. The function of authentication services is to

assure recipient that the message is from the source it

claims .In computer security, the process of

attempting to verify the digital identity of the sender

of a piece of information is known as authentication.

In order to make a very secure cryptographic portable

electronic device, the selected well-known algorithm

must be trusted, time-tested and widely peer-

reviewed in the global cryptographic community. A

one-way hash function is an algorithm that takes

input data and irreversibly creates a digest of that

data. One of the trusted one-way hash function are

SHA-1 (Secure Hash Algorithm),SHA-256, SHA-

384 and SHA-512. SHA algorithms are called secure

because, for a given algorithm, it is computationally

infeasible 1) to find a message that corresponds to a

given message digest or 2) to find two different

messages that produce the same message digest. Any

change to a message will, with a very high

probability results in a different message digest. This

will result in a verification failure when the secure

hash algorithm is used with a digital signature

algorithm or a keyed-hash message authentication

algorithm. Overview of SHA- 1 is a complex

algorithm that involves multiple 32-bit, 5-way

additions, complex logical functions, data shifting

and a great deal of repetition. Generally

implementations of the SHA-1 algorithm have

required large die areas and so made fairly expensive

portable device. A proposed method has been applied

to be relatively inexpensive one. The architecture is

presented for SHA-1 hash function. The

implementation is conducted using Verilog HDL on

Xilinx FPGA device. The synthesis results are

presented and compared with other SHA-1

implementations. Here, the hardware terms of system

performance (throughput), operating frequency and

covered area are compared. Hash algorithms, also

called as message digest algorithms, are generating a

unique fixed length bit vector for an arbitrary-length

message M. The bit vector is called the hash of the

message and it is denoted as H. This hash value

should be the same each time the same input is

hashed. A hash function used in cryptography should

be one way and collision resistant. The purpose of a

hash function is to produce a fingerprint of a file,

message or other block of data.

III. PROPOSED SYSTEM

Skein

Any implementer of Skein has to choose which

options to enable. The simplest implementations

only implement straight hashing with a fixed output

size. After that, the most useful options to support are

probably:

• Variable output sizes (in byte increments) up to one

block Longer outputs

• Key input for a MAC

• PRNG

• Personalization

We expect that the public-key field, key

derivation, and tree hashing will be used less

frequently. Skein defines output sizes of arbitrary bit

length, but we recommend that implementations

restrict themselves to whole bytes. There are specific

uses for odd bit lengths (e.g., elliptic curves) and the

odd bit length provides a symmetry with the arbitrary

bit length of the inputs, but in practice, we rarely see

arbitrary bit length values being used.

Hardware Implementations

Threefish:

Threefish is the tweakable block cipher at the

core of skein, denied with a 256,52 and 1024-bit

block size. The threefish block takes three inputs,

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1820

plaintext, userkey(256 bits each) and a tweak of 128

bits. The output of the function is ciphertext of 256

bits.The core of Threefish is the MIX function. In

hardware, this is straightforward to implement. To

achieve high performance it is important to use a fast-

carry adder and not a ripple-carry adder. Ripple-carry

adders are very slow in the worst case; the carry

ripples from the least significant bit to the most

significant bit, which limits the maximum clock

frequency. There are well-known techniques for fast

carry propagation in adders, and these should be used

for speed-sensitive implementations. The rotations

and word permutations do not require any gates, but

they do take up routing space. The most natural way

to implement Threefish is to either implement 8

rounds, or the full 72 or 80 rounds. An

implementation that tries to implement only 1 or 4

rounds needs to accommodate different rotation

constants in each MIX, leading to a number of

multiplexers. The key schedule can be implemented

in several ways. The simplest one is to store the

extended key and extended tweak in two shift

registers and clock the shift registers once for each

subkey. Note that the final state of the shift registers

can be directly computed, so implementations that

want to perform decryption can efficiently generate

the subkeys in reverse order.

UBI :

In hardware, UBI is implemented like any other

block chaining mode. There are no special

considerations, other than the need to buffer the last

input block until it is known whether this is the last

block of the message or not. The main components of

threefish are the mix and permute function shown in

fig 3.1.

Encryption

MIX functions:

The MIX function is an integral part of

threefish ciphers. It takes two inputs of 64-bit each

and performs three basic operations on the data

words. Addition modulo 264, Airthmetic shift and

XOR operation. The block diagram shown in fig 3.2.

Threefish’s MIX function is derived from Helix and

Phelix. Initially, we had a more complex MIX

function, with 2 adds, 2 XORs, and 4 rotations. The

advantage of a more complex mixing function is that

x86 CPUs, which have only 7 usable 32-bit registers,

can load all of the function’s inputs into registers and

execute the entire MIX function without loads or

stores. However, our cryptographic analysis showed

that more rounds of a simpler mixing function are

more secure, for a given number of CPU clock

cycles. Another candidate design included a MIX

function with 3 add/XOR operations and 2 rotations,

but our performance measurements also showed

that—contrary to what the chip’s documentation

suggests—the current generation of Intel CPUs can

only perform one rotate operation per clock cycle.

This limitation causes a significant speed penalty on

x64 CPUs, so we abandoned it, in keeping with the

principle that additional rounds more than make up

for the simpler MIX function.

 Fig 3.1:Threefish block for encryption

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1821

Fig 3.2:MIX Function

Permutation operations:

The permutation function used to diffuse the

outputs obtained from the previous rounds of MIX

function and scramble them to create new inputs for

the following MIX round equation 2 show key

scheduling algorithm.

Key scheduling Algorithm:

After every four round of MIX and permute,

a subkey is added to current threefish state. For the

first round, user key and plaintext are XORed and

then after every four rounds, Key Scheduling

algorithm uses tweak and the key of previous rounds

to generate a subkey.

The key from the previous round is divided into four

64 bit words and the tweak is divided into two 64-bit

words. Key scheduling algorithm makes use of

modular addition 264 and logical right shift of

constant arbitrary value decided by the designer. The

464 bit words from these operations concatenate to

form a new subkey shown in fig 3.3.

Thus, key schedule algorithm generates a new subkey

every time. It can be thus concluded that due to the

addition of a 256 bit subkey after every four rounds, a

high level of security can be achieved by making the

cryptosystem immune to cryptanalysis.

Fig 3.3:Key scheduling algorithm

Decryption:

Decryption is the exact inverse of the

encryption algorithm. To decrypt the ciphertext

generated from the threefish block cipher, the text is

passed through the inverse threefish cipher which

consists of the inverse mix function and the inverse

permutation table. Also, the keys the supplied in

reverse order, i.e, the 18th subkey of encryption

system is the 1st subkey of the decryption algorithm

and vice versa. The keys used for encryption are used

for decryption as well, in reverse order.

Inverse mix function:

The inverse MIX function is an integral part

of the inverse threefish cipher. It is created by using

the inverse of the operators of the MIX function. It

consists of three digital systems, XOR operator, left

shifter and subtractor. The subtraction in this module

is performed with the help of a carry look ahead

adder. Figure 3.4 shows the block diagram of the

inverse MIX function.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1822

Fig 3.4: inverse MIX function

Inverse permutation operation:

The inverse permutation function is used to

diffuse the outputs obtained from the previous rounds

of inverse MIX function and scramble them to create

new inputs for the following inverse MIX round.

IV. DESIGN OF ADDERS

RIPPLE CARRY ADDER:

 The RCA block can be constructed by cascading

full adder blocks in series. It is possible to create a

logical circuit using multiple full adder to add N-bit

numbers. Each full adder inputs a Cin, which is the

Cout of the previous adder. This kind of adder is

RCA, since each carry bit “ripples” to the next full

adder. For an n bit adder it requires n 1 bit full adder.

Drawbacks of Ripple Carry Adder: The RCA is

relatively slow since each full adder must wait for the

carry bit to be calculated from the previous full

adder. The 8-bit ripple carry adder shown in fig 4.1.

Equation of Ripple Carry Adder .

The corresponding boolean expressions are

given here to construct a ripple carry adder. In the

half adder circuit the sum and carry bits are defined

as

sum = A ⊕ B

carry = AB

In the full adder circuit the Sum and Carry output is

defined by inputs A, B and Carryin as

Sum=ABC + ABC + ABC + ABC

Carry=ABC + ABC + ABC + ABC

Having these we could design the circuit. But, we

first check to see if there are any logically equivalent

statements that would lead to a more structured

equivalent circuit. With a little algebraic

manipulation, one can see that

Sum= ABC + ABC + ABC + ABC

 = (AB + AB) C + (AB + AB)

C = (A ⊕ B) C + (A ⊕ B) C

 =A ⊕ B ⊕ C

Carry= ABC + ABC + ABC + ABC

 = AB + (AB + AB) C = AB + (A ⊕ B) C

Figure 4.1: Block diagram of 8-bit Ripple Carry

Adder

CARRY SAVE ADDER:

 A carry-save adder is a type of digital

adder, used in computer micro architecture to

compute the sum of three or more n-bit numbers in

binary. It differs from other digital adders in that it

outputs two numbers of the same dimensions as the

inputs, one which is a sequence of partial sum bits

and another which is a sequence of carry bits.

Consider the sum: 12345678+87654322=100000000.

 Using basic arithmetic, we calculate right to

left, "8+2=0, carry 1", "7+2+1=0, carry 1",

"6+3+1=0, carry 1", and so on to the end of the sum.

Although we know the last digit of the result at once,

we cannot know the first digit until we have gone

through every digit in the calculation, passing the

carry from each digit to the one on its left. Thus

adding two n-digit numbers has to take a time

proportional to n, even if the machinery we are using

would otherwise be capable of performing many

calculations simultaneously.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1823

 In electronic terms, using bits (binary

digits), this means that even if we have n one-bit

adders at our disposal, we still have to allow a time

proportional to n to allow a possible carry to

propagate from one end of the number to the other.

Until we have done this,

1. We do not know the result of the addition.

2. We do not know whether the result of the

addition is larger or smaller than a given

number (for instance, we do not know

whether it is positive or negative).

 A carry look-ahead adder can reduce the

delay. In principle the delay can be reduced so that it

is proportional to logn, but for large numbers this is

no longer the case, because even when carry look-

ahead is implemented, the distances that signals have

to travel on the chip increase in proportion to n, and

propagation delays increase at the same rate.

BRENT KUNG ADDER:

The type of structure of any adder greatly

affects the speed of the circuit. The logarithmic

structure is considered to be one of the fastest

structures. The logarithmic concept is used to

combine its operands in a tree- like fashion. The

logarithmic delay is obtained by restructuring the

look-ahead adder. The restructuring is dependent on

the associative property, and the delay is obtained to

be equal to (log2N) t, where ‘N’ is the number of

input bits to the adder and t is the propagation delay

time. Hence it is seen that this structure greatly

reduces the delay, and would be especially beneficial

for a structure with large number of inputs. In the

following section, a structure known as the Brent

Kung Structure, which was first proposed by Brent

and Kung in 1982 and which uses the logarithmic

concept, is discussed. This structure used an operator

known as the dot (·) operator, which is explained in

the architecture, for its basic blocks.

Brent Kung Architecture

In order to approach the structure known as

the Brent Kung Structure, which uses the logarithmic

concept, the entire architecture is easily understood

by dividing the system into three separate stages:

1. Generate/Propagate Generation

2. The Dot (·) Operation

3. Sum generation

 Generate/Propagate Generation

If the inputs to the adder are given by the

signals A and B, then the generate and propagate

signals are obtained according to the following

equations.

G = A.B (4.1) P = AÅ. B (4.2)

The Dot (·) Operation = The most

important building block in the Brent Kung Structure

is the dot (·) operator. The basic inputs to this

structure are the generate and propagate signals

generated in the previous stage. The · operator is a

function that takes in two sets of inputs-- (g, p) and

(g’, p’)-- and generates a set of outputs-- (g + pg’,

pp’).

These building blocks are used for the

generation of the carry signals in the structure. For

the generation of the carry signals, the carry for the

kth bit from the carry look-ahead concept is given by

Co,k = Gk +Pk(Gk-1 +Pk-1 +P k-1

(…+P1(G0 +P0 Ci,0))) (4.3)

Using the dot operator explained above the

Equation 4.3 can be written for the different carry

signals as

Co,0 = G0 +P Ci,0 = a (G0,P0) Co,1 = G1 +

G0 P1 = a ((G1 , P1)·(G0, P0)) …………… C0,k = a

((Gk,Pk)·(Gk-1,Pk-1)·…·(G0,P0)) (4.4)

where a is a function defined in order to

access all the tuples. All the carry signals generated

at different stages in the structure. In the structure,

two binary tree structure are represented -- the

forward and the reverse trees. The forward binary

tree alone is not sufficient for the generation of all the

carry signals. It can only generate the signals shown

as Co,0,Co,1, Co,3 and Co,7. The remaining carry

signals are generated by the reverse binary tree.

Sum Generation.

The final stage in this architecture is the sum

generation stage. The sum is given by

S= AÅ BÅ C (4.5)

 where A and B are the input signals, and C

is the carry signal. The carry is obtained from the dot

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1824

operator stage discussed earlier, and the exclusive of

A and B is actually the propagate signal itself. Hence

the sum ‘S’ can finally be represented and realized as

S = P Å C (4.6)

Brent Kung Parallel Prefix Adder has a low

fan-out from each prefix cell but has a long critical

path and is not capable of extremely high speed

addition. In spite of that, this adder proposed as an

optimized and regular design of a parallel adder that

addresses the problems of connecting gates in a way

to minimize chip area. Accordingly, it considered as

one of the better tree adders for minimizing wiring

tracks, fan out and gate count and used as a basis for

many other networks.

Figure 4.2: Schematic of 8-bit Brent Kung Adder

IV. EXPERIMENTAL RESULTS

Ripple Carry Adder Encryption :

Simulation

Technology Schematic.

RTL Schematic.

Design Summary.

Timing Summary.

Ripple Carry Adder Decryption.

Simulation

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1825

Technology Schematic.

RTL Schematic.

Design Summary.

Timing Summary.

CSA Encryption

Simulation

Technology Schematic.

RTL Schematic.

Design Summary.

Timing Summary.

CSA Decryption.

Simulation

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1826

Technology Schematic.

RTL Schematic.

Design Summary.

Timing Summary.

Brent Kung Adder Encryption.

Simulation.

Technology Schematic.

RTL Schematic.

Design Summary.

Timing Summary.

Brent Kung Adder Decryption.

Simulation.

Technology Schematic.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1827

RTL Schematic.

Design Summary.

Timing Summary.

COMPARISON TABLE

Encryption comparison:

contents Carry save

adder

Ripple carry

adder

Brunt

Kung

adder

No.of

LUT

tables

33204 25147 25592

delay 1728.501ns 1466.429ns 139.283

Decryption comparison:

contents Carry save

adder

Ripple

carry adder

Brunt Kung

adder

No.of

LUT

23453 22386 22567

tables

delay 1523.084ns 1501.599ns 1500.516ns

CONCLUSION

Adders are core and essential block in many

modules which involves computation and adders play

a vital role in the design of multipliers using adder

based logic, hence the design and implementation of

the adders is a prime concern, In this paper we have

designed, modeled the different adders like RCA,

KSA, BKA using different design style and coated

comparative results obtained. From the results it is

clear that the adders designed using GDI design style

give less delay and consumes less number of gate

count, CMOS design style give less power

consumption, as these the performance parameters

are prime concerned while designing a module.

Hence the choice has to be made and as per the desire

of the designer and the prime concern of performance

measure needed at that point in time.

REFERENCES

[1] American Bankers Association, “Keyed Hash

Message Authentication Code,” ANSI X9.71, 2000.

[2] J. Aumasson, C. Calik, W. Meier, O. Ozen, R.

Phan, and K. Varici, “Improved Cryptanalysis of

Skein” http://www.131002.net/papers.html,

submitted to the IACR eprint server, September

2009.

[3] E. Barker, D. Johnson, and M. Smid,

“Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography

(Revised),” NIST Special Publication SP 800-56A,

Mar 2007.

[4] E. Barker and J. Kelsey, “Recommendation for

Random Number Generation Using Deterministic

Random Bit Generators,” NIST Special Publication

SP 800-90, Mar 2007.

[5] M. Bellare, “New Proofs for NMAC and HMAC:

Security without Collision-Resistance,” Advances in

Cryptology—CRYPTO ’06 Proceedings, Springer-

Verlag, 2006, pp. 602–619.

[6] M. Bellare, R. Canetti and H. Krawczyk, “Keying

hash functions for message authentication,”

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1828

Advances in Cryptology—CRYPTO ’96

Proceedings, Springer-Verlag, 1996 , pp. 1–15.

[7] M. Bellare, R. Canetti, and H. Krawczyk,

“Pseudorandom Functions Revisited: The Cascade

Construction and its Concrete Security,” Proceedings

of the 37th Symposium on Foundations of Computer

Science, IEEE Press, 1996, pp. 514–523.

[8] M. Bellare, J. Kilian, and P. Rogaway. “The

Security of Cipher Block Chaining,” Advances in

Cryptology—CRYPTO ’94 Proceedings, Springer-

Verlag, 1994, pp 341–358. [9] M. Bellare, T. Kohno,

S. Lucks, N. Ferguson, B. Schneier, D. Whiting, J.

Callas, and J. Walker, “Provable Security Support for

the Skein Hash Family,” Version 1.0, Apr 2009,

http://www.skein-hash.info/sites/default/files/skein-

proofs.pdf.

[10] M. Bellare and T. Ristenpart, “Multi-Property-

Preserving Hash Domain Extension and the EMD

Transform,” Advances in Cryptology—ASIACRYPT

’06 Proceedings, Springer-Verlag, 2006, 299–314.

[11] M. Bellare and B. Yee, “Forward Security in

Private Key Cryptography, ” Topics in Cryptology—

CT-RSA, Springer-Verlag, 2003, pp. 1–18.

[12] D.J. Bernstein, “Cache-Timing Attacks on

AES,” April 2005,

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

