

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1870

Energy-Efficient Reconfigurable Approximate Carry Look-Ahead

Adder (Rap-Cla) Using Xilinx
Dalu.Rakesh & Sk.Fairoze

1Pg Scholar , 2 Assistant Professor

Department Of Electronics & Communication Engineering

Sri Vani Educational Society Group Of Institutions Chevuturu, Krishna (Dt)

ABSTRACT

In this paper, we propose a fast yet energy-efficient

reconfigurable approximate carry look-ahead adder

(RAP-CLA). This adder has the ability of switching

between the approximate and exact operating modes

making it suitable for both error-resilient and exact

applications. The structure, which is more area and

power efficient than state-of-the-art reconfigurable

approximate adders, is achieved by some

modifications to the conventional carry look ahead

adder (CLA). The efficacy of the proposed RAP-CLA

adder is evaluated by comparing its characteristics to

those of two state-of-the-art reconfigurable

approximate adders as well as the conventional

(exact) CLA. The results reveal that, in the

approximate operating mode, the proposed 32-bit

adder provides better delay and power reductions

compared to those of the exact CLA, respectively, at

the cost of low error rate. It also provides lower

delay and power consumption, respectively,

compared to other approximate adders considered in

this work. Finally, the effectiveness of the proposed

adder on two image processing applications of

smoothing and sharpening is demonstrated. The

proposed architecture of this paper analysis the delay

and area using Xilinx 14.3.

I. .INTRODUCTION

 The challenge of the verifying a large

design is growing exponentially. There is a need to

define new methods that makes functional

verification easy. Several strategies in the recent

years have been proposed to achieve good functional

verification with less effort. Recent advancement

towards this goal is methodologies. The methodology

defines a skeleton over which one can add flesh and

skin to their requirements to achieve functional

verification.

The report is organized as two major

portions; first part is brief introduction and history of

the functional verification of regular Carry select

adder which tells about different advantages Carry

select adder and RCA architecture and in this Regular

Ckt one drawback is there overcome that

complexicity problem we go for modified

architecture of CSLA .

 Carry Select Adder (CSLA) is one of the

fastest adders used in many data-processing

processors to perform fast arithmetic functions. From

the structure of the CSLA, it is clear that there is

scope for reducing the area and power consumption

in the CSLA. This work uses a simple and efficient

gate-level modification to significantly reduce the

area and power of the CSLA. Based on this

modification 8-, 16- CSLA architecture have been

developed and compared with the regular CSLA

architecture. The proposed design has reduced area

and power as compared with the regular CSLA with

only a slight increase in the delay.

This work evaluates the performance of the

proposed designs in terms of delay, area, power, and

their products by hand with logical effort and through

custom design and layout in Xilinx XC series devices

CMOS process technology. The results analysis

shows that the proposed

Second part is Design and verification of the

Architecture of CSLA circuits. Architecture of the

test bench gives complete description about the

components and sub components used to achieve the

verification goals and also explain about

improvements made in the design of the usb-i2c

bridge, test plan identifies all the test case required to

meet the goals and finally results of the project

 Historical Perspective

The electronics industry has achieved a

phenomenal growth over the last two decades, mainly

due to the rapid advances in integration technologies,

large-scale systems design - in short, due to the

advent of VLSI. The number of applications of

integrated circuits in high-performance computing,

telecommunications, and consumer electronics has

been rising steadily, and at a very fast pace.

Typically, the required computational power (or, in

other words, the intelligence) of these applications is

the driving force for the fast development of this

field. Figure 1.1 gives an overview of the prominent

trends in information technologies over the next few

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1871

decades. The current leading-edge technologies (such

as low bit-rate video and cellular communications)

already provide the end-users a certain amount of

processing power and portability.

This trend is expected to continue, with very

important implications on VLSI and systems design.

One of the most important characteristics of

information services is their increasing need for very

high processing power and bandwidth (in order to

handle real-time video, for example). The other

important characteristic is that the information

services tend to become more and more personalized

(as opposed to collective services such as

broadcasting), which means that the devices must be

more intelligent to answer individual demands, and at

the same time they must be portable to allow more

flexibility/mobility

As more and more complex functions are

required in various data processing and

telecommunications devices, the need to integrate

these functions in a small system/package is also

increasing. The level of integration as measured by

the number of logic gates in a monolithic chip has

been steadily rising for almost three decades, mainly

due to the rapid progress in processing technology

and interconnect technology. Table 1.1 shows the

evolution of logic complexity in integrated circuits

over the last three decades, and marks the milestones

of each era. Here, the numbers for circuit complexity

should be interpreted only as representative examples

to show the order-of-magnitude. A logic block can

contain anywhere from 10 to 100 transistors,

depending on the function. State-of-the-art examples

of ULSI chips, such as the DEC Alpha or the INTEL

Pentium contain 3 to 6 million transistors.

The most important message here is that the

logic complexity per chip has been (and still is)

increasing exponentially. The monolithic integration

of a large number of functions on a single chip

usually provides:

 Less area/volume and therefore,

compactness

 Less power consumption

 Less testing requirements at system level

 Higher reliability, mainly due to improved

on-chip interconnects

 Higher speed, due to significantly reduced

interconnection length

 Significant cost savings

Figure-1. Evolution of integration density and

minimum feature size, as seen in the early 1980s.

Therefore, the current trend of integration

will also continue in the foreseeable future. Advances

in device manufacturing technology, and especially

the steady reduction of minimum feature size

(minimum length of a transistor or an interconnect

realizable on chip) support this trend. Figure 1.2

shows the history and forecast of chip complexity -

and minimum feature size - over time, as seen in the

early 1980s. At that time, a minimum feature size of

0.3 microns was expected around the year 2000. The

actual development of the technology, however, has

far exceeded these expectations. A minimum size of

0.25 microns was readily achievable by the year

1995. As a direct result of this, the integration density

has also exceeded previous expectations - the first 64

Mbit DRAM, and the INTEL Pentium

microprocessor chip containing more than 3 million

transistors were already available by 1994, pushing

the envelope of integration density.

When comparing the integration density of integrated

circuits, a clear distinction must be made between the

memory chips and logic chips. Figure 1.3 shows the

level of integration over time for memory and logic

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1872

chips, starting in 1970. It can be observed that in

terms of transistor count, logic chips contain

significantly fewer transistors in any given year

mainly due to large consumption of chip area for

complex interconnects. Memory circuits are highly

regular and thus more cells can be integrated with

much less area for interconnects.

Figure-2. Level of integration over time, for memory

chips and logic chips.

Generally speaking, logic chips such as

microprocessor chips and digital signal processing

(DSP) chips contain not only large arrays of memory

(SRAM) cells, but also many different functional

units. As a result, their design complexity is

considered much higher than that of memory chips,

although advanced memory chips contain some

sophisticated logic functions. The design complexity

of logic chips increases almost exponentially with the

number of transistors to be integrated. This is

translated into the increase in the design cycle time,

which is the time period from the start of the chip

development until the mask-tape delivery time.

However, in order to make the best use of the current

technology, the chip development time has to be

short enough to allow the maturing of chip

manufacturing and timely delivery to customers. As a

result, the level of actual logic integration tends to

fall short of the integration level achievable with the

current processing technology. Sophisticated

computer-aided design (CAD) tools and

methodologies are developed and applied in order to

manage the rapidly increasing design complexity.

 VLSI Design Flow

The design process, at various levels, is

usually evolutionary in nature. It starts with a given

set of requirements. Initial design is developed and

tested against the requirements. When requirements

are not met, the design has to be improved. If such

improvement is either not possible or too costly, then

the revision of requirements and its impact analysis

must be considered. The Y-chart (first introduced by

D. Gajski) shown in Fig. 1.4 illustrates a design flow

for most logic chips, using design activities on three

different axes (domains) which resemble the letter Y.

Figure3: Typical VLSI design flow in three domains

(Y-chart representation).

The Y-chart consists of three major domains, namely:

 behavioral domain,

 structural domain,

 geometrical layout domain.

The design flow starts from the algorithm that

describes the behavior of the target chip. The

corresponding architecture of the processor is first

defined. It is mapped onto the chip surface by

floorplanning. The next design evolution in the

behavioral domain defines finite state machines

(FSMs) which are structurally implemented with

functional modules such as registers and arithmetic

logic units (ALUs).

These modules are then geometrically

placed onto the chip surface using CAD tools for

automatic module placement followed by routing,

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://lsmwww.epfl.ch/Education/former/2002-2003/VLSIDesign/ch01/Figure-1.3.gif
http://lsmwww.epfl.ch/Education/former/2002-2003/VLSIDesign/ch01/Figure-1.3.gif

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1873

with a goal of minimizing the interconnects area and

signal delays. The third evolution starts with a

behavioral module description. Individual modules

are then implemented with leaf cells. At this stage the

chip is described in terms of logic gates (leaf cells),

which can be placed and interconnected by using a

cell placement & routing program. The last evolution

involves a detailed Boolean description of leaf cells

followed by a transistor level implementation of leaf

cells and mask generation. In standard-cell based

design, leaf cells are already pre-designed and stored

in a library for logic design use.

 provides a more simplified view of the

VLSI design flow, taking into account the various

representations, or abstractions of design -

behavioral, logic, circuit and mask layout. Note that

the verification of design plays a very important role

in every step during this process. The failure to

properly verify a design in its early phases typically

causes significant and expensive re-design at a later

stage, which ultimately increases the time-to-market.

Although the design process has been

described in linear fashion for simplicity, in reality

there are many iterations back and forth, especially

between any two neighboring steps, and occasionally

even remotely separated pairs. Although top-down

design flow provides an excellent design process

control, in reality, there is no truly unidirectional top-

down design flow. Both top-down and bottom-up

approaches have to be combined. For instance, if a

chip designer defined an architecture without close

estimation of the corresponding chip area, then it is

very likely that the resulting chip layout exceeds the

area limit of the available technology. In such a case,

in order to fit the architecture into the allowable chip

area, some functions may have to be removed and the

design process must be repeated. Such changes may

require significant modification of the original

requirements. Thus, it is very important to feed

forward low-level information to higher levels

(bottom up) as early as possible.

In the following, we will examine design

methodologies and structured approaches which have

been developed over the years to deal with both

complex hardware and software projects. Regardless

of the actual size of the project, the basic principles

of structured design will improve the prospects of

success. Some of the classical techniques for

reducing the complexity of IC design are: Hierarchy,

regularity, modularity and locality.

II. LITERATURE REVIEW

The electronics of a general biomedical

device consist of energy delivery, analog-to-digital

conversion, signal processing, and communication

subsystems. Each of these blocks must be designed

for minimum energy consumption. Specific design

techniques, such as aggressive voltage scaling,

dynamic power-performance management, and

energy-efficient signaling, must be employed to

adhere to the stringent energy constraint. The

constraint itself is set by the energy source, so energy

harvesting holds tremendous promise toward

enabling sophisticated systems without straining user

lifestyle. Further, once harvested, efficient delivery of

the low-energy levels, as well as robust operation in

the aggressive low-power modes, requires careful

understanding and treatment of the specific design

limitations that dominate this realm. We outline the

performance and power constraints of biomedical

devices, and present circuit techniques to achieve

complete systems operating down to power levels of

microwatts. In all cases, approaches that leverage

advanced technology trends are emphasized.

Power dissipation is one of the most

important design objectives in integrated circuits,

after speed. As adders are the most widely used

components in such circuits, design of efficient adder

is of much concern for researchers. This paper

presents performance analysis of different Fast

Adders. The comparison is done on the basis of three

performance parameters i.e. Area, Speed and Power

consumption. We present a modified carry select

adder designed in different stages. Results obtained

from modified carry select adders are better in area

and power consumption.

Addition is the heart of arithmetic unit and

the arithmetic unit is often the work horse of a

computational circuit. So adders play a key role in

designing an arithmetic unit and also many digital

integrated circuits. Carry Select Adder (CSLA) is one

of the fastest adders used in many data processors

and in digital circuits to perform arithmetic

operations. But CSLA is area-consuming because it

consists of dual ripple carry adder (RCA) in the

structure. To reduce the area of CSLA, a CSLA with

Binary to Excess-1 Converter is already designed

which reduces the area of adder. But there are other

techniques to design a CSLA to reduce its area. One

of such technique is using an add one circuit

technique. This paper proposes the design of square

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1874

root CSLA (SQRT CSLA) using add one circuit with

significant reduction in area. The proposed design is

synthesized using Leonardo Spectrum to get area

(number of gates) and delay (ns). The performance in

terms of area and delay are evaluated for square root

CSLA using add one circuit and are compared with

existing SQRT CSLA and SQRT CSLA using Binary

to Excess-1 Converter (BEC). The results analysis

shows that the proposed SQRT CSLA using add one

circuit is better than the existing SQRT CSLA and

SQRT CSLA using BEC.

III. EXISTING SYSTEM

In electronics, an adder or summer is a digital

circuit that performs addition of numbers. In many

computers and other kinds of processors, adders

are used not only in the arithmetic logic unit(s), but

also in other parts of the processor, where they are

used to calculate addresses, table indices, and

similar.

Although adders can be constructed for

many numerical representations, such as binary-

coded decimal or excess-3, the most common

adders operate on binary numbers. In cases where

two's complement or ones' complement is being

used to represent negative numbers, it is trivial to

modify an adder into an adder–subtractor. Other

signed number representations require a more

complex adder.

Half adder

The half adder adds two one-bit binary

numbers A and B. It has two outputs, S and C (the

value theoretically carried on to the next addition);

the final sum is 2C + S. The simplest half-adder

design, pictured on the right, incorporates an XOR

gate for S and an AND gate for C. With the

addition of an OR gate to combine their carry

outputs, two half adders can be combined to make

a full adder

A full adder adds binary numbers and

accounts for values carried in as well as out. A one-

bit full adder adds three one-bit numbers, often

written as A, B, and Cin; A and B are the operands,

and Cin is a bit carried in from the next less

significant stage. The full-adder is usually a

component in a cascade of adders, which add 8, 16,

32, etc. binary numbers.

A full adder can be implemented in many different

ways such as with a custom transistor-level circuit or

composed of other gates. One example

implementation is with and

.

In this implementation, the final OR gate before the

carry-out output may be replaced by an XOR gate

without altering the resulting logic. Using only two

types of gates is convenient if the circuit is being

implemented using simple IC chips which contain

only one gate type per chip. In this light, Cout can be

implemented as

.

A full adder can be constructed from two half adders

by connecting A and B to the input of one half adder,

connecting the sum from that to an input to the

second adder, connecting Ci to the other input and

OR the two carry outputs. Equivalently, S could be

made the three-bit XOR of A, B, and Ci, and Cout

could be made the three-bit majority function of A, B,

and Ci.

Ripple carry adder

It is possible to create a logical circuit using multiple

full adders to add N-bit numbers. Each full adder

inputs a Cin, which is the Cout of the previous adder.

This kind of adder is a ripple carry adder, since each

carry bit "ripples" to the next full adder. Note that the

first (and only the first) full adder may be replaced by

a half adder.

The layout of a ripple carry adder is simple, which

allows for fast design time; however, the ripple carry

adder is relatively slow, since each full adder must

wait for the carry bit to be calculated from the

previous full adder. The gate delay can easily be

calculated by inspection of the full adder circuit.

Each full adder requires three levels of logic. In a 32-

bit [ripple carry] adder, there are 32 full adders, so

the critical path (worst case) delay is 3 (from input to

carry in first adder) + 31 * 2 (for carry propagation in

later adders) = 65 gate delays. A design with

alternating carry polarities and optimized AND-OR-

Invert gates can be about twice as fas

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Excess-3
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Ones%27_complement
http://en.wikipedia.org/wiki/Adder%E2%80%93subtractor
http://en.wikipedia.org/wiki/Signed_number_representations
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Majority_function
http://en.wikipedia.org/wiki/Gate_delay
http://en.wikipedia.org/wiki/AND-OR-Invert
http://en.wikipedia.org/wiki/AND-OR-Invert

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1875

 Carry-lookahead adders

To reduce the computation time, engineers devised

faster ways to add two binary numbers by using

carry-lookahead adders. They work by creating two

signals (P and G) for each bit position, based on if a

carry is propagated through from a less significant bit

position (at least one input is a '1'), a carry is

generated in that bit position (both inputs are '1'), or

if a carry is killed in that bit position (both inputs are

'0'). In most cases, P is simply the sum output of a

half-adder and G is the carry output of the same

adder. After P and G are generated the carries for

every bit position are created. Some advanced carry-

lookahead architectures are the Manchester carry

chain, Brent–Kung adder, and the Kogge–Stone

adder.

Some other multi-bit adder architectures break the

adder into blocks. It is possible to vary the length of

these blocks based on the propagation delay of the

circuits to optimize computation time. These block

based adders include the carry bypass adder which

will determine P and G values for each block rather

than each bit, and the carry select adder which pre-

generates sum and carry values for either possible

carry input to the block.

IV. PROPOSED SYSTEM

 RECONFIGURABLE APPROXIMATE CLA

Supposing that we have two bits of storage per digit,

we can use a redundant binary representation, storing

the values 0, 1, 2, or 3 in each digit position. It is

therefore obvious that one more binary number can

be added to our carry-save result without overflowing

our storage capacity: but then what?

The key to success is that at the moment of each

partial addition we add three bits:

 0 or 1, from the number we are adding.

 0 if the digit in our store is 0 or 2, or 1 if it is

1 or 3.

 0 if the digit to its right is 0 or 1, or 1 if it is

2 or 3.

To put it another way, we are taking a carry digit

from the position on our right, and passing a carry

digit to the left, just as in conventional addition; but

the carry digit we pass to the left is the result of the

previous calculation and not the current one. In each

clock cycle, carries only have to move one step

along, and not n steps as in conventional addition.

Because signals don't have to move as far, the clock

can tick much faster.

There is still a need to convert the result to binary at

the end of a calculation, which effectively just means

letting the carries travel all the way through the

number just as in a conventional adder. But if we

have done 512 additions in the process of performing

a 512-bit multiplication, the cost of that final

conversion is effectively split across those 512

additions, so each addition bears 1/512 of the cost of

that final "conventional" addition.

Drawbacks

At each stage of a carry-save addition,

1. We know the result of the addition at once.

2. We still do not know whether the result of

the addition is larger or smaller than a given

number (for instance, we do not know

whether it is positive or negative).

This latter point is a drawback when using carry-save

adders to implement modular multiplication

(multiplication followed by division, keeping the

remainder only). If we cannot know whether the

intermediate result is greater or less than the

modulus, how can we know whether to subtract the

modulus or not?

Montgomery multiplication, which depends on the

rightmost digit of the result, is one solution; though

rather like carry-save addition itself, it carries a fixed

overhead, so that a sequence of Montgomery

multiplications saves time but a single one does not.

Fortunately exponentiation, which is effectively a

sequence of multiplications, is the most common

operation in public-key cryptography.

Carry Select Adder:

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://en.wikipedia.org/wiki/Carry-lookahead_adder
http://en.wikipedia.org/wiki/Manchester_carry_chain
http://en.wikipedia.org/wiki/Manchester_carry_chain
http://en.wikipedia.org/wiki/Brent%E2%80%93Kung_adder
http://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adder
http://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adder
http://en.wikipedia.org/wiki/Propagation_delay
http://en.wikipedia.org/wiki/Carry_bypass_adder
http://en.wikipedia.org/wiki/Carry_select_adder
http://en.wikipedia.org/wiki/Redundant_binary_representation
http://en.wikipedia.org/wiki/Montgomery_multiplication

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1876

In electronics, a carry-select adder is a

particular way to implement an adder, which is a

logic element that computes the -bit sum

of two -bit numbers. The carry-select adder is

simple but rather fast, having a gate level depth of

.

The carry-select adder generally consists of

two ripple carry adders and a multiplexer. Adding

two n-bit numbers with a carry-select adder is done

with two adders (therefore two ripple carry adders) in

order to perform the calculation twice, one time with

the assumption of the carry being zero and the other

assuming one. After the two results are calculated,

the correct sum, as well as the correct carry, is then

selected with the multiplexer once the correct carry is

known.

The number of bits in each carry select block can

be uniform, or variable. In the uniform case, the

optimal delay occurs for a block size of .

When variable, the block size should have a delay,

from addition inputs A and B to the carry out, equal

to that of the multiplexer chain leading into it, so that

the carry out is calculated just in time. The

delay is derived from uniform sizing,

where the ideal number of full-adder elements per

block is equal to the square root of the number of bits

being added, since that will yield an equal number of

MUX delays.

Basic building block

Above is the basic building block of a carry-select

adder, where the block size is 4. Two 4-bit ripple

carry adders are multiplexed together, where the

resulting carry and sum bits are selected by the carry-

in. Since one ripple carry adder assumes a carry-in of

0, and the other assumes a carry-in of 1, selecting

which adder had the correct assumption via the actual

carry-in yields the desired result.

Uniform-sized adder

A 16-bit carry-select adder with a uniform block size

of 4 can be created with three of these blocks and a 4-

bit ripple carry adder. Since carry-in is known at the

beginning of computation, a carry select block is not

needed for the first four bits. The delay of this adder

will be four full adder delays, plus three MUX

delays.

 MODIFIED 16-B SQRT CSLA

The structure of the proposed 16-b SQRT CSLA

using BEC for RCAwith Cin =1 to optimize the area

and power is shown in Fig. 6. We again split the

structure into five groups. The delay and area

estimation of each group are shown in Fig. . The

steps leading to the evaluation are given here.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Adder_%28electronics%29#Multiple-bit_adders
http://en.wikipedia.org/wiki/Multiplexer

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1877

1) The group2 [see Fig. 7(a)] has one 2-b RCA which

has 1 FA and 1 HA for Cin=0. Instead of another 2-b

RCA with Cin=1 a 3-b BEC is used which adds one

to the output from 2-b RCA. Based on the

consideration of delay values of Table I, the arrival

time of selection input c1[time(t)=7] of 6:3 mux is

earlier than the s3[t=9] and c3[t=10] and later than

the s2[t=4]. Thus,

the sum3 and final c3 (output from mux) are

depending on s3 and mux and partial c3 (input to

mux) and mux, respectively. The sum2 depends on

c1 and mux.

2) For the remaining group’s the arrival time of mux

selection input is always greater than the arrival time

of data inputs from the BEC’s. Thus, the delay of the

remaining groups depends on the arrival time of mux

selection input and the mux delay.

 The area count of group2 is determined as follows

3) Similarly, the estimated maximum delay and area

of the other groups of the modified SQRT CSLA are

evaluated and listed in Table IV.

Comparing Tables III and IV, it is clear that the

proposed modified SQRT CSLA saves 113 gate areas

than the regular SQRT CSLA, with only 11 increases

in gate delays. To further evaluate the performance,

we have resorted to ASIC implementation and

simulation

V. SIMULATION RESULTS

Simulation Results

Fig 4.Simulation Wave Form For RAP CLA

Fig .5 Simulation For 4bit RAP CLA adder

VI. CONCLUSION

In this project, a high-speed yet energy-

efficient reconfigurable approximate carry look-

ahead adder was suggested. The adder enjoyed the

ability of switching between the approximate and

exact operating modes making it suitable for both

error-resilient and exact applications. The structure of

the proposed adder was based on some modifications

to the structure of t conventional CLA. To assess the

efficacy of the proposed structure, its design

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 12

April 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1878

parameters were compared to those of some

suggested reconfigurable approximate adders. The

parameters which included delay, power, energy

energy-delay-product, and area were evaluated at a

15nm technology. The results showed up to 49% and

19% lower delay and power consumption,

respectively, compared to the those of the

approximate adders at the price of up to an error rate

of 35.16%. Also, the effectiveness of the proposed

adder on two image processing applications is studied

as well.

 REFERENCES

 [1] K. K. Parhi, VLSI Digital Signal Processing.

New York, NY, USA: Wiley, 1998.

 [2] A. P. Chandrakasan, N. Verma, and D. C. Daly,

“Ultralow-power electronics for biomedical

applications,” Annu. Rev. Biomed. Eng., vol. 10, pp.

247– 274, Aug. 2008.

 [3] O. J. Bedrij, “Carry-select adder,” IRE Trans.

Electron. Comput., vol. EC-11, no. 3, pp. 340–344,

Jun. 1962.

[4] Y. Kim and L.-S. Kim, “64-bit carry-select adder

with reduced area,” Electron. Lett., vol. 37, no. 10,

pp. 614–615, May 2001.

 [5] Y. He, C. H. Chang, and J. Gu, “An area-

efficient 64-bit square root carryselect adder for low

power application,” in Proc. IEEE Int. Symp. Circuits

Syst., 2005, vol. 4, pp. 4082–4085.

[6] B. Ramkumar and H. M. Kittur, “Low-power and

area-efficient carry-select adder,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp.

371–375, Feb. 2012.

 [7] I.-C. Wey, C.-C. Ho, Y.-S. Lin, and C. C. Peng,

“An area-efficient carry select adder design by

sharing the common Boolean logic term,” in Proc.

IMECS, 2012, pp. 1–4.

[8] S. Manju and V. Sornagopal, “An efficient SQRT

architecture of carry select adder design by common

Boolean logic,” in Proc. VLSI ICEVENT, 2013, pp.

1–5.

 [9] B. Parhami, Computer Arithmetic: Algorithms

and Hardware Designs, 2nd ed. New York, NY,

USA: Oxford Univ. Press, 2010.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

