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ABSTRACT 

 

In this paper, we propose a fast yet energy-efficient 

reconfigurable approximate carry look-ahead adder 

(RAP-CLA). This adder has the ability of switching 

between the approximate and exact operating modes 

making it suitable for both error-resilient and exact 

applications. The structure, which is more area and 

power efficient than state-of-the-art reconfigurable 

approximate adders, is achieved by some 

modifications to the conventional carry look ahead 

adder (CLA). The efficacy of the proposed RAP-CLA 

adder is evaluated by comparing its characteristics to 

those of two state-of-the-art reconfigurable 

approximate adders as well as the conventional 

(exact) CLA. The results reveal that, in the 

approximate operating mode, the proposed 32-bit 

adder provides better delay and power reductions 

compared to those of the exact CLA, respectively, at 

the cost of low error rate. It also provides lower 

delay and power consumption, respectively, 

compared to other approximate adders considered in 

this work. Finally, the effectiveness of the proposed 

adder on two image processing applications of 

smoothing and sharpening is demonstrated. The 

proposed architecture of this paper analysis the delay 

and area using Xilinx 14.3. 

 
I. .INTRODUCTION 

         The challenge of the verifying a large 

design is growing exponentially. There is a need to 

define new methods that makes functional 

verification easy. Several strategies in the recent 

years have been proposed to achieve good functional 

verification with less effort. Recent advancement 

towards this goal is methodologies. The methodology 

defines a skeleton over which one can add flesh and 

skin to their requirements to achieve functional 

verification.  

The report is organized as two major 

portions; first part is brief introduction and history of 

the functional verification of regular Carry select 

adder which tells about different advantages Carry 

select adder and RCA architecture and in this Regular 

Ckt one drawback is there overcome that  

 

complexicity problem we go for modified 

architecture of CSLA . 

 Carry Select Adder (CSLA) is one of the 

fastest adders used in many data-processing 

processors to perform fast arithmetic functions. From 

the structure of the CSLA, it is clear that there is 

scope for reducing the area and power consumption 

in the CSLA. This work uses a simple and efficient 

gate-level modification to significantly reduce the 

area and power of the CSLA. Based on this 

modification 8-, 16- CSLA architecture have been 

developed and compared with the regular CSLA 

architecture. The proposed design has reduced area 

and power as compared with the regular CSLA with 

only a slight increase in the delay.  

This work evaluates the performance of the 

proposed designs in terms of delay, area, power, and 

their products by hand with logical effort and through 

custom design and layout in Xilinx XC series devices 

CMOS process technology. The results analysis 

shows that the proposed 

Second part is Design and verification of the 

Architecture of CSLA circuits. Architecture of the 

test bench gives complete description about the 

components and sub components used to achieve the 

verification goals and also explain about 

improvements made in the design of the usb-i2c 

bridge, test plan identifies all the test case required to 

meet the goals and finally results of the project 

  

 Historical Perspective 

The electronics industry has achieved a 

phenomenal growth over the last two decades, mainly 

due to the rapid advances in integration technologies, 

large-scale systems design - in short, due to the 

advent of VLSI. The number of applications of 

integrated circuits in high-performance computing, 

telecommunications, and consumer electronics has 

been rising steadily, and at a very fast pace. 

Typically, the required computational power (or, in 

other words, the intelligence) of these applications is 

the driving force for the fast development of this 

field. Figure 1.1 gives an overview of the prominent 

trends in information technologies over the next few 
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decades. The current leading-edge technologies (such 

as low bit-rate video and cellular communications) 

already provide the end-users a certain amount of 

processing power and portability. 

 

 
This trend is expected to continue, with very 

important implications on VLSI and systems design. 

One of the most important characteristics of 

information services is their increasing need for very 

high processing power and bandwidth (in order to 

handle real-time video, for example). The other 

important characteristic is that the information 

services tend to become more and more personalized 

(as opposed to collective services such as 

broadcasting), which means that the devices must be 

more intelligent to answer individual demands, and at 

the same time they must be portable to allow more 

flexibility/mobility 

As more and more complex functions are 

required in various data processing and 

telecommunications devices, the need to integrate 

these functions in a small system/package is also 

increasing. The level of integration as measured by 

the number of logic gates in a monolithic chip has 

been steadily rising for almost three decades, mainly 

due to the rapid progress in processing technology 

and interconnect technology. Table 1.1 shows the 

evolution of logic complexity in integrated circuits 

over the last three decades, and marks the milestones 

of each era. Here, the numbers for circuit complexity 

should be interpreted only as representative examples 

to show the order-of-magnitude. A logic block can 

contain anywhere from 10 to 100 transistors, 

depending on the function. State-of-the-art examples 

of ULSI chips, such as the DEC Alpha or the INTEL 

Pentium contain 3 to 6 million transistors. 

The most important message here is that the 

logic complexity per chip has been (and still is) 

increasing exponentially. The monolithic integration 

of a large number of functions on a single chip 

usually provides: 

 Less area/volume and therefore, 

compactness 

 Less power consumption 

 Less testing requirements at system level 

 Higher reliability, mainly due to improved 

on-chip interconnects 

 Higher speed, due to significantly reduced 

interconnection length 

 Significant cost savings 

 

Figure-1. Evolution of integration density and 

minimum feature size, as seen in the early 1980s. 

Therefore, the current trend of integration 

will also continue in the foreseeable future. Advances 

in device manufacturing technology, and especially 

the steady reduction of minimum feature size 

(minimum length of a transistor or an interconnect 

realizable on chip) support this trend. Figure 1.2 

shows the history and forecast of chip complexity - 

and minimum feature size - over time, as seen in the 

early 1980s. At that time, a minimum feature size of 

0.3 microns was expected around the year 2000. The 

actual development of the technology, however, has 

far exceeded these expectations. A minimum size of 

0.25 microns was readily achievable by the year 

1995. As a direct result of this, the integration density 

has also exceeded previous expectations - the first 64 

Mbit DRAM, and the INTEL Pentium 

microprocessor chip containing more than 3 million 

transistors were already available by 1994, pushing 

the envelope of integration density. 

When comparing the integration density of integrated 

circuits, a clear distinction must be made between the 

memory chips and logic chips. Figure 1.3 shows the 

level of integration over time for memory and logic 
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chips, starting in 1970. It can be observed that in 

terms of transistor count, logic chips contain 

significantly fewer transistors in any given year 

mainly due to large consumption of chip area for 

complex interconnects. Memory circuits are highly 

regular and thus more cells can be integrated with 

much less area for interconnects. 

 
 

Figure-2. Level of integration over time, for memory 

chips and logic chips. 

Generally speaking, logic chips such as 

microprocessor chips and digital signal processing 

(DSP) chips contain not only large arrays of memory 

(SRAM) cells, but also many different functional 

units. As a result, their design complexity is 

considered much higher than that of memory chips, 

although advanced memory chips contain some 

sophisticated logic functions. The design complexity 

of logic chips increases almost exponentially with the 

number of transistors to be integrated. This is 

translated into the increase in the design cycle time, 

which is the time period from the start of the chip 

development until the mask-tape delivery time. 

However, in order to make the best use of the current 

technology, the chip development time has to be 

short enough to allow the maturing of chip 

manufacturing and timely delivery to customers. As a 

result, the level of actual logic integration tends to 

fall short of the integration level achievable with the 

current processing technology. Sophisticated 

computer-aided design (CAD) tools and 

methodologies are developed and applied in order to 

manage the rapidly increasing design complexity. 

 VLSI Design Flow 

The design process, at various levels, is 

usually evolutionary in nature. It starts with a given 

set of requirements. Initial design is developed and 

tested against the requirements. When requirements 

are not met, the design has to be improved. If such 

improvement is either not possible or too costly, then 

the revision of requirements and its impact analysis 

must be considered. The Y-chart (first introduced by 

D. Gajski) shown in Fig. 1.4 illustrates a design flow 

for most logic chips, using design activities on three 

different axes (domains) which resemble the letter Y. 

 
 

Figure3: Typical VLSI design flow in three domains 

(Y-chart representation). 

The Y-chart consists of three major domains, namely: 

 behavioral domain, 

 structural domain, 

 geometrical layout domain. 

The design flow starts from the algorithm that 

describes the behavior of the target chip. The 

corresponding architecture of the processor is first 

defined. It is mapped onto the chip surface by 

floorplanning. The next design evolution in the 

behavioral domain defines finite state machines 

(FSMs) which are structurally implemented with 

functional modules such as registers and arithmetic 

logic units (ALUs).  

These modules are then geometrically 

placed onto the chip surface using CAD tools for 

automatic module placement followed by routing, 
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with a goal of minimizing the interconnects area and 

signal delays. The third evolution starts with a 

behavioral module description. Individual modules 

are then implemented with leaf cells. At this stage the 

chip is described in terms of logic gates (leaf cells), 

which can be placed and interconnected by using a 

cell placement & routing program. The last evolution 

involves a detailed Boolean description of leaf cells 

followed by a transistor level implementation of leaf 

cells and mask generation. In standard-cell based 

design, leaf cells are already pre-designed and stored 

in a library for logic design use. 

 provides a more simplified view of the 

VLSI design flow, taking into account the various 

representations, or abstractions of design - 

behavioral, logic, circuit and mask layout. Note that 

the verification of design plays a very important role 

in every step during this process. The failure to 

properly verify a design in its early phases typically 

causes significant and expensive re-design at a later 

stage, which ultimately increases the time-to-market. 

Although the design process has been 

described in linear fashion for simplicity, in reality 

there are many iterations back and forth, especially 

between any two neighboring steps, and occasionally 

even remotely separated pairs. Although top-down 

design flow provides an excellent design process 

control, in reality, there is no truly unidirectional top-

down design flow. Both top-down and bottom-up 

approaches have to be combined. For instance, if a 

chip designer defined an architecture without close 

estimation of the corresponding chip area, then it is 

very likely that the resulting chip layout exceeds the 

area limit of the available technology. In such a case, 

in order to fit the architecture into the allowable chip 

area, some functions may have to be removed and the 

design process must be repeated. Such changes may 

require significant modification of the original 

requirements. Thus, it is very important to feed 

forward low-level information to higher levels 

(bottom up) as early as possible. 

In the following, we will examine design 

methodologies and structured approaches which have 

been developed over the years to deal with both 

complex hardware and software projects. Regardless 

of the actual size of the project, the basic principles 

of structured design will improve the prospects of 

success. Some of the classical techniques for 

reducing the complexity of IC design are: Hierarchy, 

regularity, modularity and locality. 

II. LITERATURE REVIEW 

The electronics of a general biomedical 

device consist of energy delivery, analog-to-digital 

conversion, signal processing, and communication 

subsystems. Each of these blocks must be designed 

for minimum energy consumption. Specific design 

techniques, such as aggressive voltage scaling, 

dynamic power-performance management, and 

energy-efficient signaling, must be employed to 

adhere to the stringent energy constraint. The 

constraint itself is set by the energy source, so energy 

harvesting holds tremendous promise toward 

enabling sophisticated systems without straining user 

lifestyle. Further, once harvested, efficient delivery of 

the low-energy levels, as well as robust operation in 

the aggressive low-power modes, requires careful 

understanding and treatment of the specific design 

limitations that dominate this realm. We outline the 

performance and power constraints of biomedical 

devices, and present circuit techniques to achieve 

complete systems operating down to power levels of 

microwatts. In all cases, approaches that leverage 

advanced technology trends are emphasized. 

Power dissipation is one of the most 

important design objectives in integrated circuits, 

after speed. As adders are the most widely used 

components in such circuits, design of efficient adder 

is of much concern for researchers. This paper 

presents performance analysis of different Fast 

Adders. The comparison is done on the basis of three 

performance parameters i.e. Area, Speed and Power 

consumption. We present a modified carry select 

adder designed in different stages. Results obtained 

from modified carry select adders are better in area 

and power consumption. 

Addition is the heart of arithmetic unit and 

the arithmetic unit is often the work horse of a 

computational circuit. So adders play a key role in 

designing an arithmetic unit and also many digital 

integrated circuits. Carry Select Adder (CSLA) is one 

of the fastest adders used in many data processors 

and in digital circuits to perform arithmetic 

operations. But CSLA is area-consuming because it 

consists of dual ripple carry adder (RCA) in the 

structure. To reduce the area of CSLA, a CSLA with 

Binary to Excess-1 Converter is already designed 

which reduces the area of adder. But there are other 

techniques to design a CSLA to reduce its area. One 

of such technique is using an add one circuit 

technique. This paper proposes the design of square 
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root CSLA (SQRT CSLA) using add one circuit with 

significant reduction in area. The proposed design is 

synthesized using Leonardo Spectrum to get area 

(number of gates) and delay (ns). The performance in 

terms of area and delay are evaluated for square root 

CSLA using add one circuit and are compared with 

existing SQRT CSLA and SQRT CSLA using Binary 

to Excess-1 Converter (BEC). The results analysis 

shows that the proposed SQRT CSLA using add one 

circuit is better than the existing SQRT CSLA and 

SQRT CSLA using BEC. 

III. EXISTING SYSTEM 

In electronics, an adder or summer is a digital 

circuit that performs addition of numbers. In many 

computers and other kinds of processors, adders 

are used not only in the arithmetic logic unit(s), but 

also in other parts of the processor, where they are 

used to calculate addresses, table indices, and 

similar. 

Although adders can be constructed for 

many numerical representations, such as binary-

coded decimal or excess-3, the most common 

adders operate on binary numbers. In cases where 

two's complement or ones' complement is being 

used to represent negative numbers, it is trivial to 

modify an adder into an adder–subtractor. Other 

signed number representations require a more 

complex adder. 

Half adder 

The half adder adds two one-bit binary 

numbers A and B. It has two outputs, S and C (the 

value theoretically carried on to the next addition); 

the final sum is 2C + S. The simplest half-adder 

design, pictured on the right, incorporates an XOR 

gate for S and an AND gate for C. With the 

addition of an OR gate to combine their carry 

outputs, two half adders can be combined to make 

a full adder 

A full adder adds binary numbers and 

accounts for values carried in as well as out. A one-

bit full adder adds three one-bit numbers, often 

written as A, B, and Cin; A and B are the operands, 

and Cin is a bit carried in from the next less 

significant stage. The full-adder is usually a 

component in a cascade of adders, which add 8, 16, 

32, etc. binary numbers.  

A full adder can be implemented in many different 

ways such as with a custom transistor-level circuit or 

composed of other gates. One example 

implementation is with and 

. 

In this implementation, the final OR gate before the 

carry-out output may be replaced by an XOR gate 

without altering the resulting logic. Using only two 

types of gates is convenient if the circuit is being 

implemented using simple IC chips which contain 

only one gate type per chip. In this light, Cout can be 

implemented as 

. 

A full adder can be constructed from two half adders 

by connecting A and B to the input of one half adder, 

connecting the sum from that to an input to the 

second adder, connecting Ci to the other input and 

OR the two carry outputs. Equivalently, S could be 

made the three-bit XOR of A, B, and Ci, and Cout 

could be made the three-bit majority function of A, B, 

and Ci. 

Ripple carry adder 

It is possible to create a logical circuit using multiple 

full adders to add N-bit numbers. Each full adder 

inputs a Cin, which is the Cout of the previous adder. 

This kind of adder is a ripple carry adder, since each 

carry bit "ripples" to the next full adder. Note that the 

first (and only the first) full adder may be replaced by 

a half adder. 

The layout of a ripple carry adder is simple, which 

allows for fast design time; however, the ripple carry 

adder is relatively slow, since each full adder must 

wait for the carry bit to be calculated from the 

previous full adder. The gate delay can easily be 

calculated by inspection of the full adder circuit. 

Each full adder requires three levels of logic. In a 32-

bit [ripple carry] adder, there are 32 full adders, so 

the critical path (worst case) delay is 3 (from input to 

carry in first adder) + 31 * 2 (for carry propagation in 

later adders) = 65 gate delays. A design with 

alternating carry polarities and optimized AND-OR-

Invert gates can be about twice as fas 
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 Carry-lookahead adders 

To reduce the computation time, engineers devised 

faster ways to add two binary numbers by using 

carry-lookahead adders. They work by creating two 

signals (P and G) for each bit position, based on if a 

carry is propagated through from a less significant bit 

position (at least one input is a '1'), a carry is 

generated in that bit position (both inputs are '1'), or 

if a carry is killed in that bit position (both inputs are 

'0'). In most cases, P is simply the sum output of a 

half-adder and G is the carry output of the same 

adder. After P and G are generated the carries for 

every bit position are created. Some advanced carry-

lookahead architectures are the Manchester carry 

chain, Brent–Kung adder, and the Kogge–Stone 

adder. 

Some other multi-bit adder architectures break the 

adder into blocks. It is possible to vary the length of 

these blocks based on the propagation delay of the 

circuits to optimize computation time. These block 

based adders include the carry bypass adder which 

will determine P and G values for each block rather 

than each bit, and the carry select adder which pre-

generates sum and carry values for either possible 

carry input to the block. 

IV. PROPOSED SYSTEM 

 RECONFIGURABLE APPROXIMATE CLA 

Supposing that we have two bits of storage per digit, 

we can use a redundant binary representation, storing 

the values 0, 1, 2, or 3 in each digit position. It is 

therefore obvious that one more binary number can 

be added to our carry-save result without overflowing 

our storage capacity: but then what? 

The key to success is that at the moment of each 

partial addition we add three bits: 

 0 or 1, from the number we are adding. 

 0 if the digit in our store is 0 or 2, or 1 if it is 

1 or 3. 

 0 if the digit to its right is 0 or 1, or 1 if it is 

2 or 3. 

To put it another way, we are taking a carry digit 

from the position on our right, and passing a carry 

digit to the left, just as in conventional addition; but 

the carry digit we pass to the left is the result of the 

previous calculation and not the current one. In each 

clock cycle, carries only have to move one step 

along, and not n steps as in conventional addition. 

Because signals don't have to move as far, the clock 

can tick much faster. 

There is still a need to convert the result to binary at 

the end of a calculation, which effectively just means 

letting the carries travel all the way through the 

number just as in a conventional adder. But if we 

have done 512 additions in the process of performing 

a 512-bit multiplication, the cost of that final 

conversion is effectively split across those 512 

additions, so each addition bears 1/512 of the cost of 

that final "conventional" addition. 

Drawbacks 

At each stage of a carry-save addition, 

1. We know the result of the addition at once. 

2. We still do not know whether the result of 

the addition is larger or smaller than a given 

number (for instance, we do not know 

whether it is positive or negative). 

This latter point is a drawback when using carry-save 

adders to implement modular multiplication 

(multiplication followed by division, keeping the 

remainder only). If we cannot know whether the 

intermediate result is greater or less than the 

modulus, how can we know whether to subtract the 

modulus or not? 

Montgomery multiplication, which depends on the 

rightmost digit of the result, is one solution; though 

rather like carry-save addition itself, it carries a fixed 

overhead, so that a sequence of Montgomery 

multiplications saves time but a single one does not. 

Fortunately exponentiation, which is effectively a 

sequence of multiplications, is the most common 

operation in public-key cryptography. 

 

 

Carry Select Adder: 
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In electronics, a carry-select adder is a 

particular way to implement an adder, which is a 

logic element that computes the -bit sum 

of two -bit numbers. The carry-select adder is 

simple but rather fast, having a gate level depth of 

. 

The carry-select adder generally consists of 

two ripple carry adders and a multiplexer. Adding 

two n-bit numbers with a carry-select adder is done 

with two adders (therefore two ripple carry adders) in 

order to perform the calculation twice, one time with 

the assumption of the carry being zero and the other 

assuming one. After the two results are calculated, 

the correct sum, as well as the correct carry, is then 

selected with the multiplexer once the correct carry is 

known. 

The number of bits in each carry select block can 

be uniform, or variable. In the uniform case, the 

optimal delay occurs for a block size of . 

When variable, the block size should have a delay, 

from addition inputs A and B to the carry out, equal 

to that of the multiplexer chain leading into it, so that 

the carry out is calculated just in time. The 

delay is derived from uniform sizing, 

where the ideal number of full-adder elements per 

block is equal to the square root of the number of bits 

being added, since that will yield an equal number of 

MUX delays. 

Basic building block 

 

Above is the basic building block of a carry-select 

adder, where the block size is 4. Two 4-bit ripple 

carry adders are multiplexed together, where the 

resulting carry and sum bits are selected by the carry-

in. Since one ripple carry adder assumes a carry-in of 

0, and the other assumes a carry-in of 1, selecting 

which adder had the correct assumption via the actual 

carry-in yields the desired result. 

Uniform-sized adder 

A 16-bit carry-select adder with a uniform block size 

of 4 can be created with three of these blocks and a 4-

bit ripple carry adder. Since carry-in is known at the 

beginning of computation, a carry select block is not 

needed for the first four bits. The delay of this adder 

will be four full adder delays, plus three MUX 

delays. 

 

 

 MODIFIED 16-B SQRT CSLA 

 

The structure of the proposed 16-b SQRT CSLA 

using BEC for RCAwith Cin =1 to optimize the area 

and power is shown in Fig. 6. We again split the 

structure into five groups. The delay and area 

estimation of each group are shown in Fig. . The 

steps leading to the evaluation are given here. 
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1) The group2 [see Fig. 7(a)] has one 2-b RCA which 

has 1 FA and 1 HA for Cin=0. Instead of another 2-b 

RCA with Cin=1 a 3-b BEC is used which adds one 

to the output from 2-b RCA. Based on the 

consideration of delay values of Table I, the arrival 

time of selection input c1[time(t)=7] of 6:3 mux is 

earlier than the s3[t=9] and c3[t=10] and later than 

the s2[t=4]. Thus, 

the sum3 and final c3 (output from mux) are 

depending on s3 and mux and partial c3  (input to 

mux) and mux, respectively. The sum2 depends on 

c1  and mux. 

 

2) For the remaining group’s the arrival time of mux 

selection input is always greater than the arrival time 

of data inputs from the BEC’s. Thus, the delay of the 

remaining groups depends on the arrival time of mux 

selection input and the mux delay. 

 The area count of group2 is determined as follows 

 
3) Similarly, the estimated maximum delay and area 

of the other groups of the modified SQRT CSLA are 

evaluated and listed in Table IV. 

 

Comparing Tables III and IV, it is clear that the 

proposed modified SQRT CSLA saves 113 gate areas 

than the regular SQRT CSLA, with only 11 increases 

in gate delays. To further evaluate the performance, 

we have resorted to ASIC implementation and 

simulation 

 

V. SIMULATION RESULTS 

Simulation Results 

 
 

Fig  4.Simulation Wave Form For RAP CLA 

 
 

Fig .5 Simulation For 4bit  RAP CLA adder 

 

VI. CONCLUSION 

In this project, a high-speed yet energy-

efficient reconfigurable approximate carry look-

ahead adder was suggested. The adder enjoyed the 

ability of switching between the approximate and 

exact operating modes making it suitable for both 

error-resilient and exact applications. The structure of 

the proposed adder was based on some modifications 

to the structure of t conventional CLA. To assess the 

efficacy of the proposed structure, its design 

https://edupediapublications.org/journals
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parameters were compared to those of some 

suggested reconfigurable approximate adders. The 

parameters which included delay, power, energy 

energy-delay-product, and area were evaluated at a 

15nm technology. The results showed up to 49% and 

19% lower delay and power consumption, 

respectively, compared to the those of the 

approximate adders at the price of up to an error rate 

of 35.16%. Also, the effectiveness of the proposed 

adder on two image processing applications is studied 

as well. 
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