
International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 05  Issue 12 

April 2018 

Available online:  https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2274  

MINIMIZE THE BATCH DELIVERY IN MACHINE SCHEDULING 

P. Ramanatha Reddy
1,2

, David Aluri
3
, Dr. B. Yedukondalu

4

1Research Scholar, K L University, Vaddeswaram, Andhra Pradesh, India 
2Department of Mechanical Engineering, Nalla Malla Reddy  Engineering College, JNT University, Hyderabad, India 
3Department of Mechanical Engineering, Nalla Malla Reddy  Engineering College, JNT University, Hyderabad, India 

4Associate Dean-Student Affairs, Associate Professor, Dept. of Mechanical Engineering, K L University, Vaddeswaram, Andhra Pradesh 

ABSTRACT

This paper is to Minimize the Batch Delivery in Machine Scheduling, study a problem in which a set of jobs has to be batched as well 

as scheduled for processing on a single machine. Each delivery batch has a capacity and incurs cost. A constant machine set-up time is 

required before the first job of each batch is processed. A schedule specifies the sequence of batches, where each batch comprises a 

sequence of jobs. The batch delivery time is defined as the completion time of the last job in a batch. The earliness of a job is defined 

as the difference between the delivery time of the batch to which it belongs and the job completion time. The objective is to find a 

coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost and to minimize 

the sum of the total weighted job earliness and mean batch delivery time.  

 Keywords: Scheduling, Make span, Total Weighted Tardiness 

1. INTRODUCTION

Scheduling is the process of arranging, controlling and optimizing work and workloads in a production process or 

manufacturing process. Scheduling is used to allocate plant and machinery resources, plan human resources, plan 

production processes and purchase materials. It is an important tool for manufacturing and engineering, where it can 

have a major impact on the productivity of a process. In manufacturing, the purpose of scheduling is to minimize the 

production time and costs, by telling a production facility when to make, with which staff, and on which equipment. 

Production scheduling aims to maximize the efficiency of the operation and reduce costs. In some situations, scheduling 

can involve random attributes, such as random processing times, random due dates, random weights, and stochastic 

machine breakdowns. In this case, the scheduling problems are referred to as stochastic scheduling. In this section, we 

introduce the notation to be used in the paper: 

2. NOTATION

n: number of jobs 

m: number of machines 

J = {J1…. Jn} : job set to be processed; 

Pi : processing time of job Ji; 

R : number of batch deliveries; 

α(R) : delivery   cost  function,            

a no decreasing function of R; 

Cmax   = max {ci} :  makespan of a schedule; 

G(π) =∑i
n
   = I Fi + α(R)     : total penalty of π

Fig.1. Problem descriptions 

Bl   : batch l; 

bl    : number of jobs in Bl; 

D
l: delivery date of Bl; 

Ci  : completion time of job Ji 

Fi: flow tome of Ji, which is equal to the batch delivery 
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date  on  which  Ji  is  delivered 

π =< B1,……BR >        : a schedule; 

 

Adopting the three-field notation introduced by Graham 

et al. [11], we denote our problem as Pm/bd/(∑Fi + α(R)). 

 

3. PROBLEM DEFINITION 

 

NP-COMPLETENESS AND DYNAMIC 

PROGRAMMING 
 

In this section, we consider the complexity issues of 

the problem. First, it is interesting to note that, when the 

delivery cost is negligible, Pm/bd/(∑Fi + α(R)) simply 

reduces to the classical parallel machine scheduling 

problem Pm//∑Ci  it is well known that Pm//∑Ci is solved 

by the generalized shortest processing time (SPT) rule: 

schedule the jobs in the order of non decreasing 

processing times, and assign each job to the earliest 

available machine [12]. 

 

Next, we give a simple proof for the NP-

completeness for the problem under study. Assume that 

the batch delivery cost is so large that all jobs must be 

delivered in one batch. i.e. R=1. Then Pm/bd/(∑Fi + α(R)) 

is equivalent to the classical parallel machine scheduling 

problem Pm//Cmax. Since Pm//Cmax has been shown to 

be NP-complete in the ordinary sense when m is fixed, 

and NP-complete in the strong sense when m is arbitrary 

[13]. 

Theorem 1. Even when R"1, Pm/bd/(∑Fi + α(R))  is NP-

complete in the ordinary sense when m is fixed and m≥2, 

and NP-complete in the strong sense when m is arbitrary. 

The following lemma establishes several proper-

ties for an optimal schedule for the problem. 

 

Argument 1 :-. There   exists   an   optimal   schedule π* 

= < B1,……BR >    for Pm/bd,   R    ≤ U/(∑Fi + α(R)) in 

which           

i. There is no idle time before each job;  

ii. All jobs assigned to the same machine are scheduled 

in the SPT order;  

iii. Bl contains all jobs which finish processing in the 

time interval (Dl-1, Dl ], l=……, R.  

 

Proof 

 Trivial. 

 Assume that jobs Ji and Jj are assigned to the same 

machine and Jj follows Ji immediately such that pi ≥ pj 

in π*. Let π/
 be a schedule obtained by swapping Ji and 

Jj. It is easy to show that G(π*
)≥ G(π/

), regardless of 

whether Ji and Jj are delivered in the same batch or 

not.  

 Let us number all jobs in the order of their completion 

time in π*
. Assume that the batches are numbered in 

accordance with the numbers of their last jobs. It is 

clear that, without loss of generality, we can assume 

D1 <…….< DR  Let Jj be the first job in BR. If there are 

any jobs between Jj and Jn (the last job in BR) which 

are assigned to other batches, then there must be at 

least one batch, say Bl, such that Cj ≤ Dl < DR . Let π/
 

be a schedule obtained by simply assigning Jj to Bl. It 

is obvious that G(π*)≥ G(π/
), a contradiction. 

Following the same argument with the jobs in batch 

BR-1 and so on, we can show that there exists an 

optimal schedule in which all batches consist of a 

number of jobs which finish processing contiguously. 

Since all jobs which processing at Dl, l=1…… R, can 

all be assigned to Bl in any optimal schedule, we have 

shown that Bl contains all jobs which finish 

processing in the time interval (Dl-1, Dl]. h  

 

Based on Lemma 1, we can develop a dynamic 

programming algorithm to solve the problem. Let; U be 

an upper bound for the number of batch deliveries, and P 

= ∑n
i  =  1 pi. The algorithm is formally described as 

follows. 

Algorithm -1: 

 

a) Renumber the jobs in the SPT order i.e.    

p1≤p2…..≤pn. 

b) Define HR (j, t1,……..,tm,D1,…….,DR ) as the minimum 

total flow if we have scheduled jobs J1 up to Jj such 

that the total processing time of the jobs assigned to 
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machine u is tu u=1…….m and the delivery date is 

Dl for batch BI  I= 1,……m 

 recursive relation : for j = 0,…….n, tu = 0,….,P , u = 

1,……,m, Dt = Dl-1+1,….P, I = 1,….,R,  D0 = 0 and 

R = 1,….,U, 

c) HR (j,t1,……,tm,D1,…..,DR ) = min {Xu},             (1) 

 

Where 

i. Xu  = HR (j-1,t1,……,tu-pj,…..tm,D1,…..,DR ) +Fj     (2) 

ii. Fj = {Dt /Dt-1 < tu ≤ Dt , D0 = 0,   l = 1,…….R}. (3) 

 

d) (initial conditions: for each tk =0,…..P, u=1,…m, Dt 

=Dl-1+1,…..P, I=1,…,R,  D0 = 0, and R = 1,….,U,    

HR ( j,t1,…..,tm, Dl,…..,DR ) 

{If j=0, t1=t2 =…….tm =0     ∞ otherwise 

e)  Optimal solutions: G
*
 = min { HR (n,t1,…..,tm, 

Dl,…..,DR ) + α(R)} over all tu = 0,….,P,R, D0 = 0 and 

R = 1,…U. 

Argument 2: Algorithm -1 solves the problem Pm/bd, R 

≤ U/ ∑ (Fi + α(R)) in O(nm;U
2
 P

m
+u-1) time.  

 

 Proof: Due to Lemma 1, there exists an optimal 

schedule with jobs assigned to each machine in the SPT 

order, and each job in assigned to the first batch after the 

completion of the job. If Jj is assigned to machine u, then 

Cj =tu, and if Dl-1 < tu ≤ Dl , then Jj is assigned to Bl , and 

so Fj =  Dl . This justifies Eqs. (2) and (3). Since HR (j, 

t1,…….tm,D1…..DR ) is determined by the minimum 

assignment by definition, we have justified the validity of 

the recursive relations. So the algorithm PMBD-1 solves 

the problem Pm/bd, R≤ U/ (∑Fi + α (R)). 

The time complexity of the algorithm can be 

established as follows. Since only m-1 of the values 

t1,….tm are  independent, the number of different states of 

the recursive relations is at most n P 
m+u-1 

 for R =1,….U 

For each state, the right hand side of Eq. (1) can be 

calculated in O(mU) time. Thus, the overall 

computational complexity of Algorithm PMBD-1 is 

O(nm;U
2
  P

m+U-1
). 

 

Argument 2 implies that the problem Pm/bd, R≤ U/ (∑Fi 

+ α (R)).  is not strongly NP-complete for any constant m 

and U ;. But it is not clear whether Pm/bd, R≤ U/ (∑Fi + 

α (R)  is strongly NP-complete or pseudo polynomially 

solvable for a constant m and an arbitrary U. 

 POLYNOMIALLY SOLVABLE CASES 

In this section, we first consider a special case where 

the job assignment is predetermined. It is evident that the 

problem reduces to an optimal batching problem in this 

case. This special case characterizes the practical 

scenario where each machine is dedicated to a special 

group of jobs. According to argument 1, we can provide a 

backward dynamic programming algorithm to solve the 

optimal batching problem as follows. 

 (a) Schedule the jobs on each machine in the SPT order, 

and then renumber all the jobs in accordance with the job 

completion times. 

(b) Define HR (j, l) as the minimum total completion time 

of the jobs Jj,…….Jn when they are assigned to the delivery  

batches B1,……BR. 

(c) Recursive relations: For R = 1,………,n, I = R,…..1, 

and j = n,… l, HR (j,l) = min { HR (k, I+1) + (k-j) Ck-1 }                    

                                                                       (4) 

(d) Initial conditions: for each j = 1,…..,n l= 1,…..R, and 

R = 1,…..n,   

HR(J,L){if j= n+1 and I = R+1; ∞ otherwise 

 (e) Optimal solutions: G(π*)
 = min { HR(I,1) + α(R)}  1 ≤ 

R ≤ n          

While the optimality of the algorithm can be easily 

justified, it is also not difficult to see that the time 

complexity of the algorithm is O (n4). 

 

 

Fig.2. Example 1 

 

Now we present a numerical example for the special 

case to demonstrate the optimality of the algorithm. 
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Example 1: Consider the instance with J = {J1,……  J4}, 

m=2, and α(R) = 7R. Assume that J2 and J3 are assigned

on M1, J1 and J4 are assigned on M2, and all jobs are 

sequenced in the SPT order on each machine (as shown 

in Fig. 2). Now using algorithm -2 to solve the instance, 

we have the following results: 

When R = 1, we have 

H1 (4, 1) = H1(5, 2) + C4 = 12, 

H1 (3, 1) = H1(5, 2) + 2C4  = 24, 

H1 (2, 1) = H1(5, 2) +3C4 = 36, 

H1 (1, 1)=H1(5, 2) + 4C4 = 48, and so 

And G(π4
*
) =7R +H4 (1, 1) = 55.

When R=2, we have 

H2 (4, 2) = H2(5, 2) + C4 = 12, 

H2 (3, 2) = H2(5, 3) + 2C4  = 24, 

H2 (2, 2) = H2(5, 3) +3C4 = 36, 

H2 (1, 1) = min {H2(4, 2) + 3C3, 

H2 (3, 2) + 2 C2 , H2(2, 2) +C3} =32 

And G(π2
* 
= 7R + H1 (1, 1 ) = 46.

When R = 3, we have 

H3 (4, 3) = H3(5, 4) + C4 = 12, 

H3 (3, 3) = H3(5, 4) + 2C4  = 24, 

H3 (2, 2) = min {H3(4, 3) +2C3 

H2 (3, 3) = H2(3, 3) + C2} = 28, 

H3 (1, 1) = H3(2, 2) + C1 = 31. 

Thus 

G(π3
*
) =7R +H3 (1, 1) + C1 = 52.

When R=4, we have 

H4 (4, 4) = H4(5, 5) + C4 = 12, 

H4 (3, 3) = H4(4, 4) + C3  = 20, 

H4 (2, 2) = H4(3, 3) +C4 = 24 

H4 (1, 1) = H4(2, 2) + C1  = 27, 

And so  

G(π1
*
) =7R +H1 (1, 1) = 55.

Hence, we obtained an optimal schedule π*
 = <  B1,B2 >

with B1 = {J1, J2 } and B2 = {J3,J4 .} 

We now consider the special case with identical 

processing times, Pm/bd, Pi = P / (∑Fi + α (R)). Let no =

[n/m], g = no m – n. let nu be the number of jobs

processed on machine u under a specific schedule. Then 

we have the following lemma.  

Argument 3: There exist an optimal schedule for 

Pm/bd,Pi /( ∑ Fi + α(R)) in which no  -1 ≤  nu  ,  ≤ n0, u =

1,….m.

Proof: Suppose there exists an optimal schedule π*
 in

which the condition is not satisfied. According 

to Lemma 1, we can assume that there is no inserted idle 

time in π*
. Then there must be a pair of machines u and v

such that nu ≥ nv +2 and the last job on machine u is also

the last job of the last batch delivery. It is clear that 

moving the last job on machine u to the last position on 

machine v will not increase the total penalty. Repeating 

this process, we can obtain a desired optimal schedule. 

Let π*
 = <  B1………,BR > be an optimal schedule with R

batch deliveries for the problem Pi /( ∑ Fi + α(R))  Let bl

= bl / m, l = 1,……..R-1. We have

Argument  4: There exists an optimal schedule with R 

batch deliveries for Pm/bd, Pi = p /( ∑ Fi + α(R)) in 

which bl  , l = 1,……..R-1 is integral

Proof: According to Lemma 1, we can assume that in π*

there is no inserted idle time and Bl contains all jobs 

which finish processing in the time interval (Dl~1,Dl ], 

l=1…….,R-1. It is evident that  (Dl-Dl-1)/p is integral,

l=1……..,R. Since bl;= (Dl  - Dl-1)m/p, l=1,…….,R-1, bl  is

also integral. 

Now assume that πR
*
 satisfied arguments 3 and 4. Let bl

= [bl/m]. We have 

Argument 5: There exists an optimal schedule with R 

batch deliveries for  Pm/bd, Pi = p /( ∑ Fi + α(R)) in

which  [bk – bl ] ≤ 1 for any pair of k and  I, where k =

1,……,R, I = 1,…………,R.

Proof: We first show that changing the sequence of Bl, 

I= 1,….,R-1, will not cause any increase in the total

penalty. It is not difficult to see that the sequencing of 

batch deliveries Bl, I = 1,…….,R-1, is equivalent to the

classical single machine total weighted flow time 

scheduling problem, denoted as 1// ∑  wl cl , with wl = bl 
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m and pl = bl p. It is well known that the total weighted 

flow time is minimized by sequencing the jobs in the 

weighted shortest processing time (WSPT) order [14]. 

Since 

P1 /w1 = …=  pR-1  /wR-1  = p/m, Bi , I=1,………, R -1, can

be sequenced in an arbitrary order. Now, we can prove 

the lemma by showing 

[bl-1 – bl ] ≤ 1   I = 2,……R   (5)

We assume that b1 >1, l = 2,……….R. . By definition, we

have 

Dl-1 bl-1  + Dl  bl ≤ (Dl-1 - p)(b l-1 - m) + (D l  + p)(b l +m),

       (6)

Dl-1 b l-1 + Dl bl  ≤ (D l-1 +p)(b l-1 +m) + (D l  - p)(b l - m).

        (7)

Then we can easily obtain the desired results. 

Now, assume that there are some batches such that bl 

=1. Note that bl may be less than m in this case. Since it 

is trivial when bl-1 = 1 (or bl+1 = 1), we suppose bl-1 > 1      (or 

bl-1  = 1). From (6) or (7), we can easily show that bl-1≤ 2

or (bl-1 ≤ 2 or ( bl+1 ≤ 2), and thus (5) holds again.

This completes the proof 

 Based on these results, we can easily construct an 

optimal schedule with R batch deliveries 

π*
 = <  B1………,BR > such that

where b0 = [ n0 / R ] and h = bo R – no . The associated total

penalty can be calculated as 

G(πR
* 
) = α (R) + ∑  1)

2
+ h ( bo – 1)p bo ( R –

h) m + ∑   p 

=  α (R) + ( Rbo – h +bo ) ( Rb0 –h ) mp/2 –  h ( bo 

– 1)mp/2 -     p
Now, we can construct a simple algorithm to solve the 

problem as follows. 

Algorithm -3: 

1. no := [n/m] :  g : = nom - n; R
* 
= 0; G

*
 := ∞

2. for R =1 to n0 do being bo : = [ no /R]; h := b0 R – n0 ;

G(πR
* 

) = α (R) + ( Rbo – h + bo ) (Rbo – h)mp/2 – h(bo -1)

mp/2 – gn0 p:

if G
*
 > G(πR

* 
)  then R

* 
: = R; G

* 
:=   G(πR

* 
);

It is clear that Algorithm-3 solves the problem 

Pm/bd, Pi = p /( ∑ Fi + α(R)) in O(n/m) time. It should be

pointed out that, the algorithm, although efficient, is not 

actually polynomial when each batch delivery has an 

equal delivery cost c, i.e. α(R) = cR.

The following numerical example demonstrates the 

optimality of the algorithm. 

Example 2: Consider the instance with J = {J1,……, J7 }

m = 2, α(R) =7R, Pi = P = 2  i = 1,…….7     From Lemma

3, we know that there exists an optimal schedule in which 

all jobs are sequenced as shown in Fig. 3. It is clear that 

no = 4, g = 1. Using algorithm PMBD-3 to solve the 

instance, we have the following results. 

When R = 1, we have bo = 4 and h = 0, and so G(π*
1 ) =

7R +28p =63.

Fig.3. Example 2 

When R = 2, we have bo =2 and h = 0, and so 

G(π2
*
 ) = 7R +20p =54.

When R = 3, we have bo =2 and h = 2, and so 

G(π3
*
 ) = 7R +18p =57.

When R = 4, we have bo =1 and h = 0, and so 

G(π4
*
 ) = 7R +16p =60.

Now we can obtain an optimal schedule 

Π* 
= < B1, B2 > with B1 = { J1,  J2,  J3,  J4 } and B2 = {  J5,

J6,  J7} 

4. CONCLUSION

In this paper, the parallel machine scheduling with 

batch delivery costs have been studied It is shown that 

the problem to minimize the sum of the total flow time 

and delivery cost is NP-complete in the strong sense. A 

dynamic programming algorithm is then provided to 

solve the problem. The algorithm is pseudo polynomial 
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when the number of machines is constant and the number 

of batches has a fixed upper bound. A two polynomial 

time algorithms to solve the special cases where the job 

assignment is given or the job processing times are equal 

is provided. There are a number of issues which are of 

interest for further research. First, it is interesting to 

investigate the open problem posed in the paper, i.e. 

whether it is pseudopolynomially solvable or strongly 

NP-complete when the number of machines is constant 

and the number of batches is arbitrary. It is also 

interesting to investigate polynomial time algorithms for 

the special case where the job processing times are equal 

and the batch delivery cost function is linear. Another 

interesting issue is to develop elective heuristics to solve 

the general problem, and it is evident that a viable 

strategy is to combine the list scheduling procedure for 

the classical parallel machine scheduling problems [15] 

with the optimal batching algorithm proposed in this 

paper. 
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