
International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3881

Implementation of Low-Cost High-Performance Montgomery

Modular Multiplication

1Medepalli Narasimha Rao, 2Keerti kumar korlapati

1Asistant professor, 2Associate professor,
1,2

1,

Dept. of ECE,

Kodada institute of Technology and Science for Wombn, Kodada, Telangana
 2. Vaageswari College of Engineering, karimnagar, Telangana.

Abstract: In this we are introducing a

simple and efficient Montgomery

multiplication algorithm such that the low-

cost and high-performance Montgomery

modular multiplier can be implemented

accordingly. The proposed multiplier

receives and outputs the data with binary

representation and uses only one-level

carry-save adder (CSA) to avoid the carry

propagation at each addition operation. To

overcome the weakness of the one level

CSA(more clock cycles), a configurable

CSA (CCSA), which could be one full-

adder or two serial half-adders, is proposed

to reduce the extra clock cycles for

operand pre computation and format

conversion by half. In addition, a

mechanism that can detect and skip the

unnecessary carry-save addition operations

in the one-level CCSA architecture while

maintaining the short critical path delay is

developed. As a result, the extra clock

cycles for operand pre computation and

format conversion can be hidden and high

throughput can be obtained. Experimental

results show that the proposed

Montgomery modular multiplier can

achieve higher performance and significant

area–time product improvement when

compared with previous designs.

Key words: Carry-save addition,

Montgomery modular multiplier, public-

key cryptosystem.

I.INTRODUCTION

In many public-key cryptosystems

[1]–[3], modular multiplication (MM) with

large integers is the most critical and time-

consuming operation. Therefore, numerous

algorithms and hardware implementation

have been presented to carry out the MM

more quickly, and Montgomery’s

algorithm is one of the most well-known

MM algorithms. Montgomery’s algorithm

[4] determines the quotient only depending

on the least significant digit of operands

and replaces the complicated division in

conventional MM with a series of shifting

modular additions As a result; it can be

easily implemented into VLSI circuits to

speed up the encryption/decryption

process. However, the three-operand

addition in the iteration loop of

Montgomery’s algorithm as shown in step

4 of Fig. 1 requires long carry propagation

for large operands in binary representation.

To solve this problem, several approaches

based on carry-save addition were

proposed to achieve a significant speedup

of Montgomery MM. Based on the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3882

representation of input and output

operands, these approaches can be roughly

divided into semi-carry-save (SCS)

strategy and full carry-save (FCS) strategy.

Fig. 1. MM algorithm.

 In the SCS strategy [5]–[8], the

input and output operands (i.e., A, B, N,

and S) of the Montgomery MM are

represented in binary, but intermediate

results of shifting modular additions are

kept in the carry-save format to avoid the

carry propagation. However, the format

conversion from the carry-save format of

the final modular product into its binary

representation is needed at the end of each

MM. This conversion can be accomplished

by an extra carry propagation adder (CPA)

[5] or reusing the carry-save adder (CSA)

architecture [8] iteratively. Contrary to the

SCS strategy, the FCS strategy [9], [10]

maintains the input and output operands A,

B, and S in the carry-save format, denoted

as (AS, AC), (BS, BC), and (SS, SC),

respectively, to avoid the format

conversion, leading to fewer clock cycles

for completing a MM. Nevertheless, this

strategy implies that the number of

operands will increase and that more CSAs

and registers for dealing with these

operands are required. Therefore, the FCS-

based Montgomery modular multipliers

possibly have higher hardware complexity

and longer critical path than the SCS-based

multipliers.

Accordingly, this paper aims at

enhancing the performance of CSA-based

Montgomery multiplier while maintaining

low hardware complexity. Instead of the

FCS-based multiplier with two-level CSA

architecture in [10], a new SCS-based

Montgomery MM algorithm and its

corresponding hardware architecture with

only one-level CSA are proposed in this

paper. The proposed algorithm and

hardware architecture have the following

several advantages and novel contributions

over previous designs. First, the one-level

CSA is utilized to perform not only the

addition operations in the iteration loop of

Montgomery’s algorithm but also B + N

and the format conversion, leading to a

very short critical path and lower hardware

cost. However, a lot of extra clock cycles

are required to carry out B + N and the

format conversion via the one-level CSA

architecture. Therefore, the benefit of short

critical path will be lessened. To overcome

the weakness, we then modify the one-

level CSA architecture to be able to

perform one three-input carry-save

addition or two serial two-input carry-save

additions, so that the extra clock cycles for

B + N and the format conversion can be

reduced by half. Finally, the condition and

detection circuit, which are different with

that of FCS-MMM42 multiplier in [10],

are developed to precompute quotients and

skip the unnecessary carry-save addition

operations in the one-level configurable

CSA (CCSA) architecture while keeping a

short critical path delay. Therefore, the

required clock cycles for completing one

MM operation can be significantly

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3883

reduced. As a result, the proposed

Montgomery multiplier can obtain higher

throughput and much smaller area-time

product (ATP) than previous Montgomery

multipliers.

II.LITERATURE SURVEY

A. Montgomery Multiplication

Fig. 1 shows the radix-2 version of

the Montgomery MM algorithm (denoted

as MM algorithm). As mentioned earlier,

the Montgomery modular product S of A

and B can be obtained as S = A × B × R−1

(mod N), where R−1 is the inverse of R

modulo N. That is, R × R−1 = 1 (mod N).

Note that, the notation Xi in Fig. 1 shows

the i th bit of X in binary representation. In

addition, the notation Xi: j indicates a

segment of X from the i th bit to j th bit.

Since the convergence range of S in MM

algorithm is 0 ≤ S < 2N, an additional

operation S = S − N is required to remove

the oversize residue if S ≥ N. To eliminate

the final comparison and subtraction in

step 6 of Fig. 1, Walter [22] changed the

number of iterations and the value of R to

k + 2 and 2k+2 mod N, respectively.

Nevertheless, the long carry propagation

for the very large operand addition still

restricts the performance of MM

algorithm.

In this section, we propose a new

SCS-based Montgomery MM algorithm to

reduce the critical path delay of

Montgomery multiplier. In addition, the

drawback of more clock cycles for

completing one multiplication is also

improved while maintaining the

advantages of short critical path delay and

low hardware complexity.

B. Critical Path Delay Reduction

The critical path delay of SCS-

based multiplier can be reduced by

combining the advantages of FCS-MM-2

and SCS-MM-2. That is, we can pre

compute D = B + N and reuse the one-

level CSA architecture to perform B+N

and the format conversion. Fig. 2(a) and

(b) shows the modified SCS-based

Montgomery multiplication (MSCS-MM)

algorithm and one possible hardware

architecture, respectively. The Zero_D

circuit in Fig. 2(b) is used to detect

whether SC is equal to zero, which can be

accomplished using one NOR operation.

The Q_L circuit decides the qi value

according to step 7 of Fig. 2(a). The carry

propagation addition operations of B + N

and the format conversion are performed

by the one-level CSA architecture of the

MSCS-MM multiplier through repeatedly

executing the carry-save addition (SS, SC)

= SS + SC + 0 until SC = 0. In addition,

we also pre compute Ai and qi in iteration

i−1 so that they can be used to

immediately select the desired input

operand from 0, N, B, and D through the

multiplexer M3 in iteration i . Therefore,

the critical path delay of the MSCS-MM

multiplier can be reduced into TMUX4 +

TFA. However, in addition to performing

the three-input carry-save additions [i.e.,

step 12 of Fig. 2(a)] k + 2 times, many

extra clock cycles are required to perform

B + N and the format conversion via the

one-level CSA architecture because they

must be performed once in every MM.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3884

(a)

(b)

Fig. 2. (a) Modified SCS-based

Montgomery multiplication algorithm. (b)

MSCS-MM multiplier.

 Furthermore, the extra

clock cycles for performing B+N and the

format conversion through repeatedly

executing the carry-save addition (SS, SC)

= SS+SC+0 are dependent on the longest

carry propagation chain in SS + SC. If SS

= 111…1112 and SC = 000…0012, the

one-level CSA architecture needs k clock

cycles to complete SS + SC.

That is, ∼3k clock cycles in the

worst case are required for completing one

MM. Thus, it is critical to reduce the

required clock cycles of the MSCS-MM

multiplier.

B. Clock Cycle Number Reduction

To decrease the clock cycle

number, a CCSA architecture which can

perform one three-input carry-save

addition or two serial two-input carry-save

additions is proposed to substitute for the

one-level CSA architecture in Fig. 2(b).

Fig. 3(a) shows two cells of the one-level

CSA architecture in Fig. 2(b), each cell is

one conventional FA which can perform

the three-input carry-save addition. Fig.

3(b) shows two cells of the proposed

configurable FA (CFA) circuit. If α = 1,

CFA is one FA and can perform one three-

input carry-save addition (denoted as

1F_CSA). Otherwise, it is two half-adders

(HAs) and can perform two serial two-

input carry-save additions (denoted as

2H_CSA), as shown in Fig. 3(c). In this

case, G1 of CFAj and G2 of CFAj+1 in Fig.

3(b) will act as HA1 j in Fig. 3(c), and G3,

G4, and G5 of CFAj in Fig. 3(b) will

behave as HA2j in Fig. 3(c).Moreover, we

modify the 4-to-1 multiplexer M3 in Fig.

2(b) into a simplified multiplier SM3 as

shown in Fig. 3(d) because one of its

inputs is zero, where ∼ denotes the

INVERT operation. Note that M3 has been

replaced by SM3 in the proposed one-level

CCSA architecture shown in Fig. 3(b).

According to the delay ratio, TSM3 (i.e.,

0.68 × TFA) is approximate to TMUX3 (i.e.,

0.63 × TFA) and TMUXI2 (i.e., 0.23 × TFA) is

smaller than TXOR2 (i.e., 0.34×TFA).

(a)

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3885

Fig. 3. (a) Conventional FA circuit. (b)

Proposed CFA circuit. (c) Two serial HAs.

(d) Simplified multiplexer SM3.

Therefore, the critical path delay of

the proposed one-level CCSA architecture

in Fig. 3(b) is approximate to that of the

one-level CSA architecture in Fig. 3(a). As

a result, steps 3 and 15 of Fig. 2(a) can be

replaced with (SS, SC) = 2H_CSA (SS,

SC) and (SS [k + 2], SC [k + 2]) =

2H_CSA (SS[k +2], SC[k +2]) to reduce

the required clock cycles by approximately

a factor of two while maintaining a short

critical path delay. In addition, we also

skip the unnecessary operations in the for

loop (steps 6 to 13) of Fig. 2(a) to further

decrease the clock cycles for completing

one Montgomery MM. The crucial

computation in the for loop of Fig. 2(a) is

performing the following three-to-two

carry-save addition:

III.PROPOSED SYSTEM

On the bases of critical path delay

reduction, clock cycle number reduction,

and quotient pre computation mentioned

above, a new SCS-based Montgomery

MM algorithm (i.e., SCS-MM-New

algorithm shown in Fig. 4) using one-level

CCSA architecture is proposed to

significantly reduce the required clock

cycles for completing one MM. As shown

in SCS-MM-New algorithm, steps 1–5 for

producing ˆB and ˆD are first performed.

Note that because qi+1 and qi+2 must be

generated in the i th iteration, the iterative

index i of Montgomery MM will start from

−1 instead of 0 and the corresponding

initial values of ˆ q and ˆA must be set to

0. Furthermore, the original for loop is

replaced with the while loop in SCS-MM-

New algorithm to skip some unnecessary

iterations when skipi+1 = 1. In addition,

the ending number of iterations in SCS-

MM-New algorithm is changed to k + 4

instead of k + 1 in Fig. 2(a). This is

because B is replaced with ˆB and thus

three extra iterations for computing

division by two are necessary to ensure the

correctness of Montgomery MM. In the

while loop, steps 8–12 will be performed

in the proposed one-level CCSA

architecture with one 4-to-1 multiplexer.

The computations of qi+1, qi+2, and

skipi+1 in step 13 and the selections of ˆA

, ˆ q, and i in steps 14–20 can be carried

out in parallel with steps 8–12. Note that

the right-shift operations of steps 12 and

15 will be delayed to next clock cycle to

reduce the critical path delay of

corresponding hardware architecture. The

hardware architecture of SCS-MM-New

algorithm, denoted as SCS-MM-New

multiplier, are shown in Fig. 5, which

consists of one one-level CCSA

architecture, two 4-to-1 multiplexers (i.e.,

M1 and M2), one simplified multiplier

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3886

SM3, one skip detector Skip_D, one zero

detector Zero_D, and six registers. Skip_D

is developed to generate skipi+1, ˆ q, and

ˆA in the i th iteration. Both M4 and M5 in

Fig. 5 are 3-bit 2-to-1 multiplexers and

they are much smaller than k-bit

multiplexers M1, M2, and SM3. In

addition, the area of Skip_D is negligible

when compared with that of the k-bit one-

level CCSA architecture. The select

signals of multiplexers M1 and M2 in Fig.

11 are generated by the control part, which

are not depicted for the sake of simplicity.

Fig. 4. SCS-MM-New algorithm.

 At the beginning of Montgomery

multiplication, the FFs stored skipi+1, ˆ q,

ˆA are first reset to 0 as shown in step 1 of

SCS-MM-New algorithm so that ˆD = ˆB +

ˆN can be computed via the one-level

CCSA architecture.

Fig.5. SCS-MM-New multiplier.

When performing the while loop,

the skip detector Skip_D shown in Fig. 6 is

used to produce skipi+1, ˆ q, and ˆA. The

Skip_D is composed of four XOR gates,

three AND neither gates, one NOR gate,

and two 2-to-1 multiplexers. It first

generates the qi+1, qi+2, and skipi+1 signal in

the i th iteration according to (5), (7), and

(8), respectively, and then selects the

correct ˆ q and ˆA according to skipi+1.

Fig. 6. Skip detector Skip_D.

At the end of the i th iteration, ˆ q,

ˆA, and skipi+1 must be stored to FFs. In

the next clock cycle of the i th iteration,

SM3 outputs a proper x according to ˆ q

and ˆA generated in the i th iteration as

shown in steps 8–11, and M1 and M2

output the correct SC and SS according to

skipi+1 generated in the i th iteration. If

skipi+1 = 0, SC >>1 and SS >>1 are

selected. Otherwise, SC >>2 and SS >>2

are selected. That is, the right-shift 1-bit

operations in steps 12 and 15 of SCS-MM-

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3887

New algorithm are performed together in

the next clock cycle of iteration i. In

addition, M4 and M5 also select and

output the correct SC[i]2:0 and SS[i]2:0

according to skipi+1 generated in the i th

iteration. Note that SC[i]2:0 and SS[i]2:0

can also be obtained from M1 and M2 but

a longer delay is required because they are

4-to-1 multiplexers. After the while loop in

steps 7–21 is completed, ˆ q and ˆA stored

in FFs are reset to 0. Then, the format

conversion in steps 23 and 24 can be

performed by the SCS-MM-New

multiplier similar to the computation of ˆD

= ˆB + ˆN in steps 3 and 4. Finally, SS [k

+5] in binary format is outputted when

SC[k + 5] is equal to 0.

IV.CONCLUSION

FCS-based multipliers maintain the

input and output operands of the

Montgomery MM in the carry-save format

to escape from the format conversion,

leading to fewer clock cycles but larger

area than SCS-based multiplier. To

enhance the performance of Montgomery

MM while maintaining the low hardware

complexity, this paper has modified the

SCS-based Montgomery multiplication

algorithm and proposed a low-cost and

high-performance Montgomery modular

multiplier. The proposed multiplier used

one-level CCSA architecture and skipped

the unnecessary carry-save addition

operations to largely reduce the critical

path delay and required clock cycles for

completing one MM operation.

Experimental results showed that the

proposed approaches are indeed capable of

enhancing the performance of radix-2

CSA-based Montgomery multiplier while

maintaining low hardware complexity.

V.REFERENCES

[1] R. L. Rivest, A. Shamir, and L.

Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,”

Commun. ACM, vol. 21, no. 2, pp. 120–

126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic curves in

cryptography,” in Advances in

Cryptology. Berlin, Germany: Springer-

Verlag, 1986, pp. 417–426.

[3] N. Koblitz, “Elliptic curve

cryptosystems,” Math. Comput., vol. 48,

no. 177, pp. 203–209, 1987.

[4] P. L. Montgomery, “Modular

multiplication without trial division,”

Math. Comput., vol. 44, no. 170, pp. 519–

521, Apr. 1985.

[5] Y. S. Kim, W. S. Kang, and J. R. Choi,

“Asynchronous implementation of 1024-

bit modular processor for RSA

cryptosystem,” in Proc. 2nd IEEE Asia-

Pacific Conf. ASIC, Aug. 2000, pp. 187–

190.

[6] V. Bunimov, M. Schimmler, and B.

Tolg, “A complexity-effective version of

Montgomery’s algorihm,” in Proc.

Workshop Complex. Effective Designs,

May 2002.

[7] H. Zhengbing, R. M. Al Shboul, and V.

P. Shirochin, “An efficient architecture of

1024-bits cryptoprocessor for RSA

cryptosystem based on modified

Montgomery’s algorithm,” in Proc. 4th

IEEE Int. Workshop Intell. Data

Acquisition Adv. Comput. Syst., Sep.

2007, pp. 643–646.

[8] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W.

Zhang, “An efficient CSA architecture for

Montgomery modular multiplication,”

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue 01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3888

Microprocessors Microsyst., vol. 31, no. 7,

pp. 456–459, Nov. 2007.

[9] C. McIvor, M. McLoone, and J. V.

McCanny, “Modified Montgomery

modular multiplication and RSA

exponentiation techniques,” IEE Proc.-

Comput. Digit. Techn., vol. 151, no. 6, pp.

402–408, Nov. 2004.

[10] S.-R. Kuang, J.-P. Wang, K.-C.

Chang, and H.-W. Hsu, “Energy-efficient

high-throughput Montgomery modular

multipliers for RSA cryptosystems,” IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 21, no. 11, pp. 1999–2009, Nov.

2013.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

