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Abstract: In this we are introducing a 

simple and efficient Montgomery 

multiplication algorithm such that the low-

cost and high-performance Montgomery 

modular multiplier can be implemented 

accordingly. The proposed multiplier 

receives and outputs the data with binary 

representation and uses only one-level 

carry-save adder (CSA) to avoid the carry 

propagation at each addition operation. To 

overcome the weakness of the one level 

CSA(more clock cycles), a configurable 

CSA (CCSA), which could be one full-

adder or two serial half-adders, is proposed 

to reduce the extra clock cycles for 

operand pre computation and format 

conversion by half. In addition, a 

mechanism that can detect and skip the 

unnecessary carry-save addition operations 

in the one-level CCSA architecture while 

maintaining the short critical path delay is 

developed. As a result, the extra clock 

cycles for operand pre computation and 

format conversion can be hidden and high 

throughput can be obtained. Experimental 

results show that the proposed 

Montgomery modular multiplier can 

achieve higher performance and significant 

area–time product improvement when 

compared with previous designs. 

Key words: Carry-save addition, 

Montgomery modular multiplier, public-
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I.INTRODUCTION 

In many public-key cryptosystems 

[1]–[3], modular multiplication (MM) with 

large integers is the most critical and time-

consuming operation. Therefore, numerous 

algorithms and hardware implementation 

have been presented to carry out the MM 

more quickly, and Montgomery’s 

algorithm is one of the most well-known 

MM algorithms. Montgomery’s algorithm 

[4] determines the quotient only depending 

on the least significant digit of operands 

and replaces the complicated division in 

conventional MM with a series of shifting 

modular additions As a result; it can be 

easily implemented into VLSI circuits to 

speed up the encryption/decryption 

process. However, the three-operand 

addition in the iteration loop of 

Montgomery’s algorithm as shown in step 

4 of Fig. 1 requires long carry propagation 

for large operands in binary representation. 

To solve this problem, several approaches 

based on carry-save addition were 

proposed to achieve a significant speedup 

of Montgomery MM. Based on the 
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representation of input and output 

operands, these approaches can be roughly 

divided into semi-carry-save (SCS) 

strategy and full carry-save (FCS) strategy. 

 

Fig. 1. MM algorithm. 

 In the SCS strategy [5]–[8], the 

input and output operands (i.e., A, B, N, 

and S) of the Montgomery MM are 

represented in binary, but intermediate 

results of shifting modular additions are 

kept in the carry-save format to avoid the 

carry propagation. However, the format 

conversion from the carry-save format of 

the final modular product into its binary 

representation is needed at the end of each 

MM. This conversion can be accomplished 

by an extra carry propagation adder (CPA) 

[5] or reusing the carry-save adder (CSA) 

architecture [8] iteratively. Contrary to the 

SCS strategy, the FCS strategy [9], [10] 

maintains the input and output operands A, 

B, and S in the carry-save format, denoted 

as (AS, AC), (BS, BC), and (SS, SC), 

respectively, to avoid the format 

conversion, leading to fewer clock cycles 

for completing a MM. Nevertheless, this 

strategy implies that the number of 

operands will increase and that more CSAs 

and registers for dealing with these 

operands are required. Therefore, the FCS-

based Montgomery modular multipliers 

possibly have higher hardware complexity 

and longer critical path than the SCS-based 

multipliers. 

Accordingly, this paper aims at 

enhancing the performance of CSA-based 

Montgomery multiplier while maintaining 

low hardware complexity. Instead of the 

FCS-based multiplier with two-level CSA 

architecture in [10], a new SCS-based 

Montgomery MM algorithm and its 

corresponding hardware architecture with 

only one-level CSA are proposed in this 

paper. The proposed algorithm and 

hardware architecture have the following 

several advantages and novel contributions 

over previous designs. First, the one-level 

CSA is utilized to perform not only the 

addition operations in the iteration loop of 

Montgomery’s algorithm but also B + N 

and the format conversion, leading to a 

very short critical path and lower hardware 

cost. However, a lot of extra clock cycles 

are required to carry out B + N and the 

format conversion via the one-level CSA 

architecture. Therefore, the benefit of short 

critical path will be lessened. To overcome 

the weakness, we then modify the one-

level CSA architecture to be able to 

perform one three-input carry-save 

addition or two serial two-input carry-save 

additions, so that the extra clock cycles for 

B + N and the format conversion can be 

reduced by half. Finally, the condition and 

detection circuit, which are different with 

that of FCS-MMM42 multiplier in [10], 

are developed to precompute quotients and 

skip the unnecessary carry-save addition 

operations in the one-level configurable 

CSA (CCSA) architecture while keeping a 

short critical path delay. Therefore, the 

required clock cycles for completing one 

MM operation can be significantly 
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reduced. As a result, the proposed 

Montgomery multiplier can obtain higher 

throughput and much smaller area-time 

product (ATP) than previous Montgomery 

multipliers. 

 

II.LITERATURE SURVEY 

A. Montgomery Multiplication  

Fig. 1 shows the radix-2 version of 

the Montgomery MM algorithm (denoted 

as MM algorithm). As mentioned earlier, 

the Montgomery modular product S of A 

and B can be obtained as S = A × B × R−1 

(mod N), where R−1 is the inverse of R 

modulo N. That is, R × R−1 = 1 (mod N). 

Note that, the notation Xi in Fig. 1 shows 

the i th bit of X in binary representation. In 

addition, the notation Xi: j indicates a 

segment of X from the i th bit to j th bit. 

Since the convergence range of S in MM 

algorithm is 0 ≤ S < 2N, an additional 

operation S = S − N is required to remove 

the oversize residue if S ≥ N. To eliminate 

the final comparison and subtraction in 

step 6 of Fig. 1, Walter [22] changed the 

number of iterations and the value of R to 

k + 2 and 2k+2 mod N, respectively. 

Nevertheless, the long carry propagation 

for the very large operand addition still 

restricts the performance of MM 

algorithm. 

In this section, we propose a new 

SCS-based Montgomery MM algorithm to 

reduce the critical path delay of 

Montgomery multiplier. In addition, the 

drawback of more clock cycles for 

completing one multiplication is also 

improved while maintaining the 

advantages of short critical path delay and 

low hardware complexity. 

 

B. Critical Path Delay Reduction  

The critical path delay of SCS-

based multiplier can be reduced by 

combining the advantages of FCS-MM-2 

and SCS-MM-2. That is, we can pre 

compute D = B + N and reuse the one-

level CSA architecture to perform B+N 

and the format conversion. Fig. 2(a) and 

(b) shows the modified SCS-based 

Montgomery multiplication (MSCS-MM) 

algorithm and one possible hardware 

architecture, respectively. The Zero_D 

circuit in Fig. 2(b) is used to detect 

whether SC is equal to zero, which can be 

accomplished using one NOR operation. 

The Q_L circuit decides the qi value 

according to step 7 of Fig. 2(a). The carry 

propagation addition operations of B + N 

and the format conversion are performed 

by the one-level CSA architecture of the 

MSCS-MM multiplier through repeatedly 

executing the carry-save addition (SS, SC) 

= SS + SC + 0 until SC = 0. In addition, 

we also pre compute Ai and qi in iteration 

i−1 so that they can be used to 

immediately select the desired input 

operand from 0, N, B, and D through the 

multiplexer M3 in iteration i . Therefore, 

the critical path delay of the MSCS-MM 

multiplier can be reduced into TMUX4 + 

TFA. However, in addition to performing 

the three-input carry-save additions [i.e., 

step 12 of Fig. 2(a)] k + 2 times, many 

extra clock cycles are required to perform 

B + N and the format conversion via the 

one-level CSA architecture because they 

must be performed once in every MM.  
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(a) 

 
(b) 

Fig. 2. (a) Modified SCS-based 

Montgomery multiplication algorithm. (b) 

MSCS-MM multiplier. 

 

 Furthermore, the extra 

clock cycles for performing B+N and the 

format conversion through repeatedly 

executing the carry-save addition (SS, SC) 

= SS+SC+0 are dependent on the longest 

carry propagation chain in SS + SC. If SS 

= 111…1112 and SC = 000…0012, the 

one-level CSA architecture needs k clock 

cycles to complete SS + SC. 

That is, ∼3k clock cycles in the 

worst case are required for completing one 

MM. Thus, it is critical to reduce the 

required clock cycles of the MSCS-MM 

multiplier. 

B. Clock Cycle Number Reduction  

To decrease the clock cycle 

number, a CCSA architecture which can 

perform one three-input carry-save 

addition or two serial two-input carry-save 

additions is proposed to substitute for the 

one-level CSA architecture in Fig. 2(b). 

Fig. 3(a) shows two cells of the one-level 

CSA architecture in Fig. 2(b), each cell is 

one conventional FA which can perform 

the three-input carry-save addition. Fig. 

3(b) shows two cells of the proposed 

configurable FA (CFA) circuit. If α = 1, 

CFA is one FA and can perform one three-

input carry-save addition (denoted as 

1F_CSA). Otherwise, it is two half-adders 

(HAs) and can perform two serial two-

input carry-save additions (denoted as 

2H_CSA), as shown in Fig. 3(c). In this 

case, G1 of CFAj and G2 of CFAj+1 in Fig. 

3(b) will act as HA1 j in Fig. 3(c), and G3, 

G4, and G5 of CFAj in Fig. 3(b) will 

behave as HA2j in Fig. 3(c).Moreover, we 

modify the 4-to-1 multiplexer M3 in Fig. 

2(b) into a simplified multiplier SM3 as 

shown in Fig. 3(d) because one of its 

inputs is zero, where ∼ denotes the 

INVERT operation. Note that M3 has been 

replaced by SM3 in the proposed one-level 

CCSA architecture shown in Fig. 3(b). 

According to the delay ratio, TSM3 (i.e., 

0.68 × TFA) is approximate to TMUX3 (i.e., 

0.63 × TFA) and TMUXI2 (i.e., 0.23 × TFA) is 

smaller than TXOR2 (i.e., 0.34×TFA).  

 

(a) 
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Fig. 3. (a) Conventional FA circuit. (b) 

Proposed CFA circuit. (c) Two serial HAs. 

(d) Simplified multiplexer SM3. 

Therefore, the critical path delay of 

the proposed one-level CCSA architecture 

in Fig. 3(b) is approximate to that of the 

one-level CSA architecture in Fig. 3(a). As 

a result, steps 3 and 15 of Fig. 2(a) can be 

replaced with (SS, SC) = 2H_CSA (SS, 

SC) and (SS [k + 2], SC [k + 2]) = 

2H_CSA (SS[k +2], SC[k +2]) to reduce 

the required clock cycles by approximately 

a factor of two while maintaining a short 

critical path delay. In addition, we also 

skip the unnecessary operations in the for 

loop (steps 6 to 13) of Fig. 2(a) to further 

decrease the clock cycles for completing 

one Montgomery MM. The crucial 

computation in the for loop of Fig. 2(a) is 

performing the following three-to-two 

carry-save addition: 

 

III.PROPOSED SYSTEM 

On the bases of critical path delay 

reduction, clock cycle number reduction, 

and quotient pre computation mentioned 

above, a new SCS-based Montgomery 

MM algorithm (i.e., SCS-MM-New 

algorithm shown in Fig. 4) using one-level 

CCSA architecture is proposed to 

significantly reduce the required clock 

cycles for completing one MM. As shown 

in SCS-MM-New algorithm, steps 1–5 for 

producing ˆB and ˆD are first performed. 

Note that because qi+1 and qi+2 must be 

generated in the i th iteration, the iterative 

index i of Montgomery MM will start from 

−1 instead of 0 and the corresponding 

initial values of ˆ q and ˆA must be set to 

0. Furthermore, the original for loop is 

replaced with the while loop in SCS-MM-

New algorithm to skip some unnecessary 

iterations when skipi+1 = 1. In addition, 

the ending number of iterations in SCS-

MM-New algorithm is changed to k + 4 

instead of k + 1 in Fig. 2(a). This is 

because B is replaced with ˆB and thus 

three extra iterations for computing 

division by two are necessary to ensure the 

correctness of Montgomery MM. In the 

while loop, steps 8–12 will be performed 

in the proposed one-level CCSA 

architecture with one 4-to-1 multiplexer. 

The computations of qi+1, qi+2, and 

skipi+1 in step 13 and the selections of ˆA 

, ˆ q, and i in steps 14–20 can be carried 

out in parallel with steps 8–12. Note that 

the right-shift operations of steps 12 and 

15 will be delayed to next clock cycle to 

reduce the critical path delay of 

corresponding hardware architecture. The 

hardware architecture of SCS-MM-New 

algorithm, denoted as SCS-MM-New 

multiplier, are shown in Fig. 5, which 

consists of one one-level CCSA 

architecture, two 4-to-1 multiplexers (i.e., 

M1 and M2), one simplified multiplier 
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SM3, one skip detector Skip_D, one zero 

detector Zero_D, and six registers. Skip_D 

is developed to generate skipi+1, ˆ q, and 

ˆA in the i th iteration. Both M4 and M5 in 

Fig. 5 are 3-bit 2-to-1 multiplexers and 

they are much smaller than k-bit 

multiplexers M1, M2, and SM3. In 

addition, the area of Skip_D is negligible 

when compared with that of the k-bit one-

level CCSA architecture. The select 

signals of multiplexers M1 and M2 in Fig. 

11 are generated by the control part, which 

are not depicted for the sake of simplicity. 

 
 

Fig. 4. SCS-MM-New algorithm. 

 At the beginning of Montgomery 

multiplication, the FFs stored skipi+1, ˆ q, 

ˆA are first reset to 0 as shown in step 1 of 

SCS-MM-New algorithm so that ˆD = ˆB + 

ˆN can be computed via the one-level 

CCSA architecture. 

 
Fig.5. SCS-MM-New multiplier. 

 

When performing the while loop, 

the skip detector Skip_D shown in Fig. 6 is 

used to produce skipi+1, ˆ q, and ˆA. The 

Skip_D is composed of four XOR gates, 

three AND neither gates, one NOR gate, 

and two 2-to-1 multiplexers. It first 

generates the qi+1, qi+2, and skipi+1 signal in 

the i th iteration according to (5), (7), and 

(8), respectively, and then selects the 

correct ˆ q and ˆA according to skipi+1. 

 

 
Fig. 6. Skip detector Skip_D. 

At the end of the i th iteration, ˆ q, 

ˆA, and skipi+1 must be stored to FFs. In 

the next clock cycle of the i th iteration, 

SM3 outputs a proper x according to ˆ q 

and ˆA generated in the i th iteration as 

shown in steps 8–11, and M1 and M2 

output the correct SC and SS according to 

skipi+1 generated in the i th iteration. If 

skipi+1 = 0, SC >>1 and SS >>1 are 

selected. Otherwise, SC >>2 and SS >>2 

are selected. That is, the right-shift 1-bit 

operations in steps 12 and 15 of SCS-MM-

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05  Issue 01 
January 2018 

   

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 3887   
 

New algorithm are performed together in 

the next clock cycle of iteration i. In 

addition, M4 and M5 also select and 

output the correct SC[i ]2:0 and SS[i ]2:0 

according to skipi+1 generated in the i th 

iteration. Note that SC[i ]2:0 and SS[i ]2:0 

can also be obtained from M1 and M2 but 

a longer delay is required because they are 

4-to-1 multiplexers. After the while loop in 

steps 7–21 is completed, ˆ q and ˆA stored 

in FFs are reset to 0. Then, the format 

conversion in steps 23 and 24 can be 

performed by the SCS-MM-New 

multiplier similar to the computation of ˆD 

= ˆB + ˆN in steps 3 and 4. Finally, SS [k 

+5] in binary format is outputted when 

SC[k + 5] is equal to 0. 

 

IV.CONCLUSION 

 

FCS-based multipliers maintain the 

input and output operands of the 

Montgomery MM in the carry-save format 

to escape from the format conversion, 

leading to fewer clock cycles but larger 

area than SCS-based multiplier. To 

enhance the performance of Montgomery 

MM while maintaining the low hardware 

complexity, this paper has modified the 

SCS-based Montgomery multiplication 

algorithm and proposed a low-cost and 

high-performance Montgomery modular 

multiplier. The proposed multiplier used 

one-level CCSA architecture and skipped 

the unnecessary carry-save addition 

operations to largely reduce the critical 

path delay and required clock cycles for 

completing one MM operation. 

Experimental results showed that the 

proposed approaches are indeed capable of 

enhancing the performance of radix-2 

CSA-based Montgomery multiplier while 

maintaining low hardware complexity. 
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