

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

 https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 785

Optimizing File Transfer Mechanism in Distributed

computing by weighted object Subsystems

Madhav Ganpat Raut
1
& Pradeep B.Dahikar

2
,

1
Department of Electronics Hislop College, Nagpur

2
 Head of, Department of Electronics. Kamla Nehru Mahavidalaya,Nagpur

mahavraut63@gmail.com,pbdahikarans@reddifmail.com

Abstract:

In this paper, we introduce a high-performance file

transfer mechanism that is optimized for the high-

bandwidth, high-delay networks currently being

developed and implemented for computational

Distributed. We discuss the file transfer mechanism,

the underlying communication protocol upon which it

is based, and our plans for more generalized file

transfer services. Also, we provide preliminary

performance results demonstrating that our approach

is able to achieve excellent performance in a

computational Distributed environment.

Keywords:- Globs, FTP, Design of LOBS, It is layered

on top of a lower-level data movement protocol

(FOBS)

1. Introduction

A significant amount of current research is aimed at the

development, implementation, and testing of the

cutting-edge networking infrastructure of the future

(e.g. the Internet2 initiative [18] and the Illinois WIRE

initiative [19]). An integral aspect of such research

efforts is the development and testing of the high-

performance distributed applications that, due to the

limited bandwidth and best-effort nature of the

Internet1 environment, were heretofore infeasible.

Examples of such applications include distributed

collaboration, remote visualization, distributed

supercomputing, Internet telephony, and advanced

multimedia environments. Such high-bandwidth, high-

delay networks, capable of delivering data at speeds up

to 40 Gigabits per second, are quickly becoming a

significant component of the national computational

infrastructure.

 At the heart of any such computational

Distributed environment (i.e. geographically

distributed computational resources connected by very

high-speed networks) is the ability to transfer very

large amounts of data in a very efficient manner. All of

the developing and envisioned advanced distributed

applications are predicated upon this fundamental

ability. However, it has been well established that in

practice the actual bandwidth achieved by distributed

applications executing in a Distributed environment

(e.g. the Internet2 infrastructure) represents only a very

small fraction of the available bandwidth [4,5,6]. The

problem is that TCP, the data transfer mechanism of

choice for Distributed-based computations, has been

shown to perform very poorly in a high-bandwidth,

high-delay network environment [4,5,6,13,14,15].

Given the performance problems inherent within the

TCP protocol, there is a significant amount of current

research aimed at developing more effective techniques

for delivering data across high-performance

computational Distributed.

In this paper, we describe LOBS (Lightweight

Object-Based file transfer System), a mechanism to

transfer large files between computational resources in

a computational Distributed. This mechanism is

lightweight in the sense that it does not attempt to

support all of the functionality of, for example, the

DistributedFTP [1] protocol developed for the Globus

meta-computing environment [16]. It supports the

primary functionality required for computational

Distributed (e.g. fast, robust file transfers), but is not

built upon and does not require the complete

infrastructure of a meta-computing environment. It is

object-based in the sense that none of the data being

transferred is considered correct until all of the data

has been delivered. Thus the order in which the data is

delivered does not matter (in contrast to stream-based

mechanisms such as TCP where the data must be

delivered in exactly the same order in which it was

sent), allowing the data transfer mechanism to be

optimized for performance.

https://edupediapublications.org/journals/index.php/IJR/issue/archive
mailto:mahavraut63@gmail.com

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

 https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 786

The rest of this paper is organized as follows.

In Section 2, we discuss the work most closely related

to our own. In Section 3, we provide an overview of

LOBS and the data transfer mechanism upon which it

is based. In Section 4, we provide preliminary

performance results taken between two sites connected

by the Abilene backbone network. In Section 5, we

discuss the functionality of the high-level graphical

user interface being developed as part of this project,

and we provide our conclusions in Section 6.

1 Related Work

There has been a significant amount of work related to

achieving the full bandwidth available in a high-

performance high-delay network environment. There

are two approaches currently being pursued: One

approach is to modify the TCP protocol itself to

overcome its performance problems within this

network environment. The other approach is to develop

user-level mechanisms that can circumvent the

performance problems inherent within the protocol.

We briefly discuss each of these approaches in turn.

As discussed in [13,14,15], the size of the

TCP window is the single most important factor in

achieving good performance over high-bandwidth,

high-delay networks. To keep such “fat” pipes full, the

TCP window size should be at least as large as the

product of the bandwidth and the round-trip delay. This

has led to research in automatically tuning the size of

the TCP socket buffers at runtime [15]. Also, it has led

to the development of commercial TCP

implementations that allow the system administrator to

significantly increase the size of the TCP window to

achieve better performance [13]. Another area of active

research is the use of a Selective Acknowledgement

mechanism [9,17] rather than the standard cumulative

acknowledgement scheme. In this approach, the

receiving TCP sends to the sending TCP a Selective

Acknowledgement (SACK) packet that specifies

exactly those packets that have been received, allowing

the sender to retransmit only those segments that are

missing. Additionally, “fast retransmit” and “fast

recovery” algorithms have been developed that allow a

TCP sender to retransmit a packet before the

retransmission timer expires, and allows the TCP

sender to increase the size of its congestion control

window, when three duplicate acknowledgement

packets are received (without intervening

acknowledgements) [9,17]. An excellent source of

information, detailing which commercial and

experimental versions of TCP support which particular

TCP extensions, may be found in [13].

The second general approach is to attempt to

overcome the performance problems of TCP at the user

level. The DistributedFTP protocol [1] developed by

Globus [16] allocates multiple TCP streams per file

transfer (and per host if it is being transferred to/from a

parallel file system). Allocating multiple TCP streams

per data flow provides significant performance benefits

for two reasons: First, it creates an aggregate TCP

buffer size that is closer to the ideal size of the product

of the bandwidth and delay of the network. Secondly, it

essentially circumvents the congestion control

mechanisms implemented in the TCP protocol. That is,

as the number of TCP streams increases the probability

that all such streams are blocked due to congestion

control mechanisms decreases. Thus it is likely that at

any given time there is at least one TCP stream that is

ready to fire.

Our approach differs in that we use a single

UDP stream as the basic underlying transport

mechanism. We chose this approach for three reasons:

https://edupediapublications.org/journals/index.php/IJR/issue/archive

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

 https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 787

First, the buffers are allocated at the user level rather

than at the kernel level. Secondly, it avoids

multiplexing multiple TCP streams at the kernel level.

Thirdly, it provides opportunities for user-level

enhancements that are not possible with kernel-level

algorithms such as TCP (without kernel-level

permissions). However, it is also very important to

note that the Globus DistributedFTP protocol has

functionality greater than that supported by LOBS. In

particular, the DistributedFTP protocol also supports

the creation and manipulation of replicas of large

datasets and mechanisms for maintaining a catalog of

such dataset replicas. These are of course very

important issues, but are viewed as outside of the

domain of this work that is focused only on the fast and

reliable transfer of very large files.

Other data transfer mechanisms similarly employ a

single user-level UDP stream. The two most

closely related to our own are RUDP [7] and

SABUL [12]. The primary difference between our

approach and SABLE is how packet loss is

interpreted and how such loss impacts the behavior

of the protocol. In particular, SABLE assumes

packet loss indicates congestion, and it reduces the

sending rate based on this perceived congestion.

Our approach assumes some packet loss is

inevitable in wide area transfers, and that such loss

does not necessarily indicate congestion and does

not necessarily require a reduction in the sending

rate. The primary difference between LOBS and

RUDP has to do with the types of networks for

which the protocol is designed. In particular,

RUDP is designed for very reliable networks with

QoS guarantees [7]. Our approach has been shown

to achieve excellent performance on non QoS-

enabled networks with minimal additional network

load (that is, minimal wasted network resources)

[2,3]. This discussion will be expanded in the final

paper.

3 LOBS

The file transfer mechanism is built directly on top

of FOBS: A Fast Object-Based data transfer System.

FOBS is described in detail elsewhere [2,3], and here

we only touch upon its basic features. As noted above,

FOBS is an object-based data transfer system. By

object-based, we mean that none of the data transferred

can be assumed correct until all of the data has been

received. This is in contrast to stream-based protocols

such as TCP where each byte of data must be delivered

to the application in exactly the same order in which it

was sent. Streams are kernel-level constructs and are

implemented at the kernel level. Objects on the other

hand are user-level constructs and are implemented at

the user level. This allows knowledge of the

characteristics of the data transfer itself to be leveraged

to significantly enhance performance.

The fundamental characteristic of an object-

based data transfer that is leveraged by FOBS is the

assumption that the user-level data buffer spans the

entire object to be transferred. For the moment, assume

that this is correct and consider how it can be leveraged

to enhance performance. In particular, this

characteristic allows FOBS to push to the limit the

basic concept of the “Large Window” extensions

developed for TCP: that is, the window size is

essentially infinite since it spans the entire data buffer

(albeit at the user level). It also pushes to the limit the

idea of selective acknowledgements. Given a pre-

allocated receive buffer and constant packet sizes, each

data packet in the entire buffer can be numbered. The

data receiver can then maintain a very simple data

structure with one byte (or even one bit) allocated per

data packet, where this data structure tracks the

received/not received status of every packet to be

received. This information can then be sent to the data

sending process at a user-defined acknowledgement

frequency. Thus the selective acknowledgement

window is also in a sense infinite. That is, the data

sender is provided with enough information to

determine exactly those packets, across the entire data

transfer, that have not yet been received (or at least not

received at the time the acknowledgement packet was

created and sent). As discussed in [2,3], these features

of the data transfer mechanism result in excellent

performance in a high-bandwidth, high-delay network

environment, obtaining most of the available

bandwidth with minimal wasted network resources.

 However, the assumption that the entire

object can be maintained in a user-level buffer

clearly does not apply to the transfer of terabyte

or larger files. Thus the file transfer mechanism

is layered on top of FOBS, supplying it with

(user-defined) “chunks” of data that can be

buffered at the user level. The underlying data

transfer mechanism then works under the

assumption that each individual buffer is

complete object, and applies the basic object-

based data transfer mechanism for each such

chunk.

https://edupediapublications.org/journals/index.php/IJR/issue/archive

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

 https://edupediapublications.org/journals/index.php/IJR/issue/archive

P a g e | 788

 Figure 1 provides an overview of the

design of LOBS and how it interacts with the

underlying data transfer mechanism. First,

consider the data sender. LOBS allocates some

number of threads, each of which controls its

own data buffer, to read the file from the disk

into the user data area. Once a buffer is filled, it

is passed to FOBS to transfer over the network.

The basic idea is that while this network data

transfer is progressing, the other threads are

concurrently reading data off of the disk into

their local buffers. The goal is to overlap the

network I/O operation with the disk I/O

operation to the largest extent possible.

This basic algorithm is reversed in the

case of the data receiver. In this case, FOBS

reads the data off of the network into a local

buffer. Once a buffer is filled completely (i.e. the

entire object, from the point of view of FOBS,

has been successfully transferred), a writer

thread wakes up and transfers the data from the

buffer to the file. As this write to disk is

progressing, the data transfer mechanism begins

a new object transfer into one of the other local

buffers. The “optimal” number of threads and

buffers to be employed is an open issue currently

under consideration. It is also important to note

that since the underlying data transfer

mechanism is robust, the overall file transfer

mechanism is also robust. If the application

crashes, the maximum amount of lost data is the

sum of the data written into the buffers not yet

flushed to disk, and the data in the network at the

time of the crash. Very little additional

information has to be maintained to determine

the correct state of the file transfer once the

system is restarted.

Figure 1. This figure shows the basic approach to transfer files using LOBS. As can be seen, LOBS is actually a very thin front to

the FOBS data transfer mechanism.

4.Preliminary Performance Results

We tested our approach on two

endpoints connected by the Abilene backbone

network. Abilene is the high-delay, high-

bandwidth network associated with the Internet2

initiative. One endpoint was an SGI Origin2000

located at the National Center for

Supercomputing Applications (NCSA) at the

University of Illinois at Urbana-Champaign. The

other endpoint was an Intel Pentium3 Windows

2000 box located at the Laboratory for

Computational Science and Engineering (LCSE)

T1

T2

T3

Disk
 FOBS

1.1.1.
FOBS

Dis

k

T1

T2

T3 High-Performance

Network

 LOBS LOBS

https://edupediapublications.org/journals/index.php/IJR/issue/archive

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

 https://edupediapublications.org/journals/index.php/IJR/issue/archive

P a g e | 789

at the University of Minnesota. Both endpoints

were equipped with a Gigabit Ethernet

connection over an OC-12 data link. We

transferred an 80 Megabyte file between these
two endpoints, experimenting with

different UDP packet sizes. The results are

shown in Figure 2. The reported bandwidth

measurements include the time required to

read the file off of the disk transfer the file over

the network, and write the file back to disk at the

receiving end. Both endpoints had very high-

performance file systems making the time

required to read/write the file from/to the disk

a negligible component of the overall data transfer time.

For this reason, it was not necessary to use threads to

perform the I/O operations in the background (and by

extension it was not necessary to allocate more than one

data buffer).

Figure 2. This figure shows the bandwidth achieved by

LOBS between two sites connected by the Abilene

backbone network. Performance is shown as a function

of the UDP packet size.

As can be seen, LOBS was able to achieve a data

transfer rate on the order of 35 Megabytes per second

(280 Megabits per second). It is interesting to note that

the size of the UDP data packet had a tremendous

impact on the performance of the protocol. It would be

interesting to measure performance using even larger

buffer sizes, but 32K is the largest size supported by

IRIX 6.5

We are in the process of testing the

performance of LOBS over other high-performance,

high-delay network connections, and the results of such

testing should be available in time for the full paper.

5. Additional Support for Distributed-based

Computing

High-performance Distributed-based applications often

require higher levels of functionality than that supplied

by a simple file transfer mechanism such as LOBS. To

address Conclusions

In this paper, we have introduced a new file transfer

mechanism designed to support high-performance

applications executing in a Distributed-based

environment. We have discussed the design of LOBS,

and shown how it is layered on top of a lower-level data

movement protocol (FOBS). We have shown that it is

able to achieve data transfer rates of 35 Megabytes per

second on one set of endpoints connected by the

Abilene backbone network. We have also discussed our

current efforts aimed at providing a significantly higher

level of file transfer services for Distributed-based

environments. In the full paper, we will expand the

discussion of related work, will provide additional data

on the performance of the mechanism, and provide a

more detailed discussion of the graphical user interface

and the concept of file container objects.

References

[1] Allcock, B. Bester, Bresnahan, J.,

Chervenak, A., Foster, I., Kesselman, C.

Meder, S., Nefedova, V., Quesnet, D., and S.

Tuecke. Secure, Efficient Data Transport and

Replica Management for High-Performance

Data-Intensive Computing. Preprint

ANL/MCS-P871-0201, Feb. 2001.

[2] Dickens, P., and B. Gropp. An

Evaluation of Object-Based Data Transfers

Over High Performance Networks. Submitted

to the 11
th

 High Performance Distributed

Computing Conference.

[3] Dickens, P., Gropp, B., and P.

Woodward. High Performance Wide Area

Data Transfers Over High Performance

Networks.To Appear: The 2002 International

0

10

20

30

40

1K 2K 4K 8K 16K 32K

Packet Size in Bytes

B
a
n

d
w

id
th

 (
M

B
/S

e
c
)

 LOBS

https://edupediapublications.org/journals/index.php/IJR/issue/archive

International Journal of Research
eISSN: 2348-6848 & pISSN: 2348-795X Vol-5 Special Issue-13

International Conference on Innovation and Research in
Engineering, Science & Technology

Held on 23
rd

& 24
th
 February 2018, Organized by Tulsiramji Gaikwad

Patil College of Engineering & Technology, Nagpur,
441108, Maharastra, India.

Papers presented in ICIREST-2018Conference can be accessed from

 https://edupediapublications.org/journals/index.php/IJR/issue/archive P a g e | 790

Workshop on Performance Modeling,

Evaluation, and Optimization of Parallel and

Distributed Systems.

[4] Hobby, R. Internet2 End-to-End

Performance Initiative (or Pat Pipes Are Not

Enough). URL: http//www.internet2.org.

[5] Irwin, B. and M. Mathis. Web100:

Facilitating High-Performance Network Use.

White Paper for the Internet2 End-to-End

Performance Initiative.

URL:http://www.internet2.edu/e2epi/web02/p

_web100.shtml

[6] Jacobson, V., Braden, R., and D.

Borman. TCP Extensions for high

performance. RFC 1323, May 1992.

[7] Leigh, J. et al. Adaptive Networking for

Tele-Immersion. In: Proceedings of the

ImmersiveProjectionTechnology/Eurographics

Virtual Environments Workshop (IPT/EGVE),

Stuttgart, Germany, 05/16/01-05/18/01.

[8] MacDonald and W. Barkley. Microsoft

Windows 2000 TCP/IP Implementation

Details. White Paper, May 2000.

[9] Mathis, M., Mahdavi, J., Floyd, S. and

A. Romanow. TCP Selective

Acknowledgement Options. RFC 2018

[10] Ostermann, S., Allman, M., and H.

Kruse. An Application-Level solution to

TCP’s Satellite Inefficiencies. Workshop on

Satellite-based Information Services

(WOSBIS), November, 1996.

[11] Sivakumar, H., Bailey, S., and R.

Grossman. PSockets: The Case for

Application-level Network Striping for Data

Intensive Applications using High Speed Wide

Area Networks. In Proceedings of Super

Computing 2000 (SC2000).

[12] Sivakumar, H., Mazzucco, M., Zhang,

Q., and R. Grossman. Simple Available

Bandwidth Utilization Library for High Speed

Wide Area Networks. Submitted to Journal of

SumperComputing

[13] URL:

http://www.psc.edu/networking/perf_tune.html

#intro Enabling High Performance Data

Transfers on Hosts: (Notes for Users and

System Administrators)

[14] URL:

http://dast.nlanr.net/Articles/GettingStarted/T

CP_window_size.html

[15] URL:

http://dast.nlanr.net/Projects/Autobuf_v1.0/aut

otcp.html. Automatic TCP Window Tuning

and Applications

[16] URL: http://www.globus.org

[17] URL:

http://www.psc.edu/networking/all_sack.html.

List of sack implementations

[18] URL: http://www.internet2.org

[19] URL: http://www.iwire.org/

https://edupediapublications.org/journals/index.php/IJR/issue/archive
http://www.internet2.edu/e2epi/web02/p_web100.shtml
http://www.internet2.edu/e2epi/web02/p_web100.shtml
http://www.psc.edu/networking/perf_tune.html#intro
http://www.psc.edu/networking/perf_tune.html#intro
http://dast.nlanr.net/Projects/Autobuf_v1.0/autotcp.html
http://dast.nlanr.net/Projects/Autobuf_v1.0/autotcp.html
http://www.globus.org/
http://www.psc.edu/networking/all_sack.html
http://www.internet2.org/
http://www.iwire.org/

