

Experimental Study on Jute Fibre and Banana Fibre in Fly Ash Bricks

Uma shankar1; Arun prakash2& Pradeep Kumar3

1Assistant Professor, Knowledge Institute of Technology, Civil Engineering Department, Salem, Tamil Nadu, India-638183

2Assistant Professor, Knowledge Institute of Technology, Civil Engineering Department, Salem, Tamil Nadu, India-638183

3Assistant Professor, Knowledge Institute of Technology, Civil Engineering Department, Salem, Tamil Nadu, India-638183

ABSTRACT:

about the Increasing concern globalwarming. primarily due to deforestation has led to the ban on use of clay brick by government in buildings construction. Subsequently, a large action plan for the development use of fly ash bricks substitute has resulted in creation of more awareness about the use of fly ash based building materials. In the past one decade or so the joint efforts by R & D organizations, private industries and funding agencies provided the much needed thrust for the actual transfer of technical know-how and product to the end users. Most of the developing countries are very rich in agricultural and natural fibre. Except a few exceptions, a large part of agricultural waste is being used as a fuel. India alone produces more than 400 million tonnes of agricultural waste annually. It has got a very large percentage of the total world production of rice husk, jute, stalk, jute fibre, banana fibre and coconut fibre. All these natural fibres have excellent physical mechanical properties and can be utilized more effectively in the development of building materials (Inclusion in fly ash bricks) for various applications.

Keywords:

Natural Fibre; Jute Fibre; Banana Fibre; Fly Ash Bricks; Compressive Strength; Water Absorption

1. INTRODUCTION

FLY ASH is a finely divided residue resulting from the combustion of ground or powdered bituminous coal or sub bituminous coal (lignite) and transported by the flue gases of boilers fired by pulverized coal or lignite. Fly ash is a waste by-product material that must be disposed of or recycled. It consists mainly of spherical glassy particle ranging from 1 to 150 μm in diameter, of which the bulk passes through a 45- μm sieve.

FIGURE 1: FLY ASH

CLASS C FLY ASH:

Fly ash produced from the burning of younger lignite or sub-bituminous coal, in addition to having pozzolonic properties, also has some self-cementing properties. In the presence of water, Class C fly ash will harden and gain strength over time. Class C fly ash generally contains more than 20% lime (CaO). Unlike Class F, self-cementing Class C fly ash does not require an activator. Alkali and Sulphate (SO₄) contents are generally higher in Class C fly ashes.

Class C has $SiO_2 + Al_2O_3 + Fe_2O_3 = 50\%$

CLASS F FLY ASH:

The burning of harder, older anthracite and bituminous coal typically produces Class F fly ash. This fly ash is pozzolonic in nature, and contains less than 10% lime (CaO). Possessing pozzolonic properties, the glassy silica and alumina of Class F fly ash requires a cementing agent, such as Portland cement, quicklime, or hydrated lime, with the presence of water in order to produce cementitious and react compounds. Alternatively, in addition of a chemical activator such as sodium silicate(water glass) to a Class F ash can leads to the formation of a geo-polymer.

Class F has $SiO_2 + Al_2O_3 + Fe_2O_3 = 70\%$

2.EXPERIMENTAL MATERIALS

a) Fly Ash (Class F)

An Experimental work was carried out with Class F

type of Fly Ash. The chemical compositions of Fly

Ash are given in following Table 1.

TABLE 1
CHEMICAL COMPOSITIONS OF FLY
ASH

SR. NO.	CHEMICAL COMPOSITIONS	% VALUE
1	Silicon dioxide (SiO ₂)	62.22
2	Magnesium oxide (MgO)	6.09
3	Total Sulphur trioxide (SO ₃)	3.00
4	Calcium Oxide(Cao)	5.30
5	Aluminium Oxide (Al ₂ O ₃)	7.63
6	Ferric Oxide (Fe ₂ O ₃)	7.63
7	Loss on ignition	0.13

b) Lime

An Experimental work is carried out with Acetylene carbide waste lime. The chemical compositions of lime are shown in following Table 2.

TABLE 2
CHEMICAL COMPOSITIONS OF LIME

SR.	CHEMICAL	%
NO.	COMPOSITIONS	VALUE
1	Silicon dioxide (SiO ₂)	5.39
2	Magnesium oxide (MgO)	2.42
3	Sulphur trioxide (SO ₃)	0.98
4	Calcium Oxide(Cao)	28.60
5	Aluminum Oxide (Al ₂ O ₃)	1.06
6	Ferric Oxide (Fe ₂ O ₃)	0.39
7	Loss on ignition	25.25

c) Jute Fibre

The fibres are extracted from the ribbon of the stem. When harvested the plants are cut near the grouted with a sickle shaped knife. The small fibres, 5 mm, are obtained by successively rating in water, see Figure-2 beating, stripping the fibre, from the core and drying. Due to its short fibre length, jute is the weakest stem fibre, although withstands rotting very easily. It is used as packaging material (bags), carpet backing, ropes, yarns and decoration.

FIGURE 2: JUTE FIBRE

d) Banana Fibre

FIGURE 3: BANANA FIBRE

These fibres are extracted from the banana stem. The availabilities of this fibre from banana stem are 5 to 10%. The use of banana stem is very useful to produce paper, yarn, fabrics etc.

SOURCE OF MATERIAL

TABLE 3
SOURCE OF MATERIAL

SR. NO	INGREDIENT S	SOURCES	
1	Fly Ash	Nova, Ahmadabad, Gujarat	
2	Sand	Bodeli, Gujarat	
3	Quarry Dust	Sevaliya, Gujarat	
4	Sludge Lime	Kota, Rajasthan	
5	Jute Fibre	Sugam Hardware, Anand, Gujarat	
6	Banana Fibre	Navsari Agriculture University, Navsari, Gujarat	

3. EXPERIENTIAL METHODOLOGY

Various raw materials of brick mix in desired proportion are blended intimately in dry or wet form. In this Standard Mix proportion Natural are added 0.5%, 1%, 1.5%, 2% and 2.5% by weight of brick.

FIGURE 4: SET UP OF AUTOMATIC FLY ASH BRICK PLANT

FIGURE 5: FINAL FINISH PRODUCTS

- The wet brick-mix is fed into the machine mould. The vibration is given for a while and the mould is again fed. The striper head is pressed and vibration is given simultaneously for about 8 seconds. The mould is lifted and bricks produced pallet is removed and kept on the platform for air drying.
- ♣ Next day the bricks produced on the previous day are put in the stack. The stack is formed with care to see that curing water and air for drying reach to every brick.
- After 3 days the hot water from the solar collector in small quantity is
- poured on the fresh stack without any pressure.

After 5 days the solar collector water is poured on the bricks stack for 2 times a day. The bricks in stack after each watering are immediately covered with black PVC tarpaulin, with a clear space of 250 mm form the

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

layers of the bricks, inside the closed cover.

- The curing is continued for 15 days and the tarpaulin cover is removed. The bricks are then left in the stack for drying or heating the bricks stack.
- The bricks are ready for dispatch after 22 days from the date of manufacture.
- The comprehensive strength of the bricks produced from the brick-mix and the manufacturing process suggested here in will be 80 kg/cm² to 100 kg/cm².

It is observed that the bricks produced are found to be superior then that of conventional Red burnt clay bricks.

Fly Ash	6.123	6.685	7.896
Clay	5.078	5.339	5.557
JF ₁	6.614	6.813	8.061
JF ₂	5.903	6.068	7.026
JF ₃	5.180	5.210	6.052
JF ₄	5.086	5.112	5.965
JF ₅	4.801	4.983	5.513
BF ₁	6.630	6.812	8.051
BF ₂	6.343	6.423	7.809
BF ₃	5.310	5.738	6.825
BF ₄	5.212	5.524	6.742
BF ₅	6.117	5.512	6.124

Compressive Strength

FIGURE 6: TESTING OF SAMPLE BRICKS 4.EXPERIENTIAL RESULTS

TABLE 4
REASULTS OF COMPRESSIVE STRENGTH
TEST

1L51				
	Average Compressive Strength			
Types of brick		(N/mm ²)		
DIICK	7 Days	14 Days	21 Days	

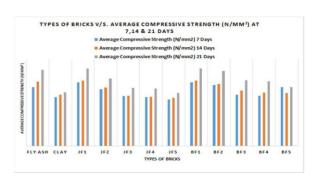


FIGURE 7: TYPES OF BRICKS V/S AVERAGE COMPRESSIVE STRENGTH (N/mm²) AT 7, 14 AND 21 DAYS

Water Absorption Test

TABLE 5
RESULTS OF WATER ABSORPTION TEST

Types of	Types of Average Water Absorption (%)		
brick	7 Days	14 Days	21 Days
Fly Ash	13.231	12.125	10.192
Clay	18.234	17.264	14.231

International Journal of Research	
40	
IIR	

-)			
JF ₁	14.356	12.254	10.236
JF ₂	14.625	13.365	10.986
JF3	14.982	13.437	12.563
JF ₄	15.361	13.261	12.981
JF ₅	16.129	15.127	13.231
BF ₁	14.025	12.421	10.287
BF ₂	15.021	13.478	11.021
BF ₃	15.124	13.625	12.125
BF ₄	15.261	14.327	12.531
BF ₅	16.256	15.124	12.782

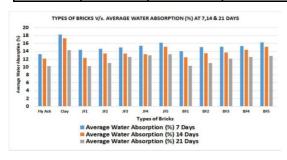


FIGURE 8: TYPES OF BRICKS V/S VERAGE WATER ABSORPTION (%) AT 7, 14 AND 21 DAYS

5. CONCLUSIONS

After all the effort and present experimental work the following observation are made by replacement jute fibre and banana fibre in fly ash bricks with different percentage and conclude that....

- a) Class F Fly ash is utilized in the brick manufacturing work as judicious decision taken by Engineers.
- b) As the percentage of the jute fibre in brick increases, the compressive strength of the brick increases. In this experimental work 0.5% fibre addition in the brick gives the maximum strength 8.061 N/mm² after 21 days.

- Also Banana fibre 0.5% addition in the brick gives the maximum strength 8.051 N/mm² after 21 days.
- c) As the compressive strength of the brick increases, the water absorption of the brick decreases. In this experimental work maximum compressive strength after 21 days is 8.061 N/mm², where minimum water absorption is 10.236% after 21 days in Jute Fibre Fly Ash Brick.
- d) As the compressive strength of the brick increases, the water absorption of the brick decreases. In this experimental work maximum compressive strength after 21 days is 8.051 N/mm², where minimum water absorption is 10.287% after 21 days in Banana Fibre Fly Ash Brick.
- e) Use of fly ash and Natural fibre help in prevention of environmental degradation and use of agriculture land utilised in clay brick production.

REFERENCE

- [1] Aashish Kumar Parashar, RinkuParashar (2012), "Comparative Study on Compressive Strength of Bricks Made With Various Materials to Clay Bricks.", International Journal of Science and Research Publication, Volume 2, Issue 7, July.
- [2] Chee-Ming Chan Effects of Natural Fibres Inclusion in Clay Bricks: Physco-Mechnical Properties, International Journal of Civil and Environmental Engineering, March 2011. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol 2. Oxford: Clarendon, 1892, pp.68-73.
- [3] JayeshPitroda, Rajiv Bhatt, Indrajit

Patel, and Dr. F.S.Umrigar, - Techno-Economical Study of FAL-G bricks-A Case study, Nationaconference on fly ash/ Futuristic Material in civil Engineering Construction For Sustainable Development, pp. 1-2, 2010.

- [4] Malaviya S K, Chatterjee B and Singh K K (1999), "Fly ash- an emerging alternative building material", proceedings of National Seminar, February 26-27 1999, pp. 59.
- [5] MayurkumarPatoliya, JayeshPitroda (2012), "An Experimental Study of Utilization Aspect Of Natural/Artificial fibre in Fly ash Bricks in Central Region of Gujarat", National conference on advance in Engineering and advance in engineering and technology March 2012, pp.13.1-13.4 Kalol, Gujarat