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Abstract— 
Nowadays Graphics Processing Units (GPU) play a vital role in 

parallel computing. GPUs provide performance in terms of exascale 

and petascale levels and thus reduce the computing time of 

applications. These architectures of GPU help to increase the 

performance of applications compared to conventional CPUs. 

Compute and/or data intensive tasks can be moved and executed in 

GPU’s parallel microprocessors and the rest of the sequential can be 

executed in the CPU. This paper discusses on survey of performance 

comparison of executing applications in conventional CPUs and 

executing the same applications in GPU in terms of execution time. 

The experiments used applications like matrix multiplication, 

differential evolution algorithm, simulated annealing algorithm and 

other implementations of algorithms for performance comparison. 

After surveying results of these experiments conducted, it is found 

that GPUs help increase the performance of applications by reducing 

their execution time. 

 

Keywords—GPU; CPU-GPU; CUDA; OpenACC; Multi-core; 

Parallel programming. 

I. INTRODUCTION 

Parallel programming is a process of decomposing the 

domain problem into well-defined co-ordinated units. All units 

are implemented using efficient algorithms and each unit 

utilizes the available cores in the machine and performs the 

task in parallel. 

A program cannot be completely parallelized. Program 

contains codes which needs to be executed sequentially and 

some parts which can be parallelized for improving 

performance. The programmer has to identify the regions 

which need to be executed in sequential manner and the 

regions which can be parallelized. This requires programmer to 

have strong computational skills and good knowledge of 

hardware architecture and domain problem. 

Four levels of parallelism in hardware are defined in 

Flynn’s taxonomy [Flynn, 1972][1]. They are, Single 

Instruction Single Data (SISD), Single Instruction Multiple 

Data (SIMD), Multiple Instruction Single Data (MISD) and 

Multiple Instruction Multiple Data (MIMD). MIMD has two 

subdivisions and they are, Single Program Multiple Data 

(SPMD) and Multiple Program Multiple Data (MPMD). 

Nowadays, Graphics Processing Units (GPUs) have 

become popular co-processors for complex scientific 

computing and high performance computing platforms because 

of their high processing capabilities. Each GPU card has 

multiple cores (thousands of cores) and each core can parallelly 

perform a computation. This helps in running the parallelizable 

code on GPU cores and the serial code on Central Processing 

Units (CPUs). As these GPUs are used for general purpose 

computing along with the CPUs, they are now also called as 

General Purpose GPUs (GPGPUs). Figure 1 depicts the 

working of this heterogeneous architecture, where GPUs are 

being used as accelerators [2].  

 

 

Figure 1: Working of GPU acceleration 

 

Compiler directives, such as OpenMP, can be used for 

parallel programming using multi-core CPUs in scientific 

computing where parallelism often appears in regular repetition 

constructs such as for, while and do loops. Recent versions of 

OpenMP API also support SIMD programming, programming 

of accelerators and better optimization using thread affinity. It 

also provides a new mechanism to specify regions of code 

where compute and/or data intensive code is moved to another 

computing device [3]. 
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OpenACC, a new specification for compiler directives, 

allows annotations of the compute intensive code and data 

regions similar to OpenMP for standard C and FORTRAN 

programs that are offloaded to GPUs [4]. 

The mainstream parallel programming model such as 

CUDA [Nickolls, Buck, Garland & Skadron, 2008][5] 

(Compute Unified Device Architecture, developed 

by NVIDIA and implemented only by the GPUs that they 

produce) and OpenCL[6], where explicit compute and data 

management can be done. Using CUDA program developers 

can directly access the virtual instruction set and memory of 

parallel computational elements in NVIDIA GPUs. Software 

developers can access CUDA platform through compiler 

directives, CUDA-accelerated libraries and extensions to the 

industry-standard programming languages, such as 

FORTRAN, C and C++. 

CUDA is most widely used programming interface for 

scientific and high performance computing on GPUs, but has 

relatively low programming productivity because of its explicit 

and low- level programming abstractions. Porting an existing 

CPU-based program to CUDA requires lot of structural 

changes in the original code and also requires rewriting 

compute or data intensive CPU code into CUDA kernels. 

 CUDA has better memory access optimizations because of 

its low level programming abstractions. It has software-

addressable on-chip memory which can be accessed as shared 

memory. Hence because of these memory access 

optimizations, CUDA exhibits relatively better performance. 

CUDA uses a hybrid parallelism of SIMD and SPMD 

architectures [Hoshino, Maruyama, Matsuoka & Takaki, 

2013][7]. 

OpenACC on other hand is designed to be portable across 

devices from multiple vendors. However, this design decision 

restricts OpenACC from effectively utilizing vendor specific 

architectural features like on-chip memory and because of this 

some manual code transformation for memory access 

optimizations, like temporal blocking using the shared memory 

are prohibited leaving it completely to the compiler [Nguyen, 

Satish, Chhugani, Kim & Dubey, 2010][8]. 

OpenACC, in comparison to CUDA, requires fewer code 

changes for porting CPU-based programs. Its only requirement 

is annotating compute and/or data intensive code with 

OpenACC directives. Hence porting using OpenACC is 

comparatively easier. OpenACC, similar to CUDA, uses 

hybrid parallelism of SIMD and SPMD architectures [Hoshino 

et al., 2013][7]. 

This paper discusses more about survey on performance 

analysis of GPU-CPU heterogeneous computing using CUDA. 

 

II. CUDA ARCHITECTURE 

Figure 2 shows the memory model architecture and Figure 

3 shows language Architecture for CUDA. CUDA 

programming model helps programmers expose fine grained 

parallelism required by multi-threaded GPUs. 

GPU device has three types of memory: texture memory, 

constant memory and global memory. These are persistent 

memories and host can read and write to these memories. 

The texture memory is cached read-only memory. They are 

designed for graphics applications that have certain memory 

access pattern which exhibit spatial locality. Constant memory 

is a read-only memory having 64KB of size and latency time 

close to register. Global memory is a read/write memory and 

can be shared between blocks and grids. They have size greater 

than 1GB and implement GDDR3/GDDR5 technology. They 

help data input to and output from kernels. Global memory 

may or may not be cached depending on compute capability of 

GPU device. 

Multiprocessors have two types of on-chip memory, 

registers and shared memory, as shown in figure 2.Every 

processor in a multiprocessor of NVIDIA GPU has a set of 32-

bit local read/write registers. Shared memory is shared among 

all the processors and can be accessed parallelly [Ujaldon, 

2012][16]. 

 

 
Figure 2: CUDA memory model architecture 
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Figure 3: CUDA language architecture 

 

CUDA programming model consists of threads that are 

categorized into thread blocks, grids and kernels. A thread 

block consists of a batch of tightly coupled threads identified 

by thread ID that communicate and synchronize with each 

other using shared memory and are executed on a single 

multiprocessor. A thread can also access its local registers and 

are independent for each thread. A grid consists of a set of 

loosely coupled blocks that are executed in a single 

multiprocessor. Blocks within a grid do not communicate or 

synchronize with each other. A kernel is a CUDA function 

written by the programmer and executed on the GPU device. 

Each kernel is executed N times in parallel by N different 

CUDA threads. The number of CUDA threads that should 

execute the kernel is mentioned in the kernel call. Warp is a 

collection of 32 parallel threads. The multiprocessor creates, 

manages, schedules and executes threads in warps and they 

execute warps in SIMD fashion. Each warp has consecutively 

increasing thread IDs and the first warp have thread ID 0. Since 

CUDA is implemented as an extension to C/C++, programmers 

can easily learn CUDA programming to parallelize 

applications in a short duration of time instead of learning a 

completely new programming language [Ujaldon, 2012][16] 

[Karunadasa & Ranasinghe, 2009][17] [18]. 

 

III. SURVEY ON ANALYSIS OF EXPERIMENTAL RESULTS 

Applications that can be parallelized typically involve large 

problem size and high modeling complexity, i.e they process 

large amount of data and/or perform many iterations on data. 

Such problems can be solved using parallel computing. The 

problem is decomposed into sub problems and each sub 

problem is solved parallelly. 

Following Experiments are surveyed to compare 

performance between CPU and GPU using different 

algorithms: 

A. In [Zlotrg, Nosovic & Huseinovic, 2011][9], to test and 

compare GPU performance with the performance of CPU, a 

program on arithmetic computation is executed with different 

sizes of an array. Tests were performed under the following 

configurations: 

1. Microsoft Windows 7 Ultimate operating system, Intel 

Core 2 Duo CPU @ 2.53 GHz with CUDA enabled 

NVIDIA GeForce 9600 GT GPU. 

2. Microsoft Windows 7 Ultimate operating system, Intel 

Core i5 CPU @ 2.67 GHz with CUDA enabled 

NVIDIA GeForce GTS250 GPU. 

Test for both configurations is repeated four times and the 

execution time for both GPU and CPU for each test is 

measured for evaluation. 

Figure 4 shows results for configuration 1. From the graph 

shown in the figure it can be observed that performance of 

CPU is better for array sizes less than 5000. This is because 

there are no sufficient data for GPU to efficiently take 

advantage of data parallelism. There is also overhead involved 

in data transfer between GPU and CPU, creation of threads and 

synchronization in the GPU. For array sizes greater than 5000 

it can be seen that performance of GPU is better than the CPU 

as it processes data parallelly. GPU takes only about 0.5 

seconds to execute whereas CPU’s execution time increases 

with increase in array size and for data size of 35,000 CPU 

takes about 6 seconds to execute. Hence for larger data sizes 

GPU performance is approximately 5 times better than the 

CPU performance. 

In the graph in figure 4it is also observed that at some 

instances GPU execution time increases suddenly from 0.5 

second to about 2 seconds. From further tests it is found that 

the sudden increase in execution time is because of the 

overhead in transfer of data from host (CPU) memory to device 

(GPU) memory. This overhead can be reduced with improved 

graphics processor and memory. 

 

 
Figure 4: Performance results for configuration 1[Zlotrg et al., 

2011][9] 

 

Figure 5 shows results for configuration 2. From the graph 

it can be observed that performance of CPU is better for array 

sizes of less than 1000. For array sizes greater than 1000 

performance of GPU is better than performance of CPU unlike 

configuration 1 where performance of GPU is better when 

array sizes are greater than 5000. It is also observed in the 

graph in figure 5 that execution times of both GPU and CPU 

are less compared to the corresponding execution times for 

GPU and CPU of configuration 1. This is because 

configuration 2 uses new and powerful hardware for both CPU 

and GPU. Here it is also noticeable that sudden increase in 

execution time because of data transfer from host to device 

memory in configuration 1 is almost completely eliminated in 

configuration 2. 
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Figure 5: Performance results for configuration 2[Zlotrg et al., 

2011][9] 

 

B. Following experiment performed in [Bajrami, Ašić, 

Cogo, Trnka & Nosovic, 2012][10] to compare the 

performance of GPU and CPU, uses a hardware configuration 

consisting of Intel Core 2 Quad Q6600 CPU, NVIDIA 

GeForce G 103M GPU. This test uses Simulated Annealing 

algorithm, a metaheuristic algorithm based on material 

crystallization process. This process is done while the 

temperature is being increased to the melting point and then 

decreased to the minimum pre-defined value. The algorithm 

was implemented in C for executing in CPU and in CUDA C 

for executing in GPU. The experiment is repeated for different 

number of starting points. 

Figure 6 shows the results for performance comparison 

between CPU and GPU with increasing number of starting 

points and threads. It is observed that for small number threads 

with small data sets take more time to execute as it involves 

overhead in data transfer between host and device memory. By 

increasing the number of threads the performance of GPU 

becomes better compared to both CPU and previously selected 

number of threads. 

 

 
Figure 6: Comparison of performance between CPU and GPU 

with different number of starting points and threads (color)[ 

Bajrami et al., 2012][10] 

 

C. The Sparse Matrix-Vector multiplication using iterative 

method is implemented in CUDA [Hassani, Fazely, Choudhury 

& Luksch, 2013][11] to check the performance of GPU. The 

hardware configuration consists of AMD x64 @ 2.1GHz 

having 64 cores, NVIDIA Tesla c2070 GPU and 64-bit Linux 

operating system. 

Figure 7 shows the result for the experiment conducted. 

From the figure it can be concluded that performance of GPU 

is better than the performance of the CPU. 

 

 
Figure 7: Performance results of CPU Vs GPU for Sparse 

Matrix-Vector Multiplication [Hassani et al., 2013][11] 

 

D. In the following experiment conducted in [Veronese & 

Krohling, 2010][12], Differential Evolution (DE) algorithm 

implemented in C-CUDA is used for execution of algorithm in 

GPU and an implementation of the DE algorithm in C for 

execution in CPU. 

The experimental setup consists of AMD Athlon x2 5200+ 

@ 2.7GHz Dual Core CPU with 512KB of cache per core, 

3GB DDR2 RAM @ 800MHz, NVIDIA GTX 285 GPU with 

1GB GDDR3 memory. 

The benchmarked functions, numbered from f1 up to f6, 

correspond to functions, numbered from f4 up to f9, respectively 

in [Yao, Liu & Lin, 2004][13].The experiment is run as two 

case studies. 

Case Study 1 

The number of dimensions is set to 100 and is kept constant 

throughout all of experiments conducted. Population size, i.e. 

number of individuals, is set to 100 for first experiment.  Each 

experiment is iterated 10,000 times. Figure 8 shows the 

execution time, which is averaged over 20 runs, for all 6 

optimization problems implemented in C and C-CUDA. It is 

observed from the results that the performance of GPU is again 

better compared to the performance of CPU. The best 

computational performance is achieved for CUDA-C f6(x) 
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which has a speed up of about 19 times over respective C 

implementation. 

 

 
Figure 8: Execution time for f1 up to f6 using C and C-CUDA 

for case study 1 [Veronese et al., 2010][12] 

Case Study 2 

In case study 2, the experiments are conducted with same 

number of dimensions as in case study 1 but number of 

individuals is increased to 1,000 from 100 and maximum 

number of iterations is increased to 100,000 from 10,000.The 

computation time for all six optimization problems in C and 

CUDA-C are shown in figure 9. The best computational 

performance is achieved for CUDA-C f1(x) which has a 

speedup of about 34 times over its respective C 

implementation. 

 

 
Figure 9: Execution time for f1 up to f6 using C and C-CUDA 

for case study 2 [Veronese et al., 2010][12] 

 

E. In [Thomas & Daruwala, 2014][14], the experiment is 

performed on host with configuration having Intel Core i5-

3210 @ 2.5GHz CPU with 2 cores supporting 2 threads each 

and has 4GB of RAM. GPU used is NVIDIA GT630M @ 

0.95GHz and has 2GB memory. Application is written in two 

versions, one for CPU and other for GPU. The application 

performs a task where each element of an array of certain 

length is incremented. The application is executed 100 times. 

The computation time for each execution is recorded and the 

averaged value is considered for results.  

Figure 10 shows the results of the experiment. Here N is 

the number of data elements considered for computation. From 

the figure it can be deduced that when the value of N is small, 

the performance of CPU is better than GPU, but as the value of 

N increases the performance of GPU becomes better. 

 

 
Figure 10: Computation time for CPU and GPU for block sizes 

of 192, 256, 512, 768 and 1024. N is the number of data 

elements [Thomas et al., 2014][14] 

 

F. The experiment performed in [Gupta & Babu, 2011][15] 

uses Natural Language Processing (NLP) application. The 

main time consuming process in NLP applications is string 

matching because of large size of lexicon. As data dependency 

is minimal in string matching process, NLP applications are 

ideal for parallelization. Here the performance of single-core 

CPU, multi-core CPU and GPU are compared. Lexical 

Analysis and Shallow Parsing are implemented as NLP using 

C++ for single-core, OpenMP for multi-core and CUDA for 

GPU execution. 

The hardware configuration uses, Intel Core 2 Duo P8600 

@ 2.40GHz CPU and NVIDIA GeForce G210M @ 800MHz 

having 16 cores with 1GB GDDR3 memory. 

Figure 11 shows the results of the experiment conducted. 

From the results in figure it can be observed that the 

performance of the multi-core CPU is better than the 

performance of single-core CPU and the performance of GPU 

is better than the performance of multi-core CPU for all 

experiments conducted. 
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Figure 11: Time taken v/s number of words, performance 

comparison graph for single-core, multi-core and GPU [Gupta 

et al., 2011][15] 

 

IV. CONCLUSION 

The GPUs have evolved to support general purpose 

computing to improve the performance of an application by 

executing them in parallel and thus reducing their execution 

time. From the survey of results of the experiments conducted 

for different algorithms, it is concluded that GPGPUs can be 

efficiently utilized to solve many complex scientific 

computations. 

 The challenging part in parallelizing any application is to 

identify whether the algorithm implemented supports 

parallelism. Some algorithms perform better when executed 

sequentially. If these applications are parallelized, then the 

performance would decrease rather than improving. So first 

understanding the execution of application is very important 

before parallelizing. If the current implementation of the 

algorithm does not support parallelism, then the same 

algorithm should be modified or a different algorithm should 

be chosen to perform the same task which supports parallelism. 

Understanding the architecture of the device is also very 

important to efficiently parallelize the application. Once all 

these bottlenecks have been identified and removed, 

application can be optimized to execute parallelly on the GPU 

using any of the heterogeneous programming models. 

CUDA, OpenACC and many other programming models 

are available for programming applications for heterogeneous 

architecture. OpenACC provides high level programming 

directives using which parallelizing applications becomes 

easier. OpenACC also supports portability. If the application is 

designed to be executed on multiple devices from different 

vendor, then the application should be parallelized using 

OpenACC. If the application is run on NVIDIA GPUs, then 

CUDA should be the choice as CUDA provides programmer to 

efficiently utilize the device specific features like controlling 

the data movement between host and device memory which 

helps improve the performance of applications. Since CUDA 

provides low level programming abstractions, programmer is 

required to learn the device architecture and rewrite the CPU 

functions in to CUDA kernels which might affect the existing 

code structure and performance. 

CUDA is still preferred programming model for scientific 

computing applications as they provide better memory access 

optimizations which help improve the performance of 

applications. 

GPGPUs are not designed to replace CPU programming. 

CPUs execute sequential code better than the GPGPUs. 

GPGPUs should to be used to help CPU applications improve 

its performance by utilizing GPGPU’s parallel architecture for 

its data/compute intensive tasks. 

 

REFERENCES 

[1] M. Flynn, 1972, Some computer organizations and their 

effectiveness, Trans. Comput. C-21(9): 948–960. 

 

[2] NVIDIA Tesla, "What is GPU computing? GPGPU, 

CUDA and Kepler explained", 

http://www.nvidia.com/object/what-is-gpu-computing.html 

 

[3] The OpenMP® API specification for parallel programming, 

"OpenMP 4.0 Specifications Released", 

http://openmp.org/wp/2013/07/openmp-40/. 

 

[4] ―The OpenACC Application Programming Interface, 

Version 1.0‖, November 2011, 

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf  

 

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, Mar. 

2008. ―Scalable Parallel Programming with CUDA,‖ ACM 

Queue, vol. 6, no. 2, pp. 40–53. 

 

[6] Khronos OpenCL Working Group, ―The OpenCL 

Specification, Version 1.2‖, 

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf. 

 

[7] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, 

and, Ryoji Takaki, 2013. "CUDA vs OpenACC: Performance 

Case Studies with Kernel Benchmarks and a Memory-Bound 

CFD Application", 2013 13th IEEE/ACM International 

Symposium on Cluster, Cloud, and Grid Computing. 

 

[8] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, 

2010. ―3.5-D Blocking Optimization for Stencil Computations 

on Modern CPUs and GPUs,‖ in ACM/IEEE International 

Conference for High Performance Computing, Networking, 

Storageand Analysis (SC’10), pp. 1–13. 

 

[9] Davor Zlotrg, Novica Nosovic and Alvin Huseinovic, 

November 2011. "Utilizing CUDA Architecture for Improving 

Application Performance", 19th Telecommunications TELFOR 

2011, IEEE. 



     

P a g e  | 259 

International Journal of Research (IJR)   Vol-2, Issue-2 February 2015   ISSN 2348-6848 

 

[10] Emran Bajrami, Maida Ašić, Emir Cogo, DinoTrnka, 

Novica Nosovic, 2012. "Performance Comparison of 

Simulated Annealing Algorithm Execution on GPU and CPU", 

MIPRO. 

 

[11] Rashid Hassani, Amirreza Fazely, Riaz-Ul-Ahsan 

Choudhury, Peter Luksch, 2013. "Analysis of Sparse Matrix-

Vector Multiplication Using Iterative Method in CUDA", IEEE 

Eighth International Conference on Networking, Architecture 

and Storage. 

 

[12] Lucas de P. Veronese and Renato A. Krohling, 2010. 

"Differential Evolution Algorithm on the GPU with C-CUDA", 

IEEE.  

 

[13] X. Yao, Y. Liu, G. Lin , 2004. ―Evolutionary 

programming using mutationsbased on Levi probability 

distribution,‖ IEEE Trans. on EvolutionaryComputation, vol. 8, 

no.1, pp. 1-24. 

 

[14] Winnie Thomas and Rohin D. Daruwala, 2014. 

"Performance comparison of CPU and GPU on a discrete 

heterogeneous architecture", 2014 International Conference on 

Circuits, Systems, Communication and Information 

Technology Applications (CSCITA), IEEE. 

 

[15] Shubham Gupta, Prof. M.Rajasekhara Babu, 2011. 

"Performance Analysis of GPU compared to Single-core and 

Multi-core CPU for Natural Language Applications", 

(IJACSA) International Journal of Advanced Computer 

Science and Applications, Vol. 2, No. 5. 

 

[16] Manuel Ujaldon, 2012. "High Performance Computing 

and Simulations on the GPU using CUDA", IEEE.  

 

[17] N. P. Karunadasa & D. N. Ranasinghe, 2009. 

"Accelerating High Performance Applications with CUDA and 

MPI", Fourth International Conference on Industrial and 

Information Systems, ICIIS 2009, IEEE. 

 

[18] NVIDIA CUDA Toolkit Documentation, "CUDA C 

Programming Guide", http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html. 

 

 

 

 

 


