

P a g e | 253

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

Survey on Heterogeneous Computing Paradigms

Rohit R. Khamitkar

PG Student, Dept. of Computer Science and Engineering

R.V. College of Engineering

Bangalore, India

rohitrk.10@gmail.com

 Anala M. R.

Professor, Dept. of Computer Science and Engineering

R.V. College of Engineering

Bangalore, India

analamr@rvce.edu.in

Abstract—
Nowadays Graphics Processing Units (GPU) play a vital role in

parallel computing. GPUs provide performance in terms of exascale

and petascale levels and thus reduce the computing time of

applications. These architectures of GPU help to increase the

performance of applications compared to conventional CPUs.

Compute and/or data intensive tasks can be moved and executed in

GPU’s parallel microprocessors and the rest of the sequential can be

executed in the CPU. This paper discusses on survey of performance

comparison of executing applications in conventional CPUs and

executing the same applications in GPU in terms of execution time.

The experiments used applications like matrix multiplication,

differential evolution algorithm, simulated annealing algorithm and

other implementations of algorithms for performance comparison.

After surveying results of these experiments conducted, it is found

that GPUs help increase the performance of applications by reducing

their execution time.

Keywords—GPU; CPU-GPU; CUDA; OpenACC; Multi-core;

Parallel programming.

I. INTRODUCTION

Parallel programming is a process of decomposing the

domain problem into well-defined co-ordinated units. All units

are implemented using efficient algorithms and each unit

utilizes the available cores in the machine and performs the

task in parallel.

A program cannot be completely parallelized. Program

contains codes which needs to be executed sequentially and

some parts which can be parallelized for improving

performance. The programmer has to identify the regions

which need to be executed in sequential manner and the

regions which can be parallelized. This requires programmer to

have strong computational skills and good knowledge of

hardware architecture and domain problem.

Four levels of parallelism in hardware are defined in

Flynn’s taxonomy [Flynn, 1972][1]. They are, Single

Instruction Single Data (SISD), Single Instruction Multiple

Data (SIMD), Multiple Instruction Single Data (MISD) and

Multiple Instruction Multiple Data (MIMD). MIMD has two

subdivisions and they are, Single Program Multiple Data

(SPMD) and Multiple Program Multiple Data (MPMD).

Nowadays, Graphics Processing Units (GPUs) have

become popular co-processors for complex scientific

computing and high performance computing platforms because

of their high processing capabilities. Each GPU card has

multiple cores (thousands of cores) and each core can parallelly

perform a computation. This helps in running the parallelizable

code on GPU cores and the serial code on Central Processing

Units (CPUs). As these GPUs are used for general purpose

computing along with the CPUs, they are now also called as

General Purpose GPUs (GPGPUs). Figure 1 depicts the

working of this heterogeneous architecture, where GPUs are

being used as accelerators [2].

Figure 1: Working of GPU acceleration

Compiler directives, such as OpenMP, can be used for

parallel programming using multi-core CPUs in scientific

computing where parallelism often appears in regular repetition

constructs such as for, while and do loops. Recent versions of

OpenMP API also support SIMD programming, programming

of accelerators and better optimization using thread affinity. It

also provides a new mechanism to specify regions of code

where compute and/or data intensive code is moved to another

computing device [3].

P a g e | 254

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

OpenACC, a new specification for compiler directives,

allows annotations of the compute intensive code and data

regions similar to OpenMP for standard C and FORTRAN

programs that are offloaded to GPUs [4].

The mainstream parallel programming model such as

CUDA [Nickolls, Buck, Garland & Skadron, 2008][5]

(Compute Unified Device Architecture, developed

by NVIDIA and implemented only by the GPUs that they

produce) and OpenCL[6], where explicit compute and data

management can be done. Using CUDA program developers

can directly access the virtual instruction set and memory of

parallel computational elements in NVIDIA GPUs. Software

developers can access CUDA platform through compiler

directives, CUDA-accelerated libraries and extensions to the

industry-standard programming languages, such as

FORTRAN, C and C++.

CUDA is most widely used programming interface for

scientific and high performance computing on GPUs, but has

relatively low programming productivity because of its explicit

and low- level programming abstractions. Porting an existing

CPU-based program to CUDA requires lot of structural

changes in the original code and also requires rewriting

compute or data intensive CPU code into CUDA kernels.

 CUDA has better memory access optimizations because of

its low level programming abstractions. It has software-

addressable on-chip memory which can be accessed as shared

memory. Hence because of these memory access

optimizations, CUDA exhibits relatively better performance.

CUDA uses a hybrid parallelism of SIMD and SPMD

architectures [Hoshino, Maruyama, Matsuoka & Takaki,

2013][7].

OpenACC on other hand is designed to be portable across

devices from multiple vendors. However, this design decision

restricts OpenACC from effectively utilizing vendor specific

architectural features like on-chip memory and because of this

some manual code transformation for memory access

optimizations, like temporal blocking using the shared memory

are prohibited leaving it completely to the compiler [Nguyen,

Satish, Chhugani, Kim & Dubey, 2010][8].

OpenACC, in comparison to CUDA, requires fewer code

changes for porting CPU-based programs. Its only requirement

is annotating compute and/or data intensive code with

OpenACC directives. Hence porting using OpenACC is

comparatively easier. OpenACC, similar to CUDA, uses

hybrid parallelism of SIMD and SPMD architectures [Hoshino

et al., 2013][7].

This paper discusses more about survey on performance

analysis of GPU-CPU heterogeneous computing using CUDA.

II. CUDA ARCHITECTURE

Figure 2 shows the memory model architecture and Figure

3 shows language Architecture for CUDA. CUDA

programming model helps programmers expose fine grained

parallelism required by multi-threaded GPUs.

GPU device has three types of memory: texture memory,

constant memory and global memory. These are persistent

memories and host can read and write to these memories.

The texture memory is cached read-only memory. They are

designed for graphics applications that have certain memory

access pattern which exhibit spatial locality. Constant memory

is a read-only memory having 64KB of size and latency time

close to register. Global memory is a read/write memory and

can be shared between blocks and grids. They have size greater

than 1GB and implement GDDR3/GDDR5 technology. They

help data input to and output from kernels. Global memory

may or may not be cached depending on compute capability of

GPU device.

Multiprocessors have two types of on-chip memory,

registers and shared memory, as shown in figure 2.Every

processor in a multiprocessor of NVIDIA GPU has a set of 32-

bit local read/write registers. Shared memory is shared among

all the processors and can be accessed parallelly [Ujaldon,

2012][16].

Figure 2: CUDA memory model architecture

P a g e | 255

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

Figure 3: CUDA language architecture

CUDA programming model consists of threads that are

categorized into thread blocks, grids and kernels. A thread

block consists of a batch of tightly coupled threads identified

by thread ID that communicate and synchronize with each

other using shared memory and are executed on a single

multiprocessor. A thread can also access its local registers and

are independent for each thread. A grid consists of a set of

loosely coupled blocks that are executed in a single

multiprocessor. Blocks within a grid do not communicate or

synchronize with each other. A kernel is a CUDA function

written by the programmer and executed on the GPU device.

Each kernel is executed N times in parallel by N different

CUDA threads. The number of CUDA threads that should

execute the kernel is mentioned in the kernel call. Warp is a

collection of 32 parallel threads. The multiprocessor creates,

manages, schedules and executes threads in warps and they

execute warps in SIMD fashion. Each warp has consecutively

increasing thread IDs and the first warp have thread ID 0. Since

CUDA is implemented as an extension to C/C++, programmers

can easily learn CUDA programming to parallelize

applications in a short duration of time instead of learning a

completely new programming language [Ujaldon, 2012][16]

[Karunadasa & Ranasinghe, 2009][17] [18].

III. SURVEY ON ANALYSIS OF EXPERIMENTAL RESULTS

Applications that can be parallelized typically involve large

problem size and high modeling complexity, i.e they process

large amount of data and/or perform many iterations on data.

Such problems can be solved using parallel computing. The

problem is decomposed into sub problems and each sub

problem is solved parallelly.

Following Experiments are surveyed to compare

performance between CPU and GPU using different

algorithms:

A. In [Zlotrg, Nosovic & Huseinovic, 2011][9], to test and

compare GPU performance with the performance of CPU, a

program on arithmetic computation is executed with different

sizes of an array. Tests were performed under the following

configurations:

1. Microsoft Windows 7 Ultimate operating system, Intel

Core 2 Duo CPU @ 2.53 GHz with CUDA enabled

NVIDIA GeForce 9600 GT GPU.

2. Microsoft Windows 7 Ultimate operating system, Intel

Core i5 CPU @ 2.67 GHz with CUDA enabled

NVIDIA GeForce GTS250 GPU.

Test for both configurations is repeated four times and the

execution time for both GPU and CPU for each test is

measured for evaluation.

Figure 4 shows results for configuration 1. From the graph

shown in the figure it can be observed that performance of

CPU is better for array sizes less than 5000. This is because

there are no sufficient data for GPU to efficiently take

advantage of data parallelism. There is also overhead involved

in data transfer between GPU and CPU, creation of threads and

synchronization in the GPU. For array sizes greater than 5000

it can be seen that performance of GPU is better than the CPU

as it processes data parallelly. GPU takes only about 0.5

seconds to execute whereas CPU’s execution time increases

with increase in array size and for data size of 35,000 CPU

takes about 6 seconds to execute. Hence for larger data sizes

GPU performance is approximately 5 times better than the

CPU performance.

In the graph in figure 4it is also observed that at some

instances GPU execution time increases suddenly from 0.5

second to about 2 seconds. From further tests it is found that

the sudden increase in execution time is because of the

overhead in transfer of data from host (CPU) memory to device

(GPU) memory. This overhead can be reduced with improved

graphics processor and memory.

Figure 4: Performance results for configuration 1[Zlotrg et al.,

2011][9]

Figure 5 shows results for configuration 2. From the graph

it can be observed that performance of CPU is better for array

sizes of less than 1000. For array sizes greater than 1000

performance of GPU is better than performance of CPU unlike

configuration 1 where performance of GPU is better when

array sizes are greater than 5000. It is also observed in the

graph in figure 5 that execution times of both GPU and CPU

are less compared to the corresponding execution times for

GPU and CPU of configuration 1. This is because

configuration 2 uses new and powerful hardware for both CPU

and GPU. Here it is also noticeable that sudden increase in

execution time because of data transfer from host to device

memory in configuration 1 is almost completely eliminated in

configuration 2.

P a g e | 256

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

Figure 5: Performance results for configuration 2[Zlotrg et al.,

2011][9]

B. Following experiment performed in [Bajrami, Ašić,

Cogo, Trnka & Nosovic, 2012][10] to compare the

performance of GPU and CPU, uses a hardware configuration

consisting of Intel Core 2 Quad Q6600 CPU, NVIDIA

GeForce G 103M GPU. This test uses Simulated Annealing

algorithm, a metaheuristic algorithm based on material

crystallization process. This process is done while the

temperature is being increased to the melting point and then

decreased to the minimum pre-defined value. The algorithm

was implemented in C for executing in CPU and in CUDA C

for executing in GPU. The experiment is repeated for different

number of starting points.

Figure 6 shows the results for performance comparison

between CPU and GPU with increasing number of starting

points and threads. It is observed that for small number threads

with small data sets take more time to execute as it involves

overhead in data transfer between host and device memory. By

increasing the number of threads the performance of GPU

becomes better compared to both CPU and previously selected

number of threads.

Figure 6: Comparison of performance between CPU and GPU

with different number of starting points and threads (color)[

Bajrami et al., 2012][10]

C. The Sparse Matrix-Vector multiplication using iterative

method is implemented in CUDA [Hassani, Fazely, Choudhury

& Luksch, 2013][11] to check the performance of GPU. The

hardware configuration consists of AMD x64 @ 2.1GHz

having 64 cores, NVIDIA Tesla c2070 GPU and 64-bit Linux

operating system.

Figure 7 shows the result for the experiment conducted.

From the figure it can be concluded that performance of GPU

is better than the performance of the CPU.

Figure 7: Performance results of CPU Vs GPU for Sparse

Matrix-Vector Multiplication [Hassani et al., 2013][11]

D. In the following experiment conducted in [Veronese &

Krohling, 2010][12], Differential Evolution (DE) algorithm

implemented in C-CUDA is used for execution of algorithm in

GPU and an implementation of the DE algorithm in C for

execution in CPU.

The experimental setup consists of AMD Athlon x2 5200+

@ 2.7GHz Dual Core CPU with 512KB of cache per core,

3GB DDR2 RAM @ 800MHz, NVIDIA GTX 285 GPU with

1GB GDDR3 memory.

The benchmarked functions, numbered from f1 up to f6,

correspond to functions, numbered from f4 up to f9, respectively

in [Yao, Liu & Lin, 2004][13].The experiment is run as two

case studies.

Case Study 1

The number of dimensions is set to 100 and is kept constant

throughout all of experiments conducted. Population size, i.e.

number of individuals, is set to 100 for first experiment. Each

experiment is iterated 10,000 times. Figure 8 shows the

execution time, which is averaged over 20 runs, for all 6

optimization problems implemented in C and C-CUDA. It is

observed from the results that the performance of GPU is again

better compared to the performance of CPU. The best

computational performance is achieved for CUDA-C f6(x)

P a g e | 257

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

which has a speed up of about 19 times over respective C

implementation.

Figure 8: Execution time for f1 up to f6 using C and C-CUDA

for case study 1 [Veronese et al., 2010][12]

Case Study 2

In case study 2, the experiments are conducted with same

number of dimensions as in case study 1 but number of

individuals is increased to 1,000 from 100 and maximum

number of iterations is increased to 100,000 from 10,000.The

computation time for all six optimization problems in C and

CUDA-C are shown in figure 9. The best computational

performance is achieved for CUDA-C f1(x) which has a

speedup of about 34 times over its respective C

implementation.

Figure 9: Execution time for f1 up to f6 using C and C-CUDA

for case study 2 [Veronese et al., 2010][12]

E. In [Thomas & Daruwala, 2014][14], the experiment is

performed on host with configuration having Intel Core i5-

3210 @ 2.5GHz CPU with 2 cores supporting 2 threads each

and has 4GB of RAM. GPU used is NVIDIA GT630M @

0.95GHz and has 2GB memory. Application is written in two

versions, one for CPU and other for GPU. The application

performs a task where each element of an array of certain

length is incremented. The application is executed 100 times.

The computation time for each execution is recorded and the

averaged value is considered for results.

Figure 10 shows the results of the experiment. Here N is

the number of data elements considered for computation. From

the figure it can be deduced that when the value of N is small,

the performance of CPU is better than GPU, but as the value of

N increases the performance of GPU becomes better.

Figure 10: Computation time for CPU and GPU for block sizes

of 192, 256, 512, 768 and 1024. N is the number of data

elements [Thomas et al., 2014][14]

F. The experiment performed in [Gupta & Babu, 2011][15]

uses Natural Language Processing (NLP) application. The

main time consuming process in NLP applications is string

matching because of large size of lexicon. As data dependency

is minimal in string matching process, NLP applications are

ideal for parallelization. Here the performance of single-core

CPU, multi-core CPU and GPU are compared. Lexical

Analysis and Shallow Parsing are implemented as NLP using

C++ for single-core, OpenMP for multi-core and CUDA for

GPU execution.

The hardware configuration uses, Intel Core 2 Duo P8600

@ 2.40GHz CPU and NVIDIA GeForce G210M @ 800MHz

having 16 cores with 1GB GDDR3 memory.

Figure 11 shows the results of the experiment conducted.

From the results in figure it can be observed that the

performance of the multi-core CPU is better than the

performance of single-core CPU and the performance of GPU

is better than the performance of multi-core CPU for all

experiments conducted.

P a g e | 258

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

Figure 11: Time taken v/s number of words, performance

comparison graph for single-core, multi-core and GPU [Gupta

et al., 2011][15]

IV. CONCLUSION

The GPUs have evolved to support general purpose

computing to improve the performance of an application by

executing them in parallel and thus reducing their execution

time. From the survey of results of the experiments conducted

for different algorithms, it is concluded that GPGPUs can be

efficiently utilized to solve many complex scientific

computations.

 The challenging part in parallelizing any application is to

identify whether the algorithm implemented supports

parallelism. Some algorithms perform better when executed

sequentially. If these applications are parallelized, then the

performance would decrease rather than improving. So first

understanding the execution of application is very important

before parallelizing. If the current implementation of the

algorithm does not support parallelism, then the same

algorithm should be modified or a different algorithm should

be chosen to perform the same task which supports parallelism.

Understanding the architecture of the device is also very

important to efficiently parallelize the application. Once all

these bottlenecks have been identified and removed,

application can be optimized to execute parallelly on the GPU

using any of the heterogeneous programming models.

CUDA, OpenACC and many other programming models

are available for programming applications for heterogeneous

architecture. OpenACC provides high level programming

directives using which parallelizing applications becomes

easier. OpenACC also supports portability. If the application is

designed to be executed on multiple devices from different

vendor, then the application should be parallelized using

OpenACC. If the application is run on NVIDIA GPUs, then

CUDA should be the choice as CUDA provides programmer to

efficiently utilize the device specific features like controlling

the data movement between host and device memory which

helps improve the performance of applications. Since CUDA

provides low level programming abstractions, programmer is

required to learn the device architecture and rewrite the CPU

functions in to CUDA kernels which might affect the existing

code structure and performance.

CUDA is still preferred programming model for scientific

computing applications as they provide better memory access

optimizations which help improve the performance of

applications.

GPGPUs are not designed to replace CPU programming.

CPUs execute sequential code better than the GPGPUs.

GPGPUs should to be used to help CPU applications improve

its performance by utilizing GPGPU’s parallel architecture for

its data/compute intensive tasks.

REFERENCES

[1] M. Flynn, 1972, Some computer organizations and their

effectiveness, Trans. Comput. C-21(9): 948–960.

[2] NVIDIA Tesla, "What is GPU computing? GPGPU,

CUDA and Kepler explained",

http://www.nvidia.com/object/what-is-gpu-computing.html

[3] The OpenMP® API specification for parallel programming,

"OpenMP 4.0 Specifications Released",

http://openmp.org/wp/2013/07/openmp-40/.

[4] ―The OpenACC Application Programming Interface,

Version 1.0‖, November 2011,

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, Mar.

2008. ―Scalable Parallel Programming with CUDA,‖ ACM

Queue, vol. 6, no. 2, pp. 40–53.

[6] Khronos OpenCL Working Group, ―The OpenCL

Specification, Version 1.2‖,

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

[7] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka,

and, Ryoji Takaki, 2013. "CUDA vs OpenACC: Performance

Case Studies with Kernel Benchmarks and a Memory-Bound

CFD Application", 2013 13th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing.

[8] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey,

2010. ―3.5-D Blocking Optimization for Stencil Computations

on Modern CPUs and GPUs,‖ in ACM/IEEE International

Conference for High Performance Computing, Networking,

Storageand Analysis (SC’10), pp. 1–13.

[9] Davor Zlotrg, Novica Nosovic and Alvin Huseinovic,

November 2011. "Utilizing CUDA Architecture for Improving

Application Performance", 19th Telecommunications TELFOR

2011, IEEE.

P a g e | 259

International Journal of Research (IJR) Vol-2, Issue-2 February 2015 ISSN 2348-6848

[10] Emran Bajrami, Maida Ašić, Emir Cogo, DinoTrnka,

Novica Nosovic, 2012. "Performance Comparison of

Simulated Annealing Algorithm Execution on GPU and CPU",

MIPRO.

[11] Rashid Hassani, Amirreza Fazely, Riaz-Ul-Ahsan

Choudhury, Peter Luksch, 2013. "Analysis of Sparse Matrix-

Vector Multiplication Using Iterative Method in CUDA", IEEE

Eighth International Conference on Networking, Architecture

and Storage.

[12] Lucas de P. Veronese and Renato A. Krohling, 2010.

"Differential Evolution Algorithm on the GPU with C-CUDA",

IEEE.

[13] X. Yao, Y. Liu, G. Lin , 2004. ―Evolutionary

programming using mutationsbased on Levi probability

distribution,‖ IEEE Trans. on EvolutionaryComputation, vol. 8,

no.1, pp. 1-24.

[14] Winnie Thomas and Rohin D. Daruwala, 2014.

"Performance comparison of CPU and GPU on a discrete

heterogeneous architecture", 2014 International Conference on

Circuits, Systems, Communication and Information

Technology Applications (CSCITA), IEEE.

[15] Shubham Gupta, Prof. M.Rajasekhara Babu, 2011.

"Performance Analysis of GPU compared to Single-core and

Multi-core CPU for Natural Language Applications",

(IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 2, No. 5.

[16] Manuel Ujaldon, 2012. "High Performance Computing

and Simulations on the GPU using CUDA", IEEE.

[17] N. P. Karunadasa & D. N. Ranasinghe, 2009.

"Accelerating High Performance Applications with CUDA and

MPI", Fourth International Conference on Industrial and

Information Systems, ICIIS 2009, IEEE.

[18] NVIDIA CUDA Toolkit Documentation, "CUDA C

Programming Guide", http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html.

