

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 15

May 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 706

A Survey on Homomorphic Encryption for Security in Cloud

Vinay U & Rakesh V.S

1VIII Semester Student, 2Assistant Professor

Department of Computer Science and Engineering, Cambridge institute of technology,

Bengaluru, India

Abstract:

The Adoption of Digitization of data in large scale

and change in requirements of the different

organization to serve the different stakeholder. So,

there is a need to compute, store and analyze large

amount of data in remote server efficiently providing

security to the data involves network security,

strategies of control and access to the service,

storage of data .the smart computations of cloud

computing and big data is highly appreciated today.

fully homomorphic encryption(FHE) is a best type of

encryption schemes that allows working with the

data in its encrypted from this paper aims introduce

an efficient and verifiable FHE based on a new

mathematic structure the is noise free this paper

discuss the different homomorphic encryption

schemes and their applications on various domains .

Keywords

Cloud Data storage, Homomorphic Encryption,

Data Security, Fully Homomorphic Encryption,

privacy cloud computing

1. Introduction

As Computing and communication technology

takes a quantum leap with the digitization of data in

large scale, the need of collecting, storing and

analyzing large amount of data becomes very much

essential. Cloud computing has manifested as a

powerful computing model in the last decade, with

numerous advantages both to client and providers.

Also, In the 90’s,the democratization of IT especially

during the last decade, with the generalization of the

internet, the development of broadband networks,

rental application, payment for the use and request

for mobility. According to the definition given by

National of standards and technology(NIST), “cloud

computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared

pool of configurable computing resource that can be

rapidly provisioned and released with minimal

management effort or service provider interaction”.

It also defined five essential characteristics of cloud

computing as on –demand self service, broad

network access, resource pooling, rapid Elasticity

and measured service. Encryption schemes as RSA,

AES, 3DES… allows client to preserve data privacy

during transmission to the cloud, but if a client

request the cloud to perform a complex treatment

on its data . he should share his private key with the

remote key server.

The question now is how can we perform

calculation on data previously encrypted without

having to decrypt?

The answer to solve this problem is the

Homomorphic Encryption. An encryption that is

fully homomorphic, and allows to compute over

encrypted data without having to decipher them.

In 2009, C. Gentry [11] proposed that first fully

homomorphic encryption at Stanford university: A

cryptosystem that provides the ability to perform

arbitrary calculations on encrypted data without

having to decrypt them.

This paper consists of in section 2. I explain the

necessity of cloud adoption by different domains. In

section 3 . We provide background information on

homomorphic encryption followed by details of our

implementation In section 4. Finally, section 6 is

devoted for the conclusion.

2.Related Work

The concept of Homomorphic encryption was

initially proposed by rivest et al[7]after the discovery

of public key cryptography a majority of the known

public key cryptosystems ,i.e, RSA, Elgamal,

paillenc, etc. support homomorphic addition or

multiplication or cipher text but not both[8].there are

partially homomorphic crypto system[6],the partially

homomorphic encryption is not sufficient for various

practical environments such as finance and statistical

application .because these application requires both

addition and multiplication operation for realizing

various computations. The concept of Homomorphic

encryption was first proposed by Rivest et al. [7]

after the discovery of public key cryptography. A

majority of the known public key cryptosystems, i.e.,

RSA, Elgamal, Pailler, etc. support homomorphic

addition or multiplication on ciphertext but not both

[8]. These are partially homomorphic crypto systems

[6]. However the partially homomorphic encryption

is not sufficient for various practical environments

such as finance and statistical applications.This is

because of the fact that these applications require

both addition and multiplication operation for

realizing various computations. In 2009, Gentry

proposed Fully homomorphic encryption (FHE) [1]

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 15

May 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 707

which first constructs an SHE (some what

homomorphic encryption) and then converts the

same to an FHE which in turn can evaluate circuits

of arbitrary depth. This approach uses bootstrapping

procedure for the conversion. Gentry’s construction

is based on his bootstrapping theorem which

provides that given a somewhat homomorphic

encryption scheme (SWHE) that can evaluate

homomorphically its own decryption circuit and an

additional NAND gate, we can pass to a “levelled”

fully homomorphic encryption scheme and so obtain

a FHE scheme by assuming circular security. The

purpose of using bootstrapping technique is to allow

refreshment of ciphertexts and reduce noise after its

growth.

Gentry’s construction is not a single algorithm but

it considered as a framework that inspires

cryptologists to build new fully homomorphic

encryption schemes [3, 4, 5, 6…]. A FHE

cryptosystem that uses Gentry’s bootstrapping

technique can be classified in the category of noise

based fully homomorphic encryption schemes [7].

3.Homomorphic Encryption

The data stored in the cloud will not be in the

encrypted format. If it is stored in the crypted way

that can solve the issues like Availability, Data

security and Third party control. But the problem is

the user will not be able to depend on the cloud

service provider to carry out computation of data.

For this the data will be decrypted first then will be

shipped to the user for computation. So the cloud

provider has to decrypt thedata first thus nullifying

the issues of privacy and confidentiality, perform the

computation and then send the result to the user [17].

Suppose if the user could carry out any arbitrary

computation on the hosted data, then without the

cloud provider learning about the users’ data,

computation is done on the encrypted data without

prior decryption. In this scenario, the promise of

homomorphic encryption takes a 552 call [5].

Homomorphic encryption schemes are methods that

allow the transformation of cipher texts C(M) of

message M , to cipher texts C(f(M)) of a

computation / function of message M, without

disclosing the message. A homomorphic encryption

scheme H is a set of four functions which are shown

in Fig.1 and defined as

H= {Key_Generation, Encryption, Decryption,

Evaluation}

A. Key_ Generation: In this first function, the

user will generate a pair of keys, public key

PK and a secret key SK for encryption of

plain text.

B. Encryption: In the second function

encryption, the user will encrypt the plain

text using the secret key SK and generate

cipher text and along with the public key

PK, the cipher text will be sent to the server.

C. Evaluation: In this function , server applies

a function to evaluate the cipher text CT and

this is performed as per the required

function using PK.

D. Decryption: In the decryption function ,

generated evaluated plain text will be

decrypted by the user using his secret key

and gets the final result.

Fig 1. Homomorphic functions

 In the cloud based environment the key

generation takes place at the client side and encrypts

the data with the encryption key and sends the data to

the cloud server along with pk . The encrypted data

is stored in the database along with the key.

Whenever the client wants to perform the operation it

sends the request to the service provider. The service

provider forwards the request to the processing

server .the processing server performs the operation

as per request . The service provider then returns the

processed result to the client in the response phase .

The client finally decrypts the result returned by the

service provider with the secret key sk. Among the

homomorphic encryption schemes available

depending on the operations performed on data, can

be classified into three main categories namely:

Partially Homorphic Encryption(PHE), SomeWhat

Homomorphic Encryption (SWHE) and Fully

Homomorphic Encryption(FHE) [6].

 Partially Homomorphic Encryption(PHE): PHE

allows either addition or multiplication

operation to be performed on encrypted data

but not both

 Some What Homomorpic Encryption (SWHE):

SWHE allows more than one operation to be

performed on encrypted data but on a limited

scale

 Fully Homomorphic Encryption (FHE): FHE

allows any number of additions and

multiplication operations to be performed on

encrypted data.

A. Partially Homomorphic Encryption Scheme:

The most popular PHE methods available are

the RSA[7],ElGamal[8] and Pailler[9] methods.

plain

text(PT)

the

function

F

encryption

decryption

key

generation

Evaluation encrypted

data storage

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 15

May 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 708

1. 1.RSA method : RSA was the first

Homomorphic Encryption scheme developed

by Ronald Rivest , Leonard Adleman and

Michael Dertouzos in 1978[7]. It is a public

key crypto technique and is multiplicative

homomorphic in nature. Let M1 and M2 be the

two messages . Then by using RSA algorithm

as shown in Figure 2, the encryption can be

done as

E(M1,PK) * E(M2,PK) =M1e * M2e mod n

=(M1 X M2)e mod n

= E(M1XM2,PK)

Figure 2. RSA Algorithm

2. Pailler method: This method is additive

Homomorphic in nature and is developed by Pascal

Pailler in 1999[9]. Let M1 and M2 be the two

messages and let C1 and C2 are the two cipher texts

corresponding to M1 and M2 respectively. By using

Pailler algorithm as shown in Figure 3, C1and C2

can be computed as follows

C1=gM1.r1n mod n2

C2= gM2.r2n mod n2 .

C1.C2= gM1.r1n.gM2.r2n mod n2

=gM1+M2(r1r2)n mod n2

Figure 3. Pailler Algorithm

B. Some What Homomorphic Encryption Scheme

: The most popular SWHE method is Boneh-

Goh-Nissim (BGN) method[10]. This method allows

any number of additions but only one multiplication

to be performed on data. It is invented by Dan

Bonch, Eu-Jin Goh and Kobi Nissim [10] in

2005.Let M be message. Then by using BGN

algorithm M can be encrypted to get C as C= gmhr

where r is from{1,2,3,…,n-1} . In the decryption

process M can be recovered using discrete logarithm

of cp to the base gp . The algorithm is as shown in

Figure 4.

Preparation of Key

Input:p,q€P(large primes)

 G is a cyclic group of order pq

 e is a pairing map e:G*G->G1

 compute n=p*q

 pick up two random generators g,u, from G

 compute h=u2,h is a random generator of the

subgroup of G of order p

Output:(pk,sk)

Public key:pk=(n,G,G1,e,g,h)

secret key: sk= (p)

Encryption:enc(m,pk)

Input:message m (consists of integers in the set{0,1…t},with

T<q)

 pick a random r from{1,2….,n-1}

 compute c=gn hr

Output:c€G

Decryption:Dec(c,Sk)

Input:c€G

Key Generation:Key Gen(p,q)

Input:p,q€P

Compute n=p,q;Φ(n)=(p-1)(q-1)

choose e such that gcd(e, Φ(n))=1

determine d such that e,d =1 mod Φ(n)

output(pk,sk)

public key pk=(e,n)

secret key sk=(d)

encryption:

C=Me mod n

decryption:

M=Cd mod n

Key Generation:keyGen(p,q)

Input:p,q€P

Compute n=pq
Choose €Z*

n
2 such that

 Gcd[l(gƛ mod n2),n)=1 with L(u)=(u-1)/n

Output:(pk,sk)
Public key:pk=(n,g)
Secret key:sk =(p,q)

Encryption:Enc(m,pk)

Input:m€Zn

Choose r€Z*
n

 Compute e=gm,rn mod n2

Output:e€Zn
2

Decryption:dec(c,sk)

Input:c€Zn
2

Compute m=(L(cƛ mod n2))/(L(gƛ
mod n2) mod n

Output m€Zn

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 15

May 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 709

 Compute:cp=(gmhr)p=(gp)m

 Recover m compute the discrete

logarithm of cp to base Gp

Output:clear message m

Figure 4. BGN Algorithm

C. Fully Homomorphic Encryption Scheme:

 The most popular FHE schemes are Algebra

Homomorphic Encryption Scheme based on

Updated ElGamal(AHEE) proposed by Chen Liang

and Gao Changmin in 2008[4],[11], Algebraic

Homomorphism Encryption Scheme based on

Fermat’s Little Theorem(AHEF) proposed by Xiang

Guangli and Cui Zhuxizo in 2012[12] and Enhanced

Homomorphic Encryption Scheme(EHES) proposed

by Gorti VNKV Subba Rao in 2013[13],[14]. The

AHEE algorithm is as shown in Figure 5 and it

allows unlimited additions and multiplications.

Step 1:select any two prime number say p and q

Step 2:calculate the product of those two prime numbers say

N=p*q.where p and q being confidential and N is public.

Step 3:Select random number x and a root g of GF(p) where g and

x are smaller than p

Step 4:calculate y=gx mod p.use this y for the encryption

Step 5:encryption will be performed in following two steps:
Select random integer number er and apply following

homomorphic encryption.

E1(M)=(m+R*P) mod N
Select random interger number k,and the encrypton algorithms

are:

Eg(M)=(a,b)=(gk mod p,yk E1(M) mod p)

Step 6:Decrypted algorithm Dg() is M=b*(ax)-1 (mod p)

Figure 5. AHEE Algorithm

4.Proposed architecture:

Consider the scenario of the client-cloud provider

system as shown in Figure 6 and Figure 7 in which

the Figure 6 shows the normal operative mode and

the Figure 7 shows the operative mode with HE

adoption client-cloud provider system. Let TR :

Response Time ; Ttr: Transmission Time ;Tpr: Data

Processing Time ; Ten:Encryption Time ;

Tde:Decryption Time ; TRH: Response

TimeinHEMode; then

1. The response time in the normal operative

mode is given by

 TR= 2*Ttr+Tpr

2. The response time in the operative mode

with HE adoption is given by

TRH= Ten+2*Ttr+Tpr+Tde

3. The transmission time is the amount of time

taken from start to end of the transmission

of a message. This can be computed by

using the formula,

 Transmission time=message size/data rate

Figure 6. Client-Cloud Provider System –normal

operative mode

Figure 7. Client-cloud provider system –HE

operation mode

 In our work we have taken the mixed

homomorphic technique proposed by Zvika

Brakerski,Craig Gentry and Vinod

Vaikunthanathan[16] whose basic functions are as

shown in Figure 8 as the base work and built our

method over it.

BGV is an asymmetric encryption scheme that

encrypts bits. The scheme is based on lattices. There

are two versions of the scheme: one deals with

integer vectors and the other deals with integer

polynomials [5]. Of the two versions of BGV

scheme, we focused on integer polynomial version

Client Machine

proces
sing

server

Data

Storage

Request

Response

Time in

HE

Mode;

then

1.The

response

time in

the

normal

Tde:De

cryption

Time ;

TRH:

Response

Time in

HE

Mode;

then

1.The

response

time in

the

normal

Request

Response

Time in

HE

Mode;

then

1.The

response

time in

the

normal

Tde:De

cryption

Time ;

TRH:

Response

Time in

HE

Mode;

then

1.The

response

time in

the

normal

processi

ng

server

Data

Storage

Encrypt

and
Decrypt

process

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 15

May 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 710

whose security depends on hardness of the decisional

Ring Learning with Errors problem.

In BGV scheme, a polynomial ring which is

defined as A=ǽ[X]/F(X) where F(X) is a cyclotomic

polynomial whose degree is 2k and denoted by d is

considered. Also a chain of odd moduli q1< … <qL

and their corresponding sub rings Aqi = A/qiA of

polynomials A with integer coefficients into the

range [-qi/2, qi/2] is considered. The elements in Aqi

will be polynomials represented by the d-vector of

their coefficients[20,21].

5.Experimental Results

The The various homomorphic encryption

algorithms such as Paillier

cryptosystem,Rivest,Shamir and Alderman(RSA)

algorithm, Enhanced Homomorphic

cryptosystem(EHC), Non-interactive Exponential

Homomorphic Encryption scheme(NEHE), Algebra

Homomorphic Encryption scheme based on updated

Elgamal(AHEE)[23] are compared with BGV

scheme based on the properties of homomorphic

encryption,their applications, privacy preserving of

data and their usefulness in cloud data storage. The

results of the study are shown in Table 1.

 From Table 1, it is clear that BGV scheme is best

suited for cloud data storage as it satisfies all the

parameters. It is mixed homorphic, also reduces

noise level by following key switching and modulus

switching techniques. Since the scheme provides

security over integer polynomials, it is more suited

for data storage.

 Security is the prime requirement for storage

because of the increasing usage of the internet or

public cloud for storing the data. Security is needed

for preserving the integrity, confidentiality and

availability of the information system resources.

There can be storage of data in the encrypted format

in any database and facilitate the operations or the

computations on encrypted data without decryption,

a new idea called “privacy homomorphism” was

proposed. This is an idea of the cryptosystem allows

direct computation on the encrypted data.

Table 1.Comparison table of FHE schemes
Algorith

m

Add-

Hom
o

Mul-

Hom
o

Mix-

Hom
o

Priv.

Pre

Clo

ud
stor

age

Applicatio

ns

Paillier No Yes No No No e-voting

RSA No Yes No No No Internet
banking

Elgamal No Yes No No No Hybrid

Systems

EHC No No Yes No No Manets

NEHE No No Yes Yes No E-

Commerce

AHEE No No Yes Yes No Mobile

Cipher

We have implemented our proposed cryptosystem

in Java (JDK version 1.8) programming platform and

analyzed the performance of these quential and

parallel implementations with large data set. We

have used a system with Intel Core i5-5200U CPU

(i5 5th generation) having clock speed of 2.20 GHz

with 2 cores and 4 logical processors, 12 GB RAM,

and Windows 10 Operating System. Our encryption

algorithm is implemented with128-

bitsecretkeyandtherebyallcomputationsarerealized on

the same level of encryption. We have generated

plaintext as a series of random integers for all

arithmetic computations and used encrypted 64-bit

representation for integer. Thus, our data sets ranged

from 8 MiB to 64 MiB of plaintexts. We observed

that our parallel implementations provides over

performance improvement for all arithmetic

computations compared to its sequential counterpart.

We also implemented Search operation over a

dataset ranging from 8 MiB - 64 MiB of plaintext.

Our results show that parallel implementation

provides more than 80% improvement (i.e.,

execution time) over it’s sequential implementation.

In addition, the rate of improvement is higher with

increase in data size. On the other-hand, the degree

of parallelism (i.e., no of simultaneous threads) is

limited by number of available cores. The Figure. 2

shows experimental result for addition operation

considering sequential (one thread) and parallel

execution (varying number of threads). It has been

observed that the performance of addition operation

improves exponentially with increase in number of

threads for a fixed (constant) data size and it

stabilizes after reaching a certain threshold on

number of threads. On the other hand, the

performance improves linearly with varying data

size. The improvement achieved using multi-treaded

implementation is approximately over 90% (≈

91.66%). These results signify that the performance

of any computations in our proposed cryptosystem is

independent of key size. shows the performance of

multiplication operation. We observed that the

parallel implementations of multiplication provides

almost 90%(≈ 89.83%) improvement than its

sequential counterpart even if the multiplication

operation is computationally heavier than addition.

This is achieved due to decrease in throughput with

multiple threads.

The table reports time required for each

computations in seconds. Here, we observed that the

performance improvement is almost similar to

addition and multiplication with parallel

implementations.

6. Conclusion And Future Works

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 15

May 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 711

We have presented an efficient homomorphic

cryptosystem for implementing various benchmark

computations on ciphertext. The novelty of our

proposed implementation lies in execution of

"ciphertext refresh" procedure at KGS site that

provides secure data storage and necessary

computations on request. We have also analyzed the

performance of sequential and parallel

implementations of the heterogeneous computation

algorithms with varying data size and presented a

comparative study. This work provides a more

practical solution for secure data storage and efficient

realization of different computations on it without

compromising data security. The experimental

results show the efficacy of our system with 80%

improvement on execution time for parallel

implementations. In future, we aim at incorporating

function level encryption on ciphertext to harden the

security perimeter over remotely stored data in the

CSP site. We also plan to integrate Role Based

Access Control (RBAC) with our parallel

homomorphic encryption towards enforcing multi-

granular operational access rights to heterogeneous

stakeholders or roles.

REFERENCES

 [1] Craig Gentry. A fully homomorphic encryption

scheme. PhD thesis, Stanford University, 2009.

[2] Craigy Gentry. Fully homomorphic encryption

using ideal lattices. In Proceedings of the 41st ACM

Symposium on Theory of Computing STOC 2009,

pages 169–178, 2009.

 [3] Nick Howgrave-Graham. Approximate integer

common divisors. In Cryptography and Lattices,

pages 51–66. Springer, 2001.

 [4] Seny Kamara and Mariana Raykova. Parallel

homomorphic encryption. In International

Conference on Financial Cryptography and Data

Security, pages 213–225. Microsoft Research, 2013.

[5] Kristin Lauter, Michael Naehrig, and Vinod

Vaikuntanathan. Can homomorphic encryption be

practical?. Proceedings of the 3rd ACM workshop

on Cloud computing security workshop, pages 113–

124, 2011.

 [6] Jian Liu, Lusheng Chen, and Sihem Mesnager.

Partially homomorphic encryption schemes over

finite fields. IACR Cryptology ePrint Archive,

2016/430, 2016.

[7] Ronald L Rivest, Len Adleman, and Michael L

Dertouzos. On data banks and privacy

homomorphisms. Foundations of secure

computation, 4(11):169–180, 1978.

[8] Ronald L Rivest, Adi Shamir, and Leonard

Adleman. A method for

obtainingdigitalsignaturesandpublic-

keycryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[9] Marten Van Dijk, Craig Gentry, Shai Halevi, and

Vinod Vaikuntanathan. Fully homomorphic

encryption over the integers. In Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, pages 24–43. Springer,

2010.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

