e-ISSN: 2348-6848 p-ISSN: 2348-795X Available at https://edupediapublications.org/journals Volume 04 Issue 09

August 2017

Significance of Spatial Decision Supporting System for Geographic Infrastructure

Shyam Lal

Assistant Professor Fam.Govt

ABSTRACT

Information is very crucial component on which the whole process of

spatial decision making is based. Therefore, some relevant information is

required in order to perform the decision making process. Similarly, to

build geographic infrastructure, some relevant information is required so

that the best output can be obtained.

There come many situations during an infrastructure development project

when it becomes complex to take decision over some issues like space,

height and comfortable surroundings. These kinds of situations can be

easily handled with the help of a spatial decision supporting system which

is computer based. The current article highlights the role of spatial decision

supporting system for geographic infrastructure.

KEYWORDS:

Infrastructure, Decision, Spatial, Information

INTRODUCTION

International Journal of Research Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09 August 2017

The spatial decision supporting system makes it easy to take complex decisions. This system helps in understanding the complex problem and choosing the best way to execute the task.

In the spatial decision supporting systems, first of all, the problem is defined then goals and objectives are set. The third step in spatial decision supporting system is to look at the alternatives to perform the task. After that the task of evaluation of each and every alternative way is done. In the next stage, the best suitable alternative is chosen to go further and finally, that alternative is implemented. The following figure shows the general process of decision making.

Figure 1: General spatial decision making process

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09

August 2017

GIS software is an important tool of spatial decision making system.

Remote sensors provide useful data to GIS and spatial decision making

system.

SDSS are integrated computer systems that support decision makers in

addressing semistructured or unstructured spatial problems in an

interactive and iterative way with functionality for handling spatial and

nonspatial databases, analytical modeling capabilities, decision support

utilities such as scenario analysis, and effective data and information

presentation utilities.

By nature, spatial decision making situations are complex and ill-

structured, thus humans individuals cannot process all the necessary

collateral information present. Thus, in order to address complex spatial

problems, support systems are often necessary, which can help in

understanding the complex problem, from evaluation of the issue,

provide formulation of possible actions, simulate consequences of

decision possibilities and formulation of implementation strategies. The

use of computer based tools for spatial decisions are necessary because

complicated nature, requirement for accumulation, management,

analysis of a variety of data sets etc.

During past two decades, a huge advancement in development and

emergence of new technologies is observed. There are several tools,

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X

Volume 04 Issue 09 August 2017

technologies or systems available to support spatial decisions such as

GIS, DSS, Expert systems, remote sensing and spatial decision support

system. In its simplest form, GIS can be defined as "a computer based

system for capturing, storing, querying, analyzing and displaying

geospatial data.

SPATIAL DECISION SUPPORTING SYSTEM FOR GEOGRAPHIC

INFRASTRUCTURE

DSS have been immensely developed over the course of last several

decades with multidisciplinary aspect to support decision making. They

include analysis along with DBMS and user interface. The number and

diversity of DSS have grown significantly with greater computing power.

The drawback of DSS is that, they often do not handle spatial aspects of

Decision making, thus extension of concept of decision support system to

spatial decision support system has been necessary.

Remote sensing is extremely valuable way of developing usable geospatial

data for GIS and SDSS application. The main platforms for data

collections in remote sensing are satellites and airplanes. Remotely

sensed imagery benefits includes manual interpretation by mapping

features on earth's surface, repeated temporal recordings of the Earth's

surface for time-series analysis of changes, recording of meteorological

R

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09

August 2017

conditions across large areas and over short time periods, and recording

of wavelengths invisible to the human eye. As with GIS, the number of

remote sensing instruments and use of imagery have grown significantly

over the last few decades.

All of these technologies can play a crucial role in the development of

SDSS. The GIS software often plays a fundamental and central role in

SDSS. However, in order to truly support the spatial decision-making

process, GIS functionality must be extended or joined with other

technology, such as DSS and ES, in order to form true spatial decision

support systems.

A key to any successful SDSS is the development of effective mechanisms

for user interaction with software components. These mechanisms are

termed the dialog management component (DMC). The DMC provides the

interface between the user and the rest of the components of any SDSS.

It provides mechanisms whereby data and information are input to the

system from the user and output from the system to the user. As

mentioned earlier, spatial decision-making processes involve iterative,

interactive, and participative involvement of a decision maker or end

users. The user interface components of an SDSS provide these

functionalities and act as a channel through which the user connects to

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09

August 2017

the computer system to generate and compare different solutions to a

problem and to view potential outcomes from decision alternatives.

The importance of user interfaces has gained much attention in the past

two decades, mainly because there has been a realization that usability

is a key for the success of any software product. One can build an

advanced SDSS that might solve complex problems, but if the user

interfaces do not allow easy use, there is a high possibility for failure of

the system. Some of the following characteristics should be considered

during user interface design.

DISCUSSION

A region's infrastructure is a collection of public assets that can be

managed to maximize public profit. It is diverse and distributed

throughout the region, interacting in complex ways with the region's

people and landscape. Both private and public institutions have

responsibilities for the system's management. In other words, we can say

that, Public and private agencies have always tried to maintain their

infrastructure assets in good and serviceable condition at a minimum

cost; therefore, they practiced infrastructure management.

However, as most of the nation's infrastructure systems reached

maturity and the demands placed on them started to rapidly increasing,

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09

August 2017

infrastructure agencies started to focus on a systems approach for infrastructure management. The management task is beset by difficulties of data collection, measurement, and evaluation. This process has lead to today's Infrastructure Management concept. In continuation to this, intricate collections of materials, infrastructure, machinery and people, with countless spatial and temporal relationships and dependencies, require progressively more sophisticated tools to design and manage them.

One milestone in the development of engineering management systems is the concept of integrated infrastructure management systems. This type of system is complex and mandates a need for integration and consideration of data sharing and security. The existing databases and data management system design traditionally have not been effective at allowing division within the departments of infrastructures to use or share data as extensively or as easily as should be the case.

Spatial decision support systems (SDSS) are designed to help decision makers solve complex spatially related problems. The use of SDSS in various domains of Infrastructure like transport, utility, academic, construction, business analyses, public health, and hazard analysis is increasing tremendously. For example, businesses are using sophisticated SDSS to analyze customer information for marketing,

Available at https://edupediapublications.org/journals

p-ISSN: 2348-795X Volume 04 Issue 09

August 2017

e-ISSN: 2348-6848

customer relationship management, and generating business intelligence

to gain competitive advantage. Strategic Infrastructure Development is a

necessary Component of economic development and vitality. For the

same, requirements should be as effective and as efficient as possible in

the Planning, Construction and Operation of Strategic Infrastructure

investment.

GIS have emerged to meet ever-increasing demand of precise and timely

information. GIS specifically would be best to be used in the present

study for integration of various data sets and conducting spatial analysis

for decision making.

CONCLUSION

More recently, much attention has been paid to spatial analysis due to

merging of geographic information system (GIS) and satellite images for

designing and analyzing electrical distribution network. The conventional

means are however, not only difficult and time consuming but also

laborious.

Spatial Decision Support Systems are designed to help decision makers

solve complex spatially related problems and provide a framework for

integrating (a) analytical and spatial modeling capabilities, (b) spatial and

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09

August 2017

non-spatial data management, (c) domain knowledge, (d) spatial display capabilities, and (e) reporting capabilities.

REFERENCES

- 1. A.C. Lemer, PH.D. 1, MD, 2012, USA, Progress toward integrated infrastructure-assets management systems: gis and beyond, APWA International Public Works Congress NRCC/CPWA Seminar Series "Innovations in Urban Infrastructure".
- 2. Abdul Kadir Bin Taib JUPEM, Malaysia: The Current Status of Spatial Data Infrastructure in Malaysia, Map world forum 2010.
- 3. Abu Dhabi Spatial Data Infrastructure, components and status, Map Middle East 2013.
- 4. Adelino Ferreira and Anabela Duarte, Portugal (2014) TS37.9 A GIS-Based Integrated Infrastructure Management System, FIG Working Week 2014 and GSDI-8.
- Albrecht, Vancouver and Hung, Richmond, GIS for Municipal 5. Infrastructure Management Α Case Study proceedings.esri.com/library/userconf/proc00/professional/papers/PAP 523
- 6. Alcamo,2013. Environmental futures: practice of The environmental scenario analysis. Amsterdam: Elsevier.

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09 August 2017

- 7. AL-Hader, Dubai and Ahmad Rodzi, Malaysia 2011: Digital Infrastructure Management GIS Perspective, Map Malaysia
- 8. Alter, Steven L. Decision Support Systems: Current Practice and Continuing Challenges. Reading, MA: Addison-Wesley, 2010.