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ABSTRACT 
This paper is on the Minimization of 
Error in exponential model Estimation 
via Jackknife Algorithm. The data were 
on 25 samples of percentage sugar and 
percentage of Nitrogen in tobacco leaf 
for organic and inorganic chemical 
constituents. The study concerning the 
use of jackknife methods in estimating 
the parameters of non linear regression 
models have been identified in this 
paper. An algorithm for the estimation of 
nonlinear regression parameters was 
stated. For estimating these parameters, 
computer programs were written in 
Stata for the implementation of these 
algorithms. In the estimation of the 
nonlinear regression parameters, the 
results obtained from numerical 
problems using the Jackknife based 
algorithm developed yielded a reduced 
error sum of squares than the analytic 
result. As the number of d observations 

deleted in each re-sampling stage 
increases, so does the error sum of 
squares reduces minimally. This reveals 
the appropriateness of the algorithms for 
the estimation of nonlinear regression 
parameters and in the reduction of the 
error terms in nonlinear regression 
estimation. 
 
Key words: Jackknife algorithm, 
Bivariate non-linear regression,  Delete – 
d, Gauss-Newton 
 
Introduction 
The jackknife or “leave one out” 
procedure is a cross-validation technique 
first developed by Quenouille to 
estimate the bias of an estimator. John 
Tukey then expanded the use of the 
jackknife to include variance estimation 
and tailored the name of jackknife 
because like a jackknife-a pocket knife 
akin to a Swiss army knife and typically 
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used by boy scouts-this technique can be 
used as a “quick and dirty” replacement 
tool for a lot of more sophisticated and 
specific tools. Curiously, despite its 
remarkable influence on the statistical 
community, the seminal work of Tukey 
is available only from an abstract (which 
does not even mention the name of 
jackknife) and from an almost 
impossible to find unpublished note 
(although some of this note found its 
way into Tukey's complete work).  
 
The jackknife estimation of a parameter 
is an iterative process. First the 
parameter is estimated from the whole 
sample. Then each element is, in turn, 
dropped from the sample and the 
parameter of interest is estimated from 
this smaller sample. This estimation is 
called a partial estimate (or also a 
jackknife replication). A pseudo-value is 
then computed as the difference between 
the whole sample estimate and the 
partial estimate. These pseudo-values 
reduce the (linear) bias of the partial 
estimate (because the bias is eliminated 
by the subtraction between the two 
estimates). The pseudo-values are then 
used in lieu of the original values to 
estimate the parameter of interest and 
their standard deviation is used to 
estimate the parameter standard error 
which can then be used for null 
hypothesis testing and for computing 
confidence intervals. The jackknife is 
strongly related to the bootstrap (i.e., the 
jackknife is often a linear approximation 
of the bootstrap) which is currently the 
main technique for computational 
estimation of population parameters.  
 
Related Literature Review 
 

Batah et al (2008) carried out a research 
on the efficiency of modified Jackknife 
and ridge type regression estimators; a 
comparison. In their work, they 
proposed a new estimator known as, 
Modified Jackknife Ridge Regression 
Estimator (MJR). It was based on the 
criterion that combines the idea 
underlying both the Generalized Ridge 
Regression (GRR) and Jackknifed Ridge 
Regression (JRR) estimators. They 
investigated standard properties of this 
new estimator. From a simulation study, 
they found that the new estimator often 
outperforms the LASSO, and it was 
superior to both GRR and JRSS 
estimators, using the mean squared error 
criterion. The condition under which the 
MJR estimator was better than the other 
two competing estimators was also 
investigated. 
 
Shao and Rao (1993) carried out a 
research paper on Jackknife inference 
for heteroscedastic linear regression 
models. Inference on the regression 
parameters in a heteroscedastic linear 
regression model with replication is 
considered, using either the ordinary 
least-squares (OLS) or the weighted 
least-squares (WLS) estimator. A delete-
group jackknife method is shown to 
produce consistent variance estimators 
irrespective of within-group correlations, 
unlike the delete-one jackknife variance 
estimators or those based on the 
customary δ-method assuming within-
group independence. Finite-sample 
properties of the delete-group variance 
estimators and associated confidence 
intervals are also studied through 
simulation. 
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Hongchang and Yuhe (2013) worked on 
Jackknifed Liu estimator in linear 
regression models. In their paper, they 
introduced a generalized Liu estimator 
and jackknifed Liu estimator in a linear 
regression model with correlated or 
heteroscedastic errors. Therefore, they 
extended the Liu estimator. Under the 
mean square error (MSE), the jackknifed 
estimator was superior to the Liu 
estimator and the jackknifed ridge 
estimator. They also gave a method to 
select the biasing parameter for d. 
Furthermore, a numerical example was 
given to illustrate these theoretical 
results. 

Wu (1986) researched on Jackknife 
bootstrap and other re-sampling methods 
in regression analysis; motivated by a 
representation for the least squares 
estimator, they proposed a class of 
weighted jackknife variance estimators 
for the least squares estimator by 
deleting any fixed number of 
observations at a time. They are 
unbiased for homoscedastic errors and a 
special case, the delete-one jackknife, is 
almost unbiased for heteroscedastic 
errors. The method was extended to 
cover nonlinear parameters, regression 
M-estimators, non-linear regression and 
generalized linear models. Three 
bootstrap methods were considered. Two 
were shown to give biased variance 
estimators and one does not have the 
bias-robustness property enjoyed by the 
weighted delete-one jackknife. A general 
method for re-sampling residuals was 
proposed, and some simulation results 
were reported. 

Ekezie et al (2014) researched on 
estimation of bivariate linear regression 

data via jackknife algorithm. The data 
used for the research were collected 
from Orji Town Primary School, Owerri 
North Imo State Nigeria. The data were 
on heights and weights of 20 randomly 
selected pupils in primary five and six. 
The jackknife algorithm was used to 
estimate the regression parameters, and 
the bias of the estimate. The result of 
their analysis revealed that the bias result 
was insignificant. For the regression, the 
jackknife parameters are linear functions 
of the standard estimates, which implies 

that the values of *
nŶ  can be perfectly 

predicted from the values of nŶ . The 
jackknife predicted values were 
calculated in their analysis. 
 
Meterials and Method 
 
Given a model of the form 

ε+= ),,,,,,( 2121 jk bbbXXXfY KK

  … (1) 
where the b’s are the parameters, X’s are 
the predictor variables and the error term 
ε∼N(0, σ2) independently identically 
distributed and are uncorrelated. 
Equation (1) is assumed to be 
intrinsically nonlinear. 
 
Suppose we have a sample of n 
observations on the Y and X’s, then, we 
can write equation. 
 

ijikii bbbXXXfY ε+= ),,,,,,( 2121 KK

; i = 1, 2, …, n … (2) 
The n-equation can be written in a 
matrix notation as 
 ε+= ),( bXfY   

    … (3) 
where  
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The error sum of squares for the nonlinear model is defined as  

 { }2

1

),()( bXfYSQ ii

n

i

−== ∑
=

ε    … (4) 

Let the least square estimates of b byb̂ , these estimates minimize the S(ε). The least 
square estimates of b are obtained by differentiating (4) with respect to b, equate to zero 

and solve for b̂ , this results in J normal equations: 
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bXfY ; i =1, 2, …, n; p = 1, 2, …, J   (5) 

In estimating the parameters of nonlinear regression model, we use the Guass-Newton 
method based on Taylor’s series to approximate equation (3). Now, considering the 
function f(X, b) which is the deterministic component of  
 iii bXY ε+= ),(  i = 1, 2,…, n    … (6) 

Let b0 be the initial approximate value of b. Applying Taylor’s series expansion of 
),( bXf i  about b0., we have the linear approximation 

 
0

),()(),(),( 00

bb

iii bXf
b

bbbXfbXf
=∂

∂−+=   … (…) 

Substituting expressions (7) in (6), we get 

( ) ipp

bb

i

i

J

i
ii bbbXf

b
bXfY ε+−









∂
∂+−

=
=
∑ 0

1

0

0

),(),(  i = 1, 2, …, n; p = 1, 2, …, J .. 

(8) 
Equation (8) may be viewed as a linear approximation in a neighborhood of the starting 
value b0. Let  

 ),( 00 bXff ii =  
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Hence, equation (8) becomes 

 ippi

J

p
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1

0 ,  i = 1, 2, …, n   … (9) 

 ippi
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In a matrix form, we have 
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In a Compactable form, equation (11) becomes 
 Y – f0 = Z0β0 + ε      … (12) 
where 
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we obtain the sum of squares error (SSε) 

 ( )( ) ( )( )000000)( ββεεε ZfYZfYSS −−′−−=′=  
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( )00000 ˆ)( βZZZfY =′−   … (13) 
Hence, 

 ( ) ( ) 10000ˆ −′′−= ZZZfYβ  … (14) 

Therefore, the least square estimates of β0 is 

 ( ) )(ˆ 001000 fYZZZ −= ′−′β   … (15) 

Thus, ( )′= 00
2

0
1

0 ˆ,,ˆ,ˆˆ
Jββββ K  minimizes the error sum of squares 
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Now, the estimates of parameters bp of non-linear regression (1) are 

 001 ˆ
ppp bb += β ; p = 1, 2, …, J  

Iteratively, equation (17) reduces to  



International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

 

Volume 02 Issue 02 
February 2015 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 1344  
 

 

rrr

rrr

bb

bb

bb

bb

+=
+=

+=
+=

+

−−

β
β

β
β

ˆ

ˆ

ˆ

ˆ

1

11

112

001

MMM

 

Thus 

 ( ) )(
11 rrrrrr fYZZZbb −+= ′−′+    … (18) 

where ( ) )(ˆ 1 rrrrr fYZZZ −= ′−′β  are the least squares estimates of β obtained at the (r + 

1)th iterations. The iterative process continues until δ
θ

<
−+

)(

)()1(

ˆ
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r

p

r

p

r

p bb  

where 510−=δ  is the error tolerance (Smith and Draper (1998); Nduka (1999)). 
 
After each iteration, )(* εS  is evaluated to check if a reduction in its value has actually 
been achieved. At the end of the (r + 1)th iteration, we have 
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and iteration is stopped if convergence is achieved. The final estimates of the parameters 

at the end of the (r + 1)th iteration are: )1()1(
2

)1(
1

ˆ,,ˆ,ˆ +++ r

j

rr bbb K . 

 
Jackknife Delete-One Algorithm for 
the Estimation of Non-linear 
Regression Parameters 

Let ( )′= jiii ZYW ,  vector denotes the 

values associated with ith (w1, w2, …, 
wn) observation sets. The steps of the 
delete-one jackknife regression are as 
follows. 
 
Given randomly drawn sample of size n 
from a population and label the elements 
of the vector Wi = (Yi, Zji)′ as the vector 
Y i = (y1, y2, …, yn)′ be the response 
variables, Zji = (zj1, zj2, …, zjn)′ is the 
matrix of dimension n × k for the 
predictor variables, where j = 1, 2, …, k 
and i = 1, 2, …, n. 
Step 1. Omit first row of the vector Wi = 

(Y i, Zji)′ and label remaining n – 
1 observation sets 

( )′= )()(
3

)(
2

)( ,,, J
n

JJJ
i yyyY K  and 

( )′= )()(
3

)(
2

)( ,,, J
jn

J
j

J
j

J
ji zzzZ K  as the 

first delete-one Jackknife sample 
( ))(

1
JW . 

Step 2. Calculate the least square 
estimates for nonlinear 
regression coefficient from the 
first jackknife sample; 

)()(ˆ 10 fYZZZ −′′= −β . 

Step 3. Compute 001 ˆˆˆ β+= bb  using the 

Guass-Newton method, the 1b̂  
value is treated as the initial 
value in the first approximated 
linear model. 

Step 4. We return to the second step and 

again compute s'β̂ . At each 

iteration, new s'β̂  represent 
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increments that are added to the 
estimates from the previous 
iteration according to step 3 and 

eventually find 2b̂ , which is 
112 ˆˆˆ β+= bb  up to 

rrr bb β̂1 +=+ . 
Step 5. Stopping Rule; this iteration 

process continues until 

δ<
−+

)(

)()1(

ˆ

ˆˆ

r

p

r

p

r

p

b

bb
, where δ = 10-

5, for the values of 
)1()2()1( ˆ,,ˆ,ˆ +r

ppp bbb K  from the first 

delete-one Jackknife estimates 
)1(ˆ Jb . 

Step 6. Then omit second row of the 
vector ),( ′= jiii ZYW  and label 

remaining n – 1 sized 
observation sets 

( )′= )()(
3

)(
1

)( ,,, J
n

JJJ
i yyyY K

( )′= )()(
3

)(
1

)( ,,, J
jn

J
j

J
j

J
ji zzzZ K  as 

( ))(
2

JW  and repeat steps 2 to 5 
above for the estimate of 

regression coefficients )2(ˆ Jθ . 
Similarly, omit each one of the n 
observation sets and estimate the 
non linear regression coefficients 
as in the step 2 to 5 above for 

)(ˆ Jib alternatively, where )(ˆ Jib  is 
Jackknife regression coefficient 
vector estimated after deleting of 
ith observation set from Wi.. 

Step 7. Obtain the probability 
distribution 

( ) )()2()1()( ˆ,,ˆ,ˆ,ˆ JnJJJ bbbbF K  of 
Jackknife estimates 

)()2()1( ˆ,,ˆ,ˆ JnJJ bbb K . 

Step 8. Calculate the jackknife 
regression coefficient estimate 

which is the mean of the ( ))(ˆ JbF  
distribution [Obiora-Ilonu et al 
(2012)] as; 

 )(

)(

1)( ˆ
ˆ

ˆ Ji

Ji
n

rJ b
n

b
b ==

∑
=  

  … (21) 
 
Jackknife Delete-d Algorithm for 

Estimation of Non-Linear 
Regression 

Let ( )′= jiii ZYW ,  vector denotes the 

values associated with ith (w1, w2, …, 
wn) observation sets. Draw a random 
sample of size n from the observation set 
(population) and label the elements of 
the vector Wi(Y i, Zji)′ as the vector Yi = 
(y1, y2, …, yn)′ be the response variables, 
Zji = (zj1, zj2, …, zjn)′ be the matrix of 
dimension n × k for the predictor 
variables, where j = 1, 2, …, k and i = 1, 
2, …, n. 
 
Stage 1: Divide the sample into “s” 

independent group of size d. 
Stage 2: Omit first d observation set 

from full sample at a time and 
estimate the nonlinear regression 

parameter )( 1ˆ ddb from (n – d) 
remaining observation set using 
the least square estimate for the 
nonlinear regression parameter 
from the first delete-d sample; 

)()(ˆ 10 fYZZZ −′′= −β . 

Stage 3: Compute 001 ˆˆˆ β+= bb  using 
the Guass-Newton method, the 

1b̂  value is assumed as the initial 
value in the first approximated. 
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Stage 4: Repeat the second step and 

again compute s'β̂ . At each 

iteration, new s'β̂  represent 
increments that are added to the 

estimates 1b̂  from the previous 
iteration according to stage 3 and 

eventually obtain 112 ˆˆˆ β+= bb  

up to rrr bb β̂ˆˆ 1 +=+  and 
consequently 

)()(ˆˆ 11 rrrrrr fYZZZbb −+= ′−′+

.. 
Stage 5: Stopping Rule; the iteration 

process continues until 

δ<
−+

)(

)()1(

ˆ

ˆˆ

r

p

r

p

r

p

b

bb , where δ = 10-

5, is the tolerance magnitude and 
the parameters 

)1()2()1( ˆ,,ˆ,ˆ +r

ppp bbb K  are computed 

from (n – d) delete-d samples 
)( 1ddW . 

Stage 6: Omit second d observation set 
from full sample at a time and 
estimate the nonlinear regression 

parameters )( 2ˆ ddb from remaining 
(n – d) observation set based on 
the delete-d sample; and repeat 
stage 3 to stage 5 for the second 
delete-d sample. 

Stage 7: Alternatively omit each d of the 
n observation set and estimate 

the parameters as )(ˆ kddb  where 
)(ˆ kddb is the Jackknife regression 

parameters vector estimates after 
deletion of kth d observation set 
from full sample, for k = 1, 2, …, 

s; where 







=

d

n
s , and 1 < d < n – 

1; where d is an integer. 

Stage 8: Obtain the probability 

distribution  ( ))(ˆ dd

pbF  of 

nonlinear regression parameter 

estimates )()()( ˆ,,ˆ,ˆ 21 sdd

p

dd

p

dd

p bbb K . 

Stage 9: Calculate the nonlinear 
regression parameter estimates 

Jp
s

b
b
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p

n
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p ,,2,1,

ˆ
ˆ
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1)(
K==

∑
=

   …
 (22) 

Standard error for the nonlinear 

regression parameters )(ˆ dd

pb  is  
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Data Analysis 
The data used for this research was 
extracted from Neil H.T. (2002), 
Applied Multivariate Analysis, Exercises 
4.3 page 216. A sample of 25 samples of 
tobacco leaf  
for organic and inorganic chemical 
constituents was used for the study. The 
dependent and independent variables 
extracted are; 
Y: Percentage sugar in the leaf 
X: Percentage of Nitrogen 
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Table 1: Data on Percentage sugar in the leaf and Percentage of Nitrogen 
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Figure1: Scatter Plot and Fitted Nonlinear Regression Function 
 
Table 2: Analytical Result for the Residual Sum of Squares for Data in Table 1 

Iteration Residual Sum of Squares 
0 51.60231 
1 51.4928 
2 51.4928 

 
Table 3: Summary Results of the Analytical, Jackknife Delete-1 and Jackknife 
Delete – d Techniques and their Least Squares Criterion Measure 

 Analytic Delete-1 Delete-2 Delete-3 Delete-4 Delete-5 Delete-6 
b1 33.35535 32.37337 30.38542 30.11572 30.53931 29.61913 30.01736 
b2 0.72265 0.73045 0.75410 0.75564 0.74833 0.76067 0.75743 

SSε 51.49279 43.57664 40.42682 37.51778 31.94526 30.09380 28.14058 

 
 

 1 2 3 4 5 6 7 8 9 10 11 12 
Y 20.05 12.58 18.56 18.56 14.02 15.64 14.52 18.52 17.84 13.38 17.55 17.97 

X 2.02 2.62 2.08 2.20 2.38 2.03 2.87 1.88 1.93 2.57 1.95 2.03 

13 14 15 16 17 18 19 20 21 22 23 24 25 
14.66 17.31 14.32 15.05 15.47 16.85 17.42 18.55 18.74 14.79 18.86 15.62 18.56 

2.50 1.72 2.53 1.90 2.18 2.16 2.14 1.98 1.89 2.07 2.08 2.21 2.00 
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Delete-7 Delete-8 Delete-9 Delete-10 Delete-11 Delete-12 Delete-13 Delete-14 
32.75518 32.05469 31.78438 29.24974 29.10620 28.68749 27.73390 32.88183 
0.72518 0.73195 0.73452 0.76596 0.76752 0.77121 0.78457 0.72515 
26.64435 26.21737 26.12614 24.76304 24.73509 23.73708 23.58772 22.05071 
 
Delete-15 Delete-

16 
Delete-
17 

Delete-
18 

Delete-19 Delete-20 Delete-
21 

Delete-22 

29.62681 56.78670 50.30860 52.78934 61.35862 57.90773 79.55032 102.46470 
0.76340 0.56263 0.59822 0.58370 0.54020 0.55440 0.47696 0.43203 
21.88276 11.18568 10.48958 10.39654 9.66152 9.43320 9.21093 1.44551 
 
Interpretation 
The least squares criterion measure for 
the starting values has been reduced in 
the first iteration and also further 
reduced in the second iterations 
respectively. The second iteration led to 
no change in either the least squares 
criterion measure. Hence, convergence is 
obtained, and the iterations end. Table 3 
displays the results of the analytical and 
the Jackknifes computation. The fitted 
regression functions for both analytical 
and Jackknifes delete -1 computation 
are:  

( )XY 72265.035535.33ˆ = and 

( )XY 73045.037337.32ˆ = respectively
.  
 
The sums of squares error for the 
analytical and Jackknifes computation 
are also recorded in the Table 3. Also, as 
the number of d observations deleted in 
each re-sampling stage increases, the 
error sums of squares decreases 

minimally.  

  
Conclusion 
The Jackknife algorithm in estimation of 
the parameters of nonlinear regression 
model implementation in exponential 
regression model has been explained. 
The results obtained as shown in Tables 
2 and 3 indicate that the Jackknife 

methods produced a minimum error sum 
of squares than the analytical method. 
We also observe that as the number of d 
observations deleted in each re-sampling 
stage increases, the error sum of squares 
decreases minimally. Hence, the 
Jackknife techniques yielded 
approximately the same inference as the 
analytical method with a better reduced 
error sum of squares.  
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