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ABSTRACT

This paper is on the Minimization of
Error in exponential model Estimation
via Jackknife Algorithm. The data were
on 25 samples of percentage sugar and
percentage of Nitrogen in tobacco |eaf
for organic and inorganic chemical
constituents. The study concerning the
use of jackknife methods in estimating
the parameters of non linear regression
models have been identified in this
paper. An algorithm for the estimation of
nonlinear regression parameters was
stated. For estimating these parameters,
computer programs were written in
Sata for the implementation of these
algorithms. In the estimation of the
nonlinear regression parameters, the
results obtained from numerical
problems using the Jackknife based
algorithm developed yielded a reduced
error sum of sguares than the analytic
result. As the number of d observations

deleted in each resampling stage
increases, so does the error sum of
squares reduces minimally. This reveals
the appropriateness of the algorithms for
the estimation of nonlinear regression
parameters and in the reduction of the
error terms in nonlinear regression
estimation.

Key words: Jackknife algorithm,
Bivariate non-linear regression, Delete —
d, Gauss-Newton

Introduction

The jackknife or “leave one out”
procedure is a cross-validation technique
first developed by Quenouille to
estimate the bias of an estimator. John
Tukey then expanded the use of the
jackknife to include variance estimation
and tailored the name of jackknife
because like a jackknife-a pocket knife
akin to a Swiss army knife and typically
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used by boy scouts-this technique can be
used as a “quick and dirty” replacement
tool for a lot of more sophisticated and
specific tools. Curiously, despite its
remarkable influence on the statistical
community, the seminal work of Tukey
is available only from an abstract (which
does not even mention the name of
jackknife) and from an almost
impossible to find unpublished note
(although some of this note found its
way into Tukey's complete work).

The jackknife estimation of a parameter
is an iterative process. First the
parameter is estimated from the whole
sample. Then each element is, in turn,
dropped from the sample and the
parameter of interest is estimated from
this smaller sample. This estimation is
called a partial estimate (or also a
jackknife replication). A pseudo-value is
then computed as the difference between
the whole sample estimate and the
partial estimate. These pseudo-values
reduce the (linear) bias of the partial
estimate (because the bias is eliminated
by the subtraction between the two
estimates). The pseudo-values are then
used in lieu of the original values to
estimate the parameter of interest and
their standard deviation is used to
estimate the parameter standard error
which can then be wused for null
hypothesis testing and for computing
confidence intervals. The jackknife is
strongly related to the bootstrap (i.e., the
jackknife is often a linear approximation
of the bootstrap) which is currently the

Batah et al (2008) carried out a research
on the efficiency of modified Jackknife
and ridge type regression estimators; a
comparison. In their work, they
proposed a new estimator known as,
Modified Jackknife Ridge Regression
Estimator (MJR). It was based on the
criterion that combines the idea
underlying both the Generalized Ridge
Regression (GRR) and Jackknifed Ridge
Regression (JRR) estimators. They
investigated standard properties of this
new estimator. From a simulation study,
they found that the new estimator often
outperforms the LASSO, and it was
superior to both GRR and JRSS
estimators, using the mean squared error
criterion. The condition under which the
MJR estimator was better than the other
two competing estimators was also
investigated.

Shao and Rao (1993) carried out a
research paper on Jackknife inference
for heteroscedastic linear regression
models. Inference on the regression
parameters in a heteroscedastic linear
regression model with replication is

considered, using either the ordinary
least-squares (OLS) or the weighted
least-squares (WLS) estimator. A delete-
group jackknife method is shown to
produce consistent variance estimators
irrespective of within-group correlations,

unlike the delete-one jackknife variance
estimators or those based on the
customary 6-method assuming within-

group independence. Finite-sample
properties of the delete-group variance

main technique for computational estimators and associated confidence

estimation of population parameters. intervals are also studied through
simulation.

Related Literature Review
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Hongchang and Yuhe (2013) worked on
Jackknifed Liu estimator in linear
regression models. In their paper, they
introduced a generalized Liu estimator
and jackknifed Liu estimator in a linear
regression model with correlated or
heteroscedastic errors. Therefore, they
extended the Liu estimator. Under the
mean square error (MSE), the jackknifed
estimator was superior to the Liu
estimator and the jackknifed ridge
estimator. They also gave a method to
select the biasing parameter fat
Furthermore, a numerical example was

given to illustrate these theoretical
results.
Wu (1986) researched on Jackknife

bootstrap and other re-sampling methods
in regression analysis; motivated by a
representation for the least squares
estimator, they proposed a class of
weighted jackknife variance estimators

for the least squares estimator by
deleting any fixed number of
observations at a time. They are

unbiased for homoscedastic errors and a
special case, the delete-one jackknife, is
almost unbiased for heteroscedastic
errors. The method was extended to
cover nonlinear parameters, regression
M-estimators, non-linear regression and
generalized linear models. Three
bootstrap methods were considered. Two
were shown to give biased variance
estimators and one does not have the
bias-robustness property enjoyed by the
weighted delete-one jackknife. A general
method for re-sampling residuals was
proposed, and some simulation results

data via jackknife algorithm. The data
used for the research were collected
from Orji Town Primary School, Owerri
North Imo State Nigeria. The data were
on heights and weights of 20 randomly
selected pupils in primary five and six.
The jackknife algorithm was used to
estimate the regression parameters, and
the bias of the estimate. The result of
their analysis revealed that the bias result
was insignificant. For the regression, the
jackknife parameters are linear functions
of the standard estimates, which implies

that the values of?; can be perfectly

predicted from the values of,. The

jackknife  predicted values were
calculated in their analysis.

Meterials and Method

Given a model of the form
Y =f(X,X,.....X,,b,b,,...

1)
where the b’s are the parameters, X’s are
the predictor variables and the error term
eIN(0, 0? independently identically
distributed and are uncorrelated.
Equation (1) is assumed to
intrinsically nonlinear.

b)+e

be

Suppose we have a sample of n
observations on the Y and X’s, then, we
can write equation.

Y= (X, X, X, boh,

; i=1,2,...,n 2
The n-equation can be written in a
matrix notation as

b) +£

were reported. Y=1f(X,b)+¢
_ .. (3)
Ekezie et al (2014) researched on where
estimation of bivariate linear regression
Available onlinehttp://internationaljournalofresearch.org/ Page |1341
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Y, | (Xu X, o Xo]  [B]  [e&]
Y = ¥2 , X = X.“ X.” X.” , b= b? €= 8.2 and E€) = 0
A Xy Xy e X b | &, ]
The error sum of squares for the nonlinear modeéfsed as
Q=s(e)=); {¥ - (X, b)f . @

Let the least square estimates of hythese estimates minimize thee)l5(The least
square estimates of b are obtained by differentia4) with respect to b, equate to zero

and solve forb, this results in J normal equations:

0Q_a v K}
b, = 2y, f(x"b)]abp(f(x“b)

—2[2 Y{ f(X,,b)} - f(Xi,B)LZf(Xi,b)“ =0

P =%

n

ZY[ f(X,,b) —i f(XI,b){ f(XI,b)} =0

i=1

> {Y;f(X,B)}%f(X,b)} =0:i=1,2, ... n:p=1,2..,3 (5)

In estimating the parameters of nonlinear regressiodel, we use the Guass-Newton
method based on Taylor's series to approximate tequg3). Now, considering the
function f(X, b) which is the deterministic compaonef

Y =(X,,b)+¢ i=1,2,. (6)
Let b’ be the initial approximate value of b. ApplylngyT(Hs series expansion of
f (X,,b) about B., we have the linear approximation

f(X.,b)= f(Xi,b°)+(b—b°)%f(Xi,b)

b=b°
Substituting expressions (7) in (6), we get

Yi—f(Xi,b°)+ZJ: {%f(xi,b)} (b, -b)+ei=1,2 ..mp=12..3.
=1 b=h°

(8)

Equation (8) may be viewed as a linear approximaitioa neighborhood of the starting
value B. Let
f0=f(X,b%
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0 — _ O
'Bp - bp bp

Z, = if(Xi,b) ; fori=1,2,..,mandp=1,2,..,7J
ob, o
Hence, equation (8) becomes

J
— £0 0 0 H—
Y =10+> Z0 B+, i=1,2,...,n (9
p=l
0 ’ 0 0
Y, -£0=> Z3BS+g, i=1,2,..,n .. (10
p=L
In a matrix form, we have
v, - f,° zh ozy oz BY £,
Yo- 87 |2 Zan . Z5,||B7, € (11)
Yn - fn0 Zlon Zgn Z?n ﬂlo g"
In a Compactable form, equation (11) becomes
Y-f0=27B+¢ (12)
where
Zy .. 25
0 0 U
y-fo=[, -0y, -6y, -f0]z°= Z:lz Z“ B =82 B2)e=(c,.....
Zlon Z;’n

we obtain the sum of squares errorSS
sse=(e)=({v-1°)-z°8°) (v~ 1°)-2°8°)
=(v- o) (r-1o)-ofr- o) @)+ (2°8°) (2°8°)

a$€ =—2(Y fO)!ZO+2(ZOﬁO) 20:0
0p°
(Y- 10z =z°(z°%°) . 13
Hence,
B=(v-f)z°(z°z°)" .. (4
Therefore, the least square estimate°a$
B =(z°2°)"z9(v - £9) .. (15)
Thus, 3° = ([5’0,[?5’[3’5’) minimizes the error sum of squares
2
n J ~
S* (&)=, (Yi -f0-> zgiﬁgJ .. (16)
i=1l p=1

Now, the estimates of parametepobnon-linear regression (1) are
— 0 0. . _
=p,+b;p=1,2 ..

Iteratively, equation (17) reduces to
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I
blleAO_'_bO
bzzlg"l_'_bl
br:ﬂ’\rfl_'_brfl
br+1:B‘r+br

Thus
b =pb + (Zr'zr)‘lzr'(Y —f r)

(18)

where 3" = (Z“Zr)_lzr'(Y - ") are the least squares estimatep obtained at the (r +

1)th iterations. The iterative process continued +pp

J(r+1) _ /(N

<0

A (r)
gp

where d =107 is the error tolerance (Smith and Draper (1998 (1999)).

After each iteration S* (¢) is evaluated to check if a reduction in its vahas actually
been achieved. At the end of the (r + 1)th itergtiwe have

n

S*(e) =) (Yi 1=y ZL/?LJ

i=1

(19)

and iteration is stopped if convergence is achieVée final estimates of the parameters
at the end of the (r + 1)th iteration ateft™ ,b"™,...,b"™.

Jackknife Delete-One Algorithm for
the Estimation of  Non-linear
Regression Parameters

Let V\/i:(Yi,Zji) vector denotes the

values associated with ith {ww,, ...,
wn) observation sets. The steps of the
delete-one jackknife regression are as
follows.

Given randomly drawn sample of size n
from a population and label the elements
of the vector W= (Yi, Z;)" as the vector
Yi = (W1, Yo, ..., Yn)' be the response
variables, £ = (21, Z2, ..., Zn)’ is the
matrix of dimension nx k for the
predictor variables, where j =1, 2, ..., k
andi=1,2,...,n.
Step 1. Omit first row of the vector W
(Yi, Z;i)' and label remaining n —
1 observation sets

Yi“’=(y§“,y§”,...,y§“)' and

z0 =(29,29,...,29) as the
first delete-one Jackknife sample
(Wl(a))_

Step 2. Calculate the least square
estimates for nonlinear

regression coefficient from the
first jackknife sample;

B°=(22)"z'(Y-1).

Step 3. Computd' =b° + /3° using the
Guass-Newton method, th&*
value is treated as the initial
value in the first approximated

linear model.
Step 4. We return to the second step and

again compute,@"s. At each
iteration, new ,3"5 represent
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increments that are added to the
estimates from the previous
iteration according to step 3 and

eventually find b?, which is
b*=b"+ 3 up to

b =b + /.
Step 5. Stopping Rule; this iteration
process continues until
6<r+1) —_K[O
L P2 1<0, whered = 10
b
p
5 for the values of

6;1),6;2’,...,65”1) from the first
delete-one Jackknife estimates
e

Step 6. Then omit second row of the
vector W =(Y,,Z;)" and label

remaining n - 1 sized
observation sets
@ — [y O )
Y, _(yl 1Yz aeea Y )
@) = () )
ZJ.i —(zjl 123 e 25 ) as

(W) and repeat steps 2 to 5
above for the estimate of

regression  coefficients 62
Similarly, omit each one of the n
observation sets and estimate the
non linear regression coefficients
as in the step 2 to 5 above for

b alternatively, whereb™ is
Jackknife regression coefficient
vector estimated after deleting of
ith observation set from W

Step 7. Obtain the probability
distribution
FBe )b 607 B of
Jackknife estimates

S(3) |[R(32) (Jn)
b“™" b“, ..., b"".

Step 8. Calculate the jackknife
regression coefficient estimate
which is the mean of thF(b“))
distribution [Obiora-llonu et al
(2012)] as;

SEE))
p = =
n

=p

(21)

Jackknife Delete-d Algorithm for
Estimation of Non-Linear
Regression

Let V\/i:(Y,Zji) vector denotes the

values associated with ith {ww,, ...,
wn) observation sets. Draw a random
sample of size n from the observation set
(population) and label the elements of
the vector WY, Z;j)' as the vector Y=

(Y1, Y2, ..., Yn)' be the response variables,
Zj = (%1, Zo, ..., 3n)' be the matrix of
dimension n x k for the predictor
variables, where j=1,2, ..., kandi=1,
2, ..., N

Stage 1: Divide the sample into “s”
independent group of size d.

2: Omit first d observation set
from full sample at a time and
estimate the nonlinear regression

parameter b“” from (n — d)
remaining observation set using
the least square estimate for the
nonlinear regression parameter
from the first delete-d sample;
B°=(22)*Z'(Y - f).

Stage 3: Computéd' =h° + 3° using
the Guass-Newton method, the

Stage

~

b' value is assumed as the initial
value in the first approximated.
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Stage 4: Repeat the second step and Stage 8:

again compute,[?'s. At each

iteration, new ,@'s represent
increments that are added to the

estimatesb' from the previous
iteration according to stage 3 and

eventually obtainb? =b'+ /3"
up to b =b +j
consequently

br+1 - br +(Zr’zr)—1zr’ (Y _ f r)

and

Stage 5: Stopping Rule; the iteration
process continues until
by™ —b,” < & Whered = 10

6“)
p

5, is the tolerance magnitude and
the parameters
b, b?,...,b™ are computed
from (n — d) delete-d samples
W(ddl) i

Stage 6: Omit second d observation set
from full sample at a time and
estimate the nonlinear regression

parametersb“ from remaining
(n — d) observation set based on
the delete-d sample; and repeat
stage 3 to stage 5 for the second
delete-d sample.

Stage 7: Alternatively omit each d of the
n observation set and estimate

(ddy)

the parameters a® where

~

b“’is the Jackknife regression
parameters vector estimates after
deletion of kth d observation set
from full sample, fork =1, 2, ...,

S; Wheres:(;]j, andl<d<n-

1; where d is an integer.

Obtain
distribution

the probability
A (dd)
F(bp ) of
nonlinear regression parameter
estimatedd™, b . b
N O PPN A

Stage 9: Calculate the nonlinear
regression parameter estimates

i fe)
~ p

(dd) — Y=L _
A —T, p=12...,J
(22)
Standard error for the nonlinear

regression parametels™” is

® 6| 2a sy
o)

(23)
Data Analysis
The data used for this research was
extracted from Neil H.T. (2002),
Applied Multivariate Analysis, Exercises
4.3 page 216. A sample of 25 samples of
tobacco leaf
for organic and inorganic chemical
constituents was used for the study. The
dependent and independent variables
extracted are;
Y: Percentage sugar in the leaf
X: Percentage of Nitrogen
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Table 1: Data on Percentage sugar in the leaf anckRtage of Nitrogen
13 14 15 16 17 18 19 20 21 22 23 24 25
14.66 | 17.31 | 1432 | 15.05 | 15.47 | 16.85 | 17.42 | 18,55 | 18.74 | 14.79 | 18.86 | 15.62 | 18.56
250 | 1.72 2.53 1.90 2.18 2.16 2.14 1.98 1.89 2.07 2.08 2.21 2.00
1 2 3 4 5 6 7 8 9 10 11 12
Y 20.05 | 12.58 | 18.56 | 18.56 | 14.02 | 15.64 | 14.52 | 18.52 | 17.84 | 13.38 | 17.55 | 17.97
X 2.02 2.62 2.08 2.20 2.38 2.03 2.87 1.88 | 1.93 257 195 2.03
Scatter plot and fitted Nonlinear Regression Function
21+
20 -
> 19
3
g 181
8 17-
(=]
T 164
8 154
=]
(1]
L 144
13 7
12_I T T T T T T
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
% of Nitrogen X

Figurel: Scatter Plot and Fitted Nonlinear Regmes&unction

Table 2: Analytical Result for the Residual SunBqgtiares for Data in Table 1

Iteration Residual Sum of Squares
0 51.60231
1 51.4928
2 51.4928

Table 3: Summary Results of the Analytical, Jackknife Deletdd and Jackknife
Delete — d Techniques and their Least Squares Crien Measure

Analytic | Delete-1 | Delete-2 | Delete-3 | Delete-4 | Delete-5 Delete-6

b, | 33.3553! | 32.3733 | 30.3854. | 30.1157. | 30.5393. | 29.6191. 30.0173i
b2 0.7226' | 0.7304! | 0.7541( | 0.7556¢ | 0.7483! | 0.7606 0.7574:
sse | 51.4927' | 43.5766. | 40.4268: | 37.5177i | 31.9452( | 30.0938 28.1405:
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Delete-7 | Delete-8 | Delete-9 | Delete-10 | Delete-11 | Delete-12 | Delete-13 | Delete-14
32.7551i | 32.0546' | 31.7843: | 29.2497. | 29.1062! | 28.6874' | 27.7339( | 32.8818:
0.7251¢ | 0.7319' | 0.7345: | 0.7659¢ 0.7675: 0.7712: 0.7845° 0.7251!
26.6443!| 26.2173 | 26.1261. | 24.7630. | 24.7350! | 23.7370! | 23.5877. | 22.0507:
Delete-15 | Delete- Delete- Delete- Delete-12 | Delete-20 | Delete- Delete-22
16 17 18 21

29.6268. | 56.7867( | 50.3086! | 52.7893. | 61.3586; | 57.9077: | 79.5503; | 102.4647
0.7634( 0.5626: | 0.5982: | 0.5837( | 0.5402( 0.5544( 0.4769¢ | 0.4320:
21.88271 | 11.1856: | 10.4895! | 10.3965: | 9.6615: 9.4332( 9.2109: | 1.4455:

Interpretation

The least squares criterion measure for
the starting values has been reduced in
the first iteration and also further

reduced in the second iterations
respectively. The second iteration led to
no change in either the least squares
criterion measure. Hence, convergence is
obtained, and the iterations end. Table 3
displays the results of the analytical and
the Jackknifes computation. The fitted

regression functions for both analytical

and Jackknifes delete -1 computation
are:

Y =33.3553%0.72269" and
Y= 32.373370.73049" respectively

The sums of squares error for the
analytical and Jackknifes computation
are also recorded in the Table 3. Also, as
the number ofd observations deleted in

each re-sampling stage increases, the
error sums of squares decreases
minimally.

Conclusion

The Jackknife algorithm in estimation of
the parameters of nonlinear regression
model implementation in exponential
regression model has been explained.
The results obtained as shown in Tables
2 and 3 indicate that the Jackknife

methods produced a minimum error sum
of squares than the analytical method.
We also observe that as the number of d
observations deleted in each re-sampling
stage increases, the error sum of squares
decreases minimally. Hence, the
Jackknife techniques yielded
approximately the same inference as the
analytical method with a better reduced
error sum of squares.
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