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Abstract:  

 Digital image processing and its 

unmistakable quality have expanded in 

colossal route as of late. Computerized 

picture handling and related research fields 

clear path for the development of top of the 

line applications in prescription, mechanical 

technology, satellite picture preparing, 

hereditary qualities and so on. Extraction of 

human bodies from single pictures from 

particular computerized picture has 

achieved consideration as of late and 

extensive variety of research is carried on to 

meet the coveted outcome. A novel 

approach for extraction of standing human 

bodies has proposed in this paper where the 

very dimensional posture space, scene 

thickness, and different human appearances 

are dealt with in better route contrasted with 

customary condition of workmanship 

strategies. The proposed approach is 

arranged into five distinct advances (a) 

confront identification, (b) multi level 

division, (c) skin location, (d) abdominal 

area division and (e) bring down body 

division separately. At long last the 

reproduction comes about have 

accomplished better execution and high 

productivity over conventional condition of 

workmanship strategies. 

Keywords: Multi level segmentation, skin 

detection, human bodies, super pixels, 

bottom-up approach 

INTRODUCTION 

Extraction of the human body in 

unconstrained still images is challenging 

due to several factors, including shading, 

image noise, occlusions, background clutter, 

the high degree of human body 

deformability, and the unrestricted positions 

due to in and out of the image plane 

rotations. Knowledge about the human body 

region can benefit various tasks, such as 

determination of the human layout, 

recognition of actions from static images, 

and sign language recognition. Human body 

segmentation and silhouette extraction have 

been a common practice when videos are 

available in controlled environments, where 

background information is available, and 

motion can aid the segmentation through 

background subtraction. In static images, 

however, there are no such cues, and the 

problem of silhouette extraction is much 

more challenging, especially when we are 

considering complex cases. 

Moreover, methodologies that are able to 

work at a frame level can also work for 

sequences of frames, and facilitate existing 

methods for action recognition based on 

silhouette features and body skeletonization. 

 In this study, we propose a bottom-up 

approach for human body segmentation in 

static images. We decompose the problem 

into three sequential problems: Face 

detection, upper body extraction, and lower 

body extraction, since there is a direct 

pairwise correlation among them. Face 

detection provides a strong indication about 
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the presence of humans in an image, greatly 

reduces the search space for the upper body, 

and provides information about skin color. 

Face dimensions also aid in determining the 

dimensions of the rest of the body, 

according to anthropometric constraints. 

The general flow of the methodology can be 

seen in Fig. 1.  

The major contributions of this study 

address upright and not occluded poses: 

1) We propose a novel framework for 

automatic segmentation of human bodies in 

single images.  

2) We combine information gathered from 

different levels of image segmentation, 

which allows efficient and robust 

computations upon groups of pixels that are 

perceptually correlated.  

3) Soft anthropometric constraints permeate 

the whole process and uncover body 

regions.  

4) Without making any assumptions about 

the foreground and background, except for 

the assumptions that sleeves are of similar 

color to the torso region, and the lower part 

of the pants is similar to the upper part of 

the pants, we structure our searching and 

extraction algorithm based on the premise 

that colors in body regions appear strongly 

inside these regions (foreground) and 

weakly outside (background). 

 Fig.1.1.Overview of the methodology. Face 

detection guides estimation of 

anthropometric constraints and appearance 

of skin, while image segmentation provides 

the image’s structural blocks.  

  
 

 

Approach overview: 

We overview the method here for the upper-

body case, where there are 6 parts: head, 

torso, and upper/lower right/left arms. The 

method is also applicable to full bodies, as 

demonstrated.  

A recent and successful approach to 2D 

human tracking in video has been to detect 

in every frame, so that tracking reduces to 

associating the detections. We adopt this 

approach where detection in each frame 

proceeds in three stages, followed by a final 

stage of transfer and integration of models 

across frames.  

In our case, the task of pose detection is to 

estimate the parameters of a 2D articulated 

body model. These parameters are the (x, y) 

location of each body part, its orientation θ, 

and its scale. Assuming a single scale factor 

for the whole person, shared by all body 

parts, the search space has 6 × 3 + 1 = 19 

dimensions. Even after taking into account 

kinematic constraints (e.g. the head must be 

connected to the torso), there are still a huge 

number of possible configurations.  

Therefore, in our approach the first two 

stages use a weak model of a person 

obtained through an upper-body detector 

generic over pose and appearance.  

The next two stages then switch to a 

stronger model, i.e. a pictorial structure 

describing the spatial configuration of all 

body parts and their appearance. In the 

reduced search space, this stronger model 

has much better chances of inferring 

detailed body part positions.  

Human detection: 

 We start by detecting human upper bodies 

in every frame, using a sliding window 

detection based on Histograms of Oriented 

Gradients, and associate detections over 

time. Each resulting track carves out of the 

total spatio-temporal volume the smaller sub 

volume covered by a person moving in the 

shot. This reduces the search space by by 

setting bounds on the possible (x, y) 

locations of the body parts and by fixing 

their scale, thus removing a dimension of the 

search space entirely.  
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 Image segmentation: 

It is the procedure of segmenting the image 

into different segments. It is used for Image 

understanding model, Robotics, Image 

analysis, Medical diagnosis, etc. Image 

segmentation means assigning a label to all 

pixel in the image so same labels share 

common visual features. Digital image 

having various operation like Image 

processing, image analysis and image 

understanding. In Low-level operation done 

by image processing and it works with 

pixel. Middlelevel operation done by image 

analysis and works with expression and 

description of image. High-level operation 

is done by image understanding and works 

with data symbol. 

Image segmentation is the division of an 

image into regions or categories, which 

correspond to different objects or parts of 

objects. Every pixel in an image is allocated 

to one of a number of these categories. A 

good segmentation is typically one in 

which:  

• pixels in the same category have similar 

greyscale of multivariate values and form a 

connected region, 

 • neighbouring pixels which are in different 

categories have dissimilar values.  

For example, in the muscle fibres image, 

each cross-sectional fibre could be viewed 

as a distinct object, and a successful 

segmentation would form a separate group 

of pixels corresponding to each fibre. 

Similarly in the SAR image, each field 

could be regarded as a separate category.  

Segmentation is often the critical step in 

image analysis: the point at which we move 

from considering each pixel as a unit of 

observation to working with objects (or 

parts of objects) in the image, composed of 

many pixels. If segmentation is done well 

then all other stages in image analysis are 

made simpler. But, as we shall see, success 

is often only partial when automatic 

segmentation algorithms are used. However, 

manual intervention can usually overcome 

these problems, and by this stage the 

computer should already have done most of 

the work.  

After segmentation, methods of 

mathematical morphology can be used to 

improve the results.  

 In edge-based segmentation: 

 an edge filter is applied to the image, pixels 

are classified as edge or non-edge 

depending on the filter output, and pixels 

which are not separated by an edge are 

allocated to the same category. Fig shows 

the boundaries of connected regions after 

applying Prewitt’s filter and eliminating all 

non-border segments containing fewer than 

500 pixels. (More details will be given). 

 Region-based segmentation  

algorithms operate iteratively by grouping 

together pixels which are neighbors and 

have similar values and splitting groups of 

pixels which are dissimilar in value. Fig 

4.1(c) shows the boundaries produced by 

one such algorithm, based on the concept of 

watersheds, about which we will give more 

details. 

3.3 Skin Color Segmentation:  

Among various low facial features such as 

edge, shape, skin color and texture; skin 

color is prominent tool for extracting face 

region due to its fast processing and ease of 

implementation. Although color processing 

is advantageous but sensitive to following 

conditions which are discussed by Ukil Yan 

et al.and Nidhi Tiwari et al.:  

Illumination conditions:  

A change in the spectral distribution and the 

illumination level of light source (indoor, 

outdoor, highlights, shadows, color 

temperature of lights)  

The skin color is defined by different color 

models like RGB, CMY, YUV, YIQ, 

YPbPr, YCbCr, YCgCr, YDbDr, HSV and 

CIE-XYZ. Comparative study and analysis 

of these models is done by Jose M. Chaves-

Gonzalez et al.  and Manuel et al.. The 

results of this study and analysis tell us that 

YCbCr, YCgCr and HSI models gives most 

promising results for skin segmentation and 

becomes most popular among others.  
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Color Models 

 YCbCr Model:  

In this color model, Y represents luminance 

component i.e. light intensity and Cb, Cr 

represents blue difference of the 

chromaticity component and red difference 

of the chromaticity component respectively.  

YCgCr Model: 

In the YCgCr color space, a human skin 

color model can be concentrated in a small 

region of the Cg-Cr plane. This color space 

includes information about green difference 

instead of blue difference, which can be 

more useful for skin color detection. 

HSI Model:  

In this color model, H-Hue describes the 

main color i.e. depth of color, S-saturation 

gives purity of the color and Intensity 

indicates the brightness of the shade. HSI 

color model has been used for image 

processing because it can separate the 

chromaticity from the intensity of the 

image. 

 So our interest is in combining features of 

these color models to get efficient face 

detection system. 

Flow Of Proposed Work: 

 The flow for our proposed work is given in 

Fig.3.1 . The first step of dissertation is to 

take RGB image as input to system. This 

image is pre-processed by converting from 

RGB to appropriate color models. After this 

conversion, we have segmented image in 

two parts as skin region and non skin region 

by applying thresholds for each channel of 

model. The threshold values come from 

experimentation of histograms.  

The 4-point and 8-point connectivity is 

checked on white pixels to segment face 

region from image. To bound face in image 

with rectangle, height to width ratio is 

applied. This ratio avoids false detections. 

At last, image of face with bounding box is 

displayed. 

  
Fig.3.1. Flow of proposed work 

Integration of Color Models Different 

combinations of chrominance components 

of most popular color models and their 

threshold values which are used for skin 

segmentation, shown in Table -1 .  

  

  

Fig.3.2.Implementation HSCgCr integrated 

color model 

Discontinuity: 

 It means to partition an image based on 

immediate changes in intensity, this 

includes image segmentation algorithms 

like edge detection.  

Similarity:  

It means to partition an image into regions 

that are similar according to a set of 

predefined criterion. This includes image 

segmentation algorithms like thresholding, 
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region growing, region splitting and 

merging.  

Edge-Based Segmentation:  

An edge is a set of connected pixels that is 

lying on the boundary between two regions 

that differ in grey value. The pixels on the 

edge are called edge point. Edge-Based 

segmentation is also called as a Boundary 

based methods.  

Parallel Edge Detection: 

In parallel edge detection technique decide 

of whether or not a set of points are on an 

edge is independent. There are different 

types of parallel differential operators such 

as first difference operators and the second 

difference operator. The key difference 

between these operators is the weights 

allocated to each element of the mask. 

Sequential Edge Detection: 

In Sequential edge detection technique, the 

result at a point is dependent on the result of 

the before examined points. The act of a 

sequential edge detection algorithm will 

depend on the choice of a good initial point, 

and it is not easy to define termination 

criteria.  

Region-based Segmentation:  

Region based segmentation techniques split 

the entire image into sub regions depending 

on some rules.Rules like all the pixels must 

have the same gray level. Region-based 

segmentation methods attempt to group 

regions allowing to common image 

properties. Edge based methods partition an 

image based on rapid changes in intensity 

nearby edges whereas region based 

methods, partition an image into regions 

that are related according to a set of 

predefined criteria. 

3.8.1 Region Growing: 

 Region growing is a procedure that group’s 

pixels in whole image into sub regions 

based on predefined standard. Region 

Growing is used to group a collection of 

pixels with related properties form a region. 

  
Region Splitting and Merging: 

 In Region Splitting and Merging technique, 

the image is split into a set of arbitrary 

unconnected regions and merge/split the 

region according to the condition of the 

segmentation. The region split into four 

equal parts. Merge any adjacent regions 

when no more splitting is possible (see 

figure ). 

  
PROPOSED METHOD 

Face Detection: 

 Localization of the face region in our 

method is performed using Open CV’s 

implementation of the Viola–Jones 

algorithm that achieves both high 

performance and speed. The algorithm 

utilizes the AdaBoost method on 

combinations of a vast pool of Haar-like 

features, which essentially aim in capturing 

the underlying structure of a human face, 

regardless of skin color. The Viola–Jones 

face detector is prone to false positive 

detections that can lead to unnecessary 

activations of our algorithm and faulty skin 

detections. To refine the results of the 

algorithm, we propose using the skin 

detection method presented, and the face 

detection algorithm presented in. The skin 

detection method is based on color 

constancy and a multilayer perception 

neural network trained on images collected 

under various illumination conditions both 

indoor and outdoor, and containing skin 

colors of different ethnic groups. The face 
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detection method is based on facial feature 

detection and localization using low-level 

image processing techniques, image 

segmentation, and graph-based verification 

of the facial structure. 

 After fitting an ellipse in the face region, 

we are able to define the fundamental unit 

with respect to which locations and sizes of 

human body parts are estimated, according 

to anthropometric constraints. This unit is 

referred to as palm length (PL), because the 

major axis of the ellipse is almost the same 

size as the distance from the base of the 

palm to the tip of the middle finger. Thus, 

our anthropometric model is adaptive for 

each person and invariant to scale. 

Multiple-Level Image Segmentation: 

Relying solely on independent pixels for 

complicated inference leads to propagation 

of errors to the high levels of image 

processing in complex real-world scenarios. 

There are several different sources of noise, 

such as the digital sensors that captured the 

image, compression, or even the complexity 

of the image itself and their effect is more 

severe at the pixel level. A common practice 

to alleviate the noise dwelling at the pixel 

level is the use of filters and algorithms that 

extract collective information from pixels. 

Moreover, groups of pixels express higher 

semantics. Small groups preserve detail and 

large groups tend to capture shape and more 

abstract structures better. Finally, 

computations based on super pixels are 

more efficient and facilitate more flexible 

algorithms. 

 
Fig. 5.1. Image segmentation for 100, 200, 

and 500 super pixels. 

In this study, we propose using an image 

segmentation method, in order to process 

pixels in more meaningful groups. 

However, there are numerous image 

segmentation algorithms, and the selection 

of an appropriate one was based on the 

following criteria. First, we require the 

algorithm to be able to preserve strong 

edges in the image, because they are a good 

indication of boundaries between 

semantically different regions. Second, 

another desirable attribute is the production 

of segments with relatively uniform sizes. 

Studies on image segmentation methods 

show that although these algorithms 

approach the problem in different ways, in 

general, they utilize low-level image cues 

and, thus, their results cannot guarantee 

compliance with the various and subjective 

human interpretations. Thus, we deem this 

step as a high-level filtering process and 

prefer to oversegment the image; therefore, 

as not to lose detail. Region size uniformity 

is important because it restrains the 

algorithm from being tricked by over 

segmenting local image patches of high 

entropy (e.g., complex and high detailed 

textures) at the expense of more 

homogeneous regions that could be falsely 

merged, although they belong to 

semantically different objects (e.g., human 

hand over a wooden surface with color 

similar to skin).  

More importantly, we propose using 

multiple levels of segmentation, in order to 

alleviate the need for selecting an 

appropriate number for the regions to be 

created and combine information emanating 

from different perceptual groupings of 

pixels. Although our framework can accept 

any number of segmentation levels, we find 

that two segmentation levels of 100 and 200 

segments provide accurate results. For the 

skin detection algorithm, a finer 

segmentation of 500 super pixels is used, 

because it manages to discriminate better 

between adjacent skin and skin-like regions, 

and recover skin segments that are often 

smaller compared with the rest image 

regions. 
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5.3 Skin Detection: 

 Among the most prominent obstacles to 

detecting skin regions in images and video 

are the skin tone variations due to 

illumination and ethnicity, skin-like regions 

and the fact that limbs often do not contain 

enough contextual information to 

discriminate them easily. In this study, we 

propose combining the global detection 

technique with an appearance model created 

for each face, to better adapt to the 

corresponding human’s skin color (Fig. 

5.2). The appearance model provides strong 

discrimination between skin and skin-like 

pixels, and segmentation cues are used to 

create regions of uncertainty. Regions of 

certainty and uncertainty comprise a map 

that guides the Grab Cut algorithm, which 

in turn outputs the final skin regions. False 

positives are eliminated using 

anthropometric constraints and body 

connectivity. An overview of the process 

can be seen in Fig. 5.3. 

 Each face region FR is used to construct an 

adaptive color model for each person’s skin 

color. In this study, we propose using the r, 

g, s, I, Cr, and a channels. In more detail, r = 

R/(R + G + B), g = G/(R + G + B), and s = 

(R + G + B)/3; therefore, r and g are the 

normalized versions of the R and G 

channels, respectively, and s is used instead 

of b to achieve channel independence. 

Channels I, Cr, and a from YIQ (or NTSC), 

YCbCr, and Lab colors paces, respectively, 

are chosen because skin color is accentuated 

in them. The skin color model for each 

person is estimated after fitting a normal 

distribution to each channel, using the pixels 

in each FR . The parameters that represent 

the model are the mean values μij and 

standard deviations σ ij for each FR and 

channel j = 1 ... 6 for channels r, g, s, I, Cr, 

and a. Each image pixel’s probability of 

being a skin pixel is calculated separately 

for each channel according to a normal 

probability distribution with the 

corresponding parameters. We expect true 

skin pixels to have strong probability 

response in all of the selected channels. The 

skin probability for each pixel X is as 

follows:                  

         (1) 

  
The adaptive model in general focuses on 

achieving a high score of true positive cases. 

However, most of the time it is too “strict” 

and suppresses the values of many skin and 

skin-like pixels that deviate from the true 

values according to the derived probability 

distribution. At this point, we find that an 

influence of the skin global detection 

algorithm is beneficial because it aids in 

recovering the uncertain areas. Another 

reason we choose to extend the skin 

detection process is that relying solely on an 

appropriate color space to detect skin pixels 

is often not sufficient for real-world 

applications. The two proposals are 

combined through weighted averaging (with 

a weight of 0.25 for the global model, and 

0.75 for the adaptive model). The finest level 
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of image segmentation is used at this point to 

characterize segments as certain and 

probable background and foreground. For the 

certain foreground regions, however, only 

the pixels with sufficiently high probability 

in the adaptive model are used as seeds; 

therefore, as to control their strong influence. 

In order to characterize a region as probable 

background or foreground, its mean 

probability of the combined probability must 

be above a certain threshold (empirically set 

to 0.2 and 0.3, respectively). Examples can 

be seen in Fig. 5.5. 

Upper Body Segmentation: 

 In this section, we present a methodology 

for extraction of the whole upper human 

body in single images, extending [40], 

which dealt with the case, where the torso is 

almost upright and facing the camera. The 

only training needed is for the initial step of 

the process, namely the face detection and a 

small training set for the global skin 

detection process. The rest of the 

methodology is mostly appearance based 

and relies on the assumption that there is a 

connection between the human body parts. 

Processing using super pixels instead of 

single pixels, which are acquired by an 

image segmentation algorithm, yield more 

accurate results and allow more efficient 

computations.  

The initial and most crucial step in our 

methodology is the detection of the face 

region, which guides the rest of the process. 

The information extracted in this step is 

significant. First, the color of the skin in a 

person’s face can be used to match the rest 

of his or her visible skin areas, making the 

skin detection process adaptive to each 

person. Second, the location of the face 

provides a strong cue about the rough 

location of the torso. Here, we deal with 

cases, where the torso is below the face 

region, but without strong assumptions 

about in and out of plane rotations. Third, 

the size of the face region can further lead to 

the estimation of the size of body parts 

according to anthropometric constraints. 

Face detection here is primarily conducted 

using the Viola–Jones face detection 

algorithm for both frontal and side views. 

Since face detection is the cornerstone of 

our methodology, we refine the results of 

the aforementioned method using the face 

detection algorithm presented. 

With respect to clothes, the size of face’s 

ellipse guides the construction of 

rectangular masks for the foreground using 

anthropometric constraints. Our basic 

assumption is that a good foreground mask 

should contain regions that appear mostly 

inside the mask and not outside 

(background). In other words, we try to 

identify “islands of saliency,” in the 

aforementioned sense. As opposed to 

approaches based on pose estimation, we 

employ simple heuristics to conduct a fast 

and rough torso pose estimation and guide 

the segmentation process. 

 The torso is usually the most visible body 

part, connected to the face region and in 

most cases below it. Using anthropometric 

constraints, one can roughly estimate the 

size of the torso and its location. However, 

different poses and head motion make torso 

localization a challenging task, especially 

when assumptions about poses are relaxed. 

Instead of searching for the exact torso 

region or using complex pose estimation 

methods, we propose using a rough 

approximation of the torso mask in order to 

identify the most concentrated island of 

saliency. This criterion allows for fast 

inference about the torso’s size and location, 

while relieving the need for the complex 

task of explicit torso estimation, without 

sacrificing accuracy. 

 As discussed, different levels of 

segmentation give rise to different 

perceptual pixel groupings, and each 

segment is described by the statistics of its 

color distribution. In each segmentation 

level, each segment is compared with the 

rest and its similarity image is created, 

depicting the probabilistic similarity of each 

pixel to the segment. Similarly to the skin 
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detection process, normal probability 

distributions according to the mean μi and 

standard deviation σi of segment Si are 

estimated for each channel j = 1, 2, 3 of the 

Lab color space, and the probability for 

each image pixel belonging to this 

probability is calculated. We estimate the 

final probability as the product of the 

probabilities 

 Fig. 5.4.. Example of similarity images for 

random segments. 

  
Fig. 5.5. Masks used for torso localization. 

5.4.1 In Each Channel Separately: 

 Example similarity images are shown in 

Fig. 5. The resulting image that depicts the 

probability segment Si that is the same color 

as the rest of the segments is referred to as 

the similarity image. Similarity images are 

gathered for all of the different 

segmentation levels l. Here, we use two 

segmentation levels in this stage of 100 and 

200 super pixels, because they provide a 

good tradeoff between perceptual grouping 

and computational complexity  

         
(2) 

Sequentially, a searching phase takes place, 

where a loose torso mask is used for 

sampling and rating of regions according to 

their probability of belonging to the torso. 

Since we assume that sleeves are more 

similar to the torso colors than the 

background, this process combined with 

skin detection actually leads to upper body 

probability estimation. The mask is used for 

sufficient sampling instead of torso fitting; 

therefore, it is estimated as a large square 

with sides of 2.5PL, with the top most side 

centered with respect to the face’s center. In 

order to relax the assumptions about the 

position and pose of the torso, the mask is 

rotated by 30 ◦ left and right of its initial 

position (0 ◦) (see in Fig. 5.5). By using a 

large square mask and allowing this degree 

of freedom, we manage to sample a large 

area of potential torso locations. By 

constraining its size according to 

anthropometric constraints, we make the 

foreground/background hypotheses more 

meaningful.  

During the search process, the mask is 

applied to each similarity image and its 

corresponding segment is scored. Let Torso 

Mask be a binary image, where pixels are 

set to 1 (or “on”) inside the square mask and 

0 (or “off”) outside so that Simile ∩ Torso 

Mask selects the probabilities of the 

similarity image that appear inside the 

mask. Index t = 1, 2, 3 corresponds to a 

torso mask at angle −30, 0, or 30. Thus, (3) 

and (4) rate each segment’s potential of 

belonging to the foreground and 

background, respectively, and (5) combines 

the two potentials in the form of a ratio as 

follows: 

  

 
Fig.5.6. Segments with potential of 

belonging to torso. (a), (b) For segmentation 

level 1 and 2 and torso mask at 0 ◦. (c), (d) 

For segmentation level 1 and 2 and torso 
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mask at 30 ◦. (e) (f) For segmentation level 

1 and 2 and torso mask at −30 ◦. 

 
Fig. 5.7. Aggregation of torso potentials 

shown in Fig. 7, for torso masks at 0 ◦, 30 ◦, 

and −30 ◦ 

  
Fig. 5.8. Thresholding of the aggregated 

potential torso images and final upper body 

mask. Note that the masks in the top row are 

discarded. 

we can achieve accurate and robust results 

without imposing computational strain.  

The obvious step is to threshold the 

aggregated potential torso images in order 

to retrieve the upper body mask. In most 

cases, hands or arms’ skin is not sampled 

enough during the torso searching process, 

especially in the cases, where arms are 

outstretched. Thus, we use the skin masks 

estimated during the skin detection process, 

which are more accurate than in the case 

they were retrieved during this process, 

since they were calculated using the face’s 

skin color, in a color space more 

appropriate for skin and segments created 

at a finer level of segmentation. These 

segments are superimposed on the 

aggregated potential torso images and 

receive the highest potential (1, since the 

potentials are normalized).  

Instead of using a simple or even adaptive 

thresholding, we use a multiple level 

thresholding to recover the regions with 

strong potential according to the method 

described, but at the same time comply 

with the following criteria:  

1) they form a region size close to the 

expected torso size (actually bigger in 

order to allow for the case, where arms are 

outstretched), and  

2) the outer perimeter of this region 

overlaps with sufficiently high gradients. 

The distance of the selected region at 

threshold t (Region) to the expected upper 

body size (Exp Upper Body Size) is 

calculated as follows: 

ScoreSize = 

         (6) 

  

where Exp Upper Body Size = 11 × PL2 . 

The score for the second criterion is 

calculated by averaging the gradient image 

(Grad Im) responses for the pixels that 

belong to the perimeter (Region) of Region 

as 

ScoreGrad=           (7) 

Thresholding starts with zero and becomes 

increasingly stricter at small steps (0.02). In 

each thresholding level, the largest connected 

component is rated, and the masks with 

Score Grad > 0.05 and Score Size > 0.6 are 

accumulated to a refined potential image (see 

in Fig. 5.8). Incorporation of this a priori 

knowledge to the thresholding process aids 

the accentuation of the true upper body 

regions (UBR). Accumulation of surviving 

masks starts when Score Size > 0.6 and 

resulting masks after this point will keep 

getting closer monotonically to the expected 

region size. Accumulation ends when Score 

Size drops below 0.6. The rationale behind 

this process is to both restrict and define the 

thresholding range and focus the interest to 

segments with high potential of forming the 

upper body segment. The aggregate mask 

(Aggregate Mask) can now be processed 

easily and produce more meaningful results. 

Specifically, we set a final threshold, which 
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allows only regions that have survived more 

than 20% of the accumulation process in the 

final mask for the UBR. This process is 

performed for every initial torso hypothesis; 

therefore, in the end, there are three 

corresponding aggregate masks, out of which 

the one that overlaps the most with the initial 

torso mask and obtains the highest 

aggregation score is selected. The 

aggregation score shows how many times 

each pixel has appeared in the accumulation 

process, implicitly implying its potential of 

belonging to the true upper body segment. 

Refinement: 

 In many cases, the extracted upper body 

mask is very accurate and can be used as a 

final result. However, we choose to add an 

extra refinement step to cope with probable 

segmentation errors and pixels that manage 

to survive the multiple thresholding process. 

One idea that we use here is to give the upper 

body mask as input to an interactive 

foreground/background algorithm that 

requires “seeds” corresponding to the 

foreground and background. Grow Cut and 

Grab Cut are used for experiments.  

Grow Cut expects the RGB image as input 

and a map denoting the seeds for 

background, foreground, and uncertain 

pixels, whereas Grab Cut can operate on a 

more refined map containing the certain 

foreground, certain background, probable 

foreground, and probable background 

regions. In order to construct these maps, 

we employ morphological operations on the 

upper body mask, with adaptive square 

structural elements (SEs) according to 

anthropometric constraints. For GrowCut, 

the uncertain region is constructed by 

dilating the upper body mask with a SE with 

sides equal to PL/6, the face’s ellipse with a 

SE with sides equal to PL/10 and the skin 

regions with a SE with sides equal to PL/12. 

Possible holes between the face and torso 

region are also filled. The certain 

foreground is similarly constructed with 

erosion instead of dilation, where the sides 

of the SEs are now PL/4, PL/4, and PL/10, 

respectively. The rest of the map is 

classified as background. For the Grab Cut 

algorithm, the possible background ground 

is constructed by dilating the upper body 

mask, the face’s ellipse and skin masks 

using SEs with sides PL/10, PL/2, and 

PL/12, the probable foreground is 

constructed by eroding the masks with SEs 

with sides PL/4, PL/4, and PL/10, 

respectively, and the certain foreground by 

eroding them with SEs with sides PL/1, 

PL/3, and PL/8, respectively. Both 

algorithms are guided by the extracted 

upper body mask; therefore, their results are 

very similar. Their main difference is that 

Grab Cut can make better guesses in cases 

of uncertainty and segment large regions 

loosely defined by the map, whereas 

GrowCut is more sensitive to the map and 

more influenced by background seeds. In 

Fig. 10, for example, both algorithms 

extract the upper body successfully, but 

Grow Cut removes the small enclosed 

regions by the arms, whereas Grab Cut 

includes them. 

  

Fig. Example of foreground/ background 

certainty maps and segmentations for (a), 

(b) Grab Cut and (c), (d) Grow Cut. 

Lower Body Extraction:  

The algorithm for estimating the lower body 

part, in order to achieve full body 

segmentation is very similar to the one for 

upper body extraction. The difference is the 

anchor points that initiate the leg searching 

process. In the case of upper body 

segmentation, it was the position of the face 

that aided the estimation of the upper body 

location. In the case of lower body 

segmentation, it is the upper body that aids 

the estimation of the lower body’s position. 

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/


 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 16 

June 2018 

  

Available online: http://edupediapublications.org/journals/index.php/IJR/  P a g e  | 472  
 

More specifically, the general criterion we 

employ is that the upper parts of the legs 

should be underneath and near the torso 

region. Although the previously estimated 

UBR provides a solid starting point for the 

leg localization, different types of clothing 

like long coats, dresses, or color similarities 

between the clothes of the upper and lower 

body might make the torso region appear 

different (usually longer) than it should be. 

To better estimate the torso region, we 

perform a more refined torso fitting process, 

which does not require extensive 

computations, since the already estimated 

shape provides a very good guide.  

The expected dimensions of the torso are 

again calculated based on anthropometric 

constraints, but in a more accurate model. In 

addition, in order to cope with slight body 

deformations, we allow the rectangle to be 

constructed according to a constrained 

parameter space of highest granularity and 

dimensionality. Specifically, we allow 

rotations with respect to rectangle’s center 

by angle φ, translations in x- and y-axes, τx 

and τ y and scaling in x- and y-axes, sx and 

sy . The initial dimensions of the rectangle 

correspond to the expected torso in full 

frontal and upright view and it is decreased 

during searching in order to accommodate 

other poses. The rationale behind the fitting 

score of each rectangle is measuring how 

much it covers the UBR, since the torso is 

the largest semantic region of the upper 

body, defined by potential upper body 

coverage (UBC), while at the same time 

covering less of the background region, 

defined by potential S (for Solidity). 

Finally, in many cases, the rectangle needs 

to be realigned with respect to the face’s 

center (FaceCenter) to recover from 

misalignments caused by different poses 

and errors. A helpful criterion is the 

maximum distance of the rectangle’s upper 

corners (LShoulder, RShoulder) from the 

face’s center (Dsf ), which should be 

constrained. Thus, fitting of the torso 

rectangle is formulated as a maximization 

problem. 

       (8) 

Where  = (

 

UBC( =

 

S( =  

=  

 
  

 
Fig. Best torso rectangle with shoulder and 

beginning of the legs positions. 

we estimate the shoulder positions (top 

corners of the rectangle), and more 

importantly, the waist positions (lower 

corners of the rectangle). In turn, waist 

positions approximately indicate the 

beginning of the right and left leg legBR = 

(x,y) and legBL = (x,y), respectively. These 

points are the middle points of the line 

segments of the waist points and the point in 

the center of the line that connects them. 

Fig. 11 shows a case of a fitted torso and the 

aforementioned points. Similarly to upper 

body extraction and the torso rectangle 

fitting case, we explore hypotheses about 

the leg positions using rectangles by first 

creating rectangle masks for the upper leg 

parts and using them as samples for the 
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pants color and finally perform appearance 

matching and evaluate the result. The 

assumption we make here is that there is 

uniformity in the color of the upper and 

lower parts of the pants. 

In the case of short pants, where the 

lower leg parts are naked, the previously 

calculated skin regions are used to recover 

them. In order to reduce computational 

complexity, the size and position of the 

upper leg rectangles are fixed and adhering 

to anthropometric constraints and the only 

free parameter is their angle of rotation with 

respect to their center φright and φleft . Let 

Leg Mask(θ) be the binary mask for the two 

hypothesized leg parts, where θ = 

(φright,φleft). Every possible upper leg 

mask is used as a sample of the pants 

regions, and the leg regions are estimated 

using the clothes and 

  
Fig. Example legs mask for φright = 0 and 

φleft = 0 

  
Fig.Example of foreground/background 

certainty maps and segmentations for (a) 

and (b) Grab Cut and (c) and (d) Grow Cut. 

Skin Detection Process (1)–(5). After the 

leg potentials are found, the same 

thresholding process as in the case of the 

upper body takes place, with the difference 

that now the expected lower body size is 

used in (6) (Exp Lower Body Size instead 

of Exp Upper Body Size), where Exp Lower 

Body Size = 6 × PL2 . In order to construct 

the tri map of Grow Cut to perform the 

refinement process for the leg regions, the 

leg mask is eroded by a square structuring 

element (SE) with side PL/4 followed by 

dilation by a SE with side PL/5 in order to 

create the uncertainty mask, and for the 

certain foreground mask it is eroded using a 

SE with side PL/3. Fig. 13 shows an 

example. In some cases, thin and ambiguous 

regions like belts or straps might end up 

belonging to both the upper and lower body, 

or in the worst case the background. Most of 

the time, however, the refinement of the 

upper and lower regions is able to recover 

them, and during merging of the two 

regions they are included in the final 

outcome. 

Skin Detection: 

 Among the most prominent obstacles to 

detecting skin regions in images and video 

are the skin tone variations due to 

illumination and ethnicity, skin-like regions 

and the fact that limbs often do not contain 

enough contextual information to 

discriminate them easily. In this study, we 

propose combining the global detection 

technique with an appearance model created 

for each face, to better adapt to the 

corresponding human’s skin color (Fig. 

5.2). The appearance model provides strong 

discrimination between skin and skin-like 

pixels, and segmentation cues are used to 

create regions of uncertainty. Regions of 

certainty and uncertainty comprise a map 

that guides the Grab Cut algorithm, which 

in turn outputs the final skin regions. False 

positives are eliminated using 

anthropometric constraints and body 

connectivity. An overview of the process 

can be seen in Fig. 5.3. 

 Each face region FR is used to construct an 

adaptive color model for each person’s skin 

color. In this study, we propose using the r, 

g, s, I, Cr, and a channels. In more detail, r = 

R/(R + G + B), g = G/(R + G + B), and s = 

(R + G + B)/3; therefore, r and g are the 

normalized versions of the R and G 

channels, respectively, and s is used instead 

of b to achieve channel independence. 

Channels I, Cr, and a from YIQ (or NTSC), 
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YCbCr, and Lab colors paces, respectively, 

are chosen because skin color is accentuated 

in them. The skin color model for each 

person is estimated after fitting a normal 

distribution to each channel, using the pixels 

in each FR . The parameters that represent 

the model are the mean values μij and 

standard deviations σ ij for each FR and 

channel j = 1 ... 6 for channels r, g, s, I, Cr, 

and a. Each image pixel’s probability of 

being a skin pixel is calculated separately 

for each channel according to a normal 

probability distribution with the 

corresponding parameters. We expect true 

skin pixels to have strong probability 

response in all of the selected channels. The 

skin probability for each pixel X is as 

follows:                  

         (1) 

  
The adaptive model in general focuses on 

achieving a high score of true positive 

cases. However, most of the time it is too 

“strict” and suppresses the values of many 

skin and skin-like pixels that deviate from 

the true values according to the derived 

probability distribution. At this point, we 

find that an influence of the skin global 

detection algorithm is beneficial because it 

aids in recovering the uncertain areas. 

Another reason we choose to extend the 

skin detection process is that relying solely 

on an appropriate color space to detect skin 

pixels is often not sufficient for real-world 

applications. The two proposals are 

combined through weighted averaging (with 

a weight of 0.25 for the global model, and 

0.75 for the adaptive model). The finest 

level of image segmentation is used at this 

point to characterize segments as certain 

and probable background and foreground. 

For the certain foreground regions, 

however, only the pixels with sufficiently 

high probability in the adaptive model are 

used as seeds; therefore, as to control their 

strong influence. In order to characterize a 

region as probable background or 

foreground, its mean probability of the 

combined probability must be above a 

certain threshold (empirically set to 0.2 and 

0.3, respectively). Examples can be seen in 

Fig. 5.5. 

Upper Body Segmentation: 

 In this section, we present a methodology 

for extraction of the whole upper human 

body in single images, extending [40], 

which dealt with the case, where the torso is 

almost upright and facing the camera. The 

only training needed is for the initial step of 

the process, namely the face detection and a 

small training set for the global skin 

detection process. The rest of the 

methodology is mostly appearance based 

and relies on the assumption that there is a 

connection between the human body parts. 

Processing using super pixels instead of 

single pixels, which are acquired by an 

image segmentation algorithm, yield more 

accurate results and allow more efficient 

computations.  

The initial and most crucial step in our 

methodology is the detection of the face 

region, which guides the rest of the process. 

The information extracted in this step is 

significant. First, the color of the skin in a 

person’s face can be used to match the rest 

of his or her visible skin areas, making the 

skin detection process adaptive to each 

person. Second, the location of the face 

provides a strong cue about the rough 

location of the torso. Here, we deal with 

cases, where the torso is below the face 

region, but without strong assumptions 

about in and out of plane rotations. Third, 
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the size of the face region can further lead to 

the estimation of the size of body parts 

according to anthropometric constraints. 

Face detection here is primarily conducted 

using the Viola–Jones face detection 

algorithm for both frontal and side views. 

Since face detection is the cornerstone of 

our methodology, we refine the results of 

the aforementioned method using the face 

detection algorithm presented. 

 Once the elliptical region of the face is 

known, we proceed to the foreground (upper 

body) probability estimation. To better 

utilize the existing spatial and color 

relations of the image pixels, we perform 

multiple level oversegmentation and 

examine the resulting superpixels. We 

regard superpixels with color similar to that 

of the face region as skin and superpixels 

with color similar to the regions inside torso 

masks as clothes. With respect to clothes, 

the size of face’s ellipse guides the 

construction of rectangular masks for the 

foreground using anthropometric 

constraints. Our basic assumption is that a 

good foreground mask should contain 

regions that appear mostly inside the mask 

and not outside (background). In other 

words, we try to identify “islands of 

saliency,” in the aforementioned sense. As 

opposed to approaches based on pose 

estimation, we employ simple heuristics to 

conduct a fast and rough torso pose 

estimation and guide the segmentation 

process. 

 The torso is usually the most visible body 

part, connected to the face region and in 

most cases below it. Using anthropometric 

constraints, one can roughly estimate the 

size of the torso and its location. However, 

different poses and head motion make torso 

localization a challenging task, especially 

when assumptions about poses are relaxed. 

Instead of searching for the exact torso 

region or using complex pose estimation 

methods, we propose using a rough 

approximation of the torso mask in order to 

identify the most concentrated island of 

saliency. This criterion allows for fast 

inference about the torso’s size and location, 

while relieving the need for the complex 

task of explicit torso estimation, without 

sacrificing accuracy. 

 As discussed, different levels of 

segmentation give rise to different 

perceptual pixel groupings, and each 

segment is described by the statistics of its 

color distribution. In each segmentation 

level, each segment is compared with the 

rest and its similarity image is created, 

depicting the probabilistic similarity of each 

pixel to the segment. Similarly to the skin 

detection process, normal probability 

distributions according to the mean μi and 

standard deviation σi of segment Si are 

estimated for each channel j = 1, 2, 3 of the 

Lab color space, and the probability for 

each image pixel belonging to this 

probability is calculated. We estimate the 

final probability as the product of the 

probabilities 

 
Fig.  Example of similarity images for 

random segments. 

  
Fig.  Masks used for torso localization. 

In Each Channel Separately: 

 Example similarity images are shown in 

Fig. 5. The resulting image that depicts the 

probability segment Si that is the same color 

as the rest of the segments is referred to as 

the similarity image. Similarity images are 

gathered for all of the different 

segmentation levels l. Here, we use two 

segmentation levels in this stage of 100 and 

200 super pixels, because they provide a 
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good tradeoff between perceptual grouping 

and computational complexity  

         
(2) 

Sequentially, a searching phase takes place, 

where a loose torso mask is used for 

sampling and rating of regions according to 

their probability of belonging to the torso. 

Since we assume that sleeves are more 

similar to the torso colors than the 

background, this process combined with 

skin detection actually leads to upper body 

probability estimation. The mask is used for 

sufficient sampling instead of torso fitting; 

therefore, it is estimated as a large square 

with sides of 2.5PL, with the top most side 

centered with respect to the face’s center. In 

order to relax the assumptions about the 

position and pose of the torso, the mask is 

rotated by 30 ◦ left and right of its initial 

position (0 ◦) (see in Fig. 5.5). By using a 

large square mask and allowing this degree 

of freedom, we manage to sample a large 

area of potential torso locations. By 

constraining its size according to 

anthropometric constraints, we make the 

foreground/background hypotheses more 

meaningful.  

During the search process, the mask is 

applied to each similarity image and its 

corresponding segment is scored. Let Torso 

Mask be a binary image, where pixels are 

set to 1 (or “on”) inside the square mask and 

0 (or “off”) outside so that Simile ∩ Torso 

Mask selects the probabilities of the 

similarity image that appear inside the 

mask. Index t = 1, 2, 3 corresponds to a 

torso mask at angle −30, 0, or 30. Thus, (3) 

and (4) rate each segment’s potential of 

belonging to the foreground and 

background, respectively, and (5) combines 

the two potentials in the form of a ratio as 

follows: 

  

 
Fig. Segments with potential of belonging 

to torso. (a), (b) For segmentation level 1 

and 2 and torso mask at 0 ◦. (c), (d) For 

segmentation level 1 and 2 and torso mask 

at 30 ◦. (e) (f) For segmentation level 1 and 

2 and torso mask at −30 ◦. 

 
Fig.  Aggregation of torso potentials shown 

in Fig. 7, for torso masks at 0 ◦, 30 ◦, and 

−30 ◦ 

  
Fig. 5.8. Thresholding of the aggregated 

potential torso images and final upper body 

mask. Note that the masks in the top row are 

discarded. 

we can achieve accurate and robust results 

without imposing computational strain. 

The obvious step is to threshold the 

aggregated potential torso images in order 

to retrieve the upper body mask. In most 

cases, hands or arms’ skin is not sampled 

enough during the torso searching process, 
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especially in the cases, where arms are 

outstretched. These segments are 

superimposed on the aggregated potential 

torso images and receive the highest 

potential (1, since the potentials are 

normalized).  

Instead of using a simple or even adaptive 

thresholding, we use a multiple level 

thresholding to recover the regions with 

strong potential according to the method 

described, but at the same time comply 

with the following criteria:  

1) they form a region size close to the 

expected torso size (actually bigger in 

order to allow for the case, where arms are 

outstretched), and  

2) the outer perimeter of this region 

overlaps with sufficiently high gradients. 

The distance of the selected region at 

threshold t (Region) to the expected upper 

body size (Exp Upper Body Size) is 

calculated as follows: 

ScoreSize = 

(6) 

  

where Exp Upper Body Size = 11 × PL2 . 

The score for the second criterion is 

calculated by averaging the gradient image 

(Grad Im) responses for the pixels that 

belong to the perimeter (Region) of Region 

as 

ScoreGrad=          (7) 

Thresholding starts with zero and becomes 

increasingly stricter at small steps (0.02). In 

each thresholding level, the largest 

connected component is rated, and the 

masks with Score Grad > 0.05 and Score 

Size > 0.6 are accumulated to a refined 

potential image (see in Fig. 5.8). 

Incorporation of this a priori knowledge to 

the thresholding process aids the 

accentuation of the true upper body regions 

(UBR). Accumulation of surviving masks 

starts when Score Size > 0.6 and resulting 

masks after this point will keep getting 

closer monotonically to the expected region 

size. Accumulation ends when Score Size 

drops below 0.6. The rationale behind this 

process is to both restrict and define the 

thresholding range and focus the interest to 

segments with high potential of forming the 

upper body segment. The aggregate mask 

(Aggregate Mask) can now be processed 

easily and produce more meaningful results. 

Specifically, we set a final threshold, which 

allows only regions that have survived more 

than 20% of the accumulation process in the 

final mask for the UBR. This process is 

performed for every initial torso hypothesis; 

therefore, in the end, there are three 

corresponding aggregate masks, out of 

which the one that overlaps the most with 

the initial torso mask and obtains the highest 

aggregation score is selected. The 

aggregation score shows how many times 

each pixel has appeared in the accumulation 

process, implicitly implying its potential of 

belonging to the true upper body segment. 

Refinement: 

 In many cases, the extracted upper body 

mask is very accurate and can be used as a 

final result. However, we choose to add an 

extra refinement step to cope with probable 

segmentation errors and pixels that manage 

to survive the multiple thresholding process. 

One idea that we use here is to give the 

upper body mask as input to an interactive 

foreground/background algorithm that 

requires “seeds” corresponding to the 

foreground and background. Grow Cut and 

Grab Cut are used for experiments.  

For GrowCut, the uncertain region is 

constructed by dilating the upper body mask 

with a SE with sides equal to PL/6, the 

face’s ellipse with a SE with sides equal to 

PL/10 and the skin regions with a SE with 

sides equal to PL/12. Possible holes 

between the face and torso region are also 

filled. The certain foreground is similarly 

constructed with erosion instead of dilation, 

where the sides of the SEs are now PL/4, 

PL/4, and PL/10, respectively. The rest of 
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the map is classified as background. For the 

Grab Cut algorithm, the possible 

background ground is constructed by 

dilating the upper body mask, the face’s 

ellipse and skin masks using SEs with sides 

PL/10, PL/2, and PL/12, the probable 

foreground is constructed by eroding the 

masks with SEs with sides PL/4, PL/4, and 

PL/10, respectively, and the certain 

foreground by eroding them with SEs with 

sides PL/1, PL/3, and PL/8, respectively. 

Both algorithms are guided by the extracted 

upper body mask; therefore, their results are 

very similar. Their main difference is that 

Grab Cut can make better guesses in cases 

of uncertainty and segment large regions 

loosely defined by the map, whereas 

GrowCut is more sensitive to the map and 

more influenced by background seeds. In 

Fig. 10, for example, both algorithms 

extract the upper body successfully, but 

Grow Cut removes the small enclosed 

regions by the arms, whereas Grab Cut 

includes them. 

  
Fig.5.9. Example of foreground/ 

background certainty maps and 

segmentations for (a), (b) Grab Cut and (c), 

(d) Grow Cut. 

5.5 Lower Body Extraction:  

The algorithm for estimating the lower body 

part, in order to achieve full body 

segmentation is very similar to the one for 

upper body extraction. The difference is the 

anchor points that initiate the leg searching 

process. In the case of upper body 

segmentation, it was the position of the face 

that aided the estimation of the upper body 

location. In the case of lower body 

segmentation, it is the upper body that aids 

the estimation of the lower body’s position. 

More specifically, the general criterion we 

employ is that the upper parts of the legs 

should be underneath and near the torso 

region. Although the previously estimated 

UBR provides a solid starting point for the 

leg localization, different types of clothing 

like long coats, dresses, or color similarities 

between the clothes of the upper and lower 

body might make the torso region appear 

different (usually longer) than it should be. 

To better estimate the torso region, we 

perform a more refined torso fitting process, 

which does not require extensive 

computations, since the already estimated 

shape provides a very good guide.  

The expected dimensions of the torso are 

again calculated based on anthropometric 

constraints, but in a more accurate model. In 

addition, in order to cope with slight body 

deformations, we allow the rectangle to be 

constructed according to a constrained 

parameter space of highest granularity and 

dimensionality. Specifically, we allow 

rotations with respect to rectangle’s center 

by angle φ, translations in x- and y-axes, τx 

and τ y and scaling in x- and y-axes, sx and 

sy . The initial dimensions of the rectangle 

correspond to the expected torso in full 

frontal and upright view and it is decreased 

during searching in order to accommodate 

other poses. The rationale behind the fitting 

score of each rectangle is measuring how 

much it covers the UBR, since the torso is 

the largest semantic region of the upper 

body, defined by potential upper body 

coverage (UBC), while at the same time 

covering less of the background region, 

defined by potential S (for Solidity). 

Finally, in many cases, the rectangle needs 

to be realigned with respect to the face’s 

center (FaceCenter) to recover from 

misalignments caused by different poses 

and errors. A helpful criterion is the 

maximum distance of the rectangle’s upper 

corners (LShoulder, RShoulder) from the 

face’s center (Dsf ), which should be 

constrained. Thus, fitting of the torso 

rectangle is formulated as a maximization 

problem. 
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       (8) 

Where  = (

 

UBC( =

 

S( =  

=  

 
  

 
Fig.5.10. Best torso rectangle with shoulder 

and beginning of the legs positions. 

we estimate the shoulder positions (top 

corners of the rectangle), and more 

importantly, the waist positions (lower 

corners of the rectangle). In turn, waist 

positions approximately indicate the 

beginning of the right and left leg legBR = 

(x,y) and legBL = (x,y), respectively. These 

points are the middle points of the line 

segments of the waist points and the point in 

the center of the line that connects them. 

Fig. 11 shows a case of a fitted torso and the 

aforementioned points. Similarly to upper 

body extraction and the torso rectangle 

fitting case, we explore hypotheses about 

the leg positions using rectangles by first 

creating rectangle masks for the upper leg 

parts and using them as samples for the 

pants color and finally perform appearance 

matching and evaluate the result. The 

assumption we make here is that there is 

uniformity in the color of the upper and 

lower parts of the pants. 

In the case of short pants, where the 

lower leg parts are naked, the previously 

calculated skin regions are used to recover 

them. In order to reduce computational 

complexity, the size and position of the 

upper leg rectangles are fixed and adhering 

to anthropometric constraints and the only 

free parameter is their angle of rotation with 

respect to their center φright and φleft . Let 

Leg Mask(θ) be the binary mask for the two 

hypothesized leg parts, where θ = 

(φright,φleft). Every possible upper leg 

mask is used as a sample of the pants 

regions, and the leg regions are estimated 

using the clothes and 

 
Fig.5.11. Example legs mask for φright = 0 

and φleft = 0 

  
Fig.5.12. Example of 

foreground/background certainty maps and 

segmentations for (a) and (b) Grab Cut and 

(c) and (d) Grow Cut.skin detection process 

(1)–(5). An example mask can be seen in 

Fig. 12. The hypothesized foreground is the 

pixels that belong to the leg mask, and 

background is the rest of the image plus the 

pixels of the upper body mask, without the 

pixels below the waist line segment (if any). 

The leg mask retrieved from each 

hypothesis is the largest connected 

component of image segments with color 
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similar to the hypothesis and the skin 

regions retrieved in the previous steps. 

There is no strong need for precise 

alignment of the masks and the real leg 

parts, just enough coverage is pursued in 

order to perform a useful sampling. Thus, 

the algorithm can recover from slight torso 

misalignment and performs well in cases of 

different leg positions, without imposing the 

computational strain of dense searching 

using dense mask parameters.  

After the leg potentials are found, the same 

thresholding process as in the case of the 

upper body takes place, with the difference 

that now the expected lower body size is 

used in (6) (Exp Lower Body Size instead 

of Exp Upper Body Size), where Exp Lower 

Body Size = 6 × PL2 . In order to construct 

the tri map of Grow Cut to perform the 

refinement process for the leg regions, the 

leg mask is eroded by a square structuring 

element (SE) with side PL/4 followed by 

dilation by a SE with side PL/5 in order to 

create the uncertainty mask, and for the 

certain foreground mask it is eroded using a 

SE with side PL/3. Fig. 13 shows an 

example. In some cases, thin and ambiguous 

regions like belts or straps might end up 

belonging to both the upper and lower body, 

or in the worst case the background. Most of 

the time, however, the refinement of the 

upper and lower regions is able to recover 

them, and during merging of the two 

regions they are included in the final 

outcome. 

Results 

 
 

CONCLUSION  

We introduced a novel approach for 

extricating human bodies from single 

pictures. It is a base up approach that 

consolidates data from various levels of 

division so as to find notable locales with 

high capability of having a place with the 

human body. The principle part of the 

framework is the face recognition step, 

where we appraise the harsh area of the 

body, develop an unpleasant anthropometric 

model, and model the skin's shading. 

Delicate anthropometric requirements 

manage an effective scan for the most 

obvious body parts, to be specific the upper 

and lower body, maintaining a strategic 

distance from the requirement for solid 

earlier information, for example, the posture 

of the body. ScoreGrad =  
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