

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 16

June 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1147

A Genetic Algorithm Approach to Cpu Scheduling
Aradhana Dahiya & Shabnam Sangwan

1Department of Computer Science Sat Kabir Institute of Technology and Management (SKITM),

 Maharishi Dayanand University (MDU), Rohtak
1aruhce123@gmail.com

2Department of Computer Science Sat Kabir Institute of Technology and Management (SKITM),

Maharishi Dayanand University (MDU), Rohtak
2shabnam022@gmail.com

Abstract— CPU scheduling is a ‘NP-complete’

problem. i.e., algorithms require exponential time to

reach a solution. Moreover, it is a critical factor that

effect the operating system efficiency in process

scheduling we allocate processes to processor in such

an order so that throughput and efficiency of the

resulting system is maximized. This NP-complete

nature of the problem requires innovative solutions for

the problem. Genetic algorithms over the years have

proved itself for finding innovative solutions for

scheduling. In this work we study how genetic

algorithm is used to find an innovative solution for

CPU Scheduling.

Keywords— CPU Scheduling, Genetic Algorithm,

Fitness Function, Roulette Wheel Selection

I. INTRODUCTION

Single Processor Scheduling Problems are classical

combinatorial problems. These problems fall under the

category of NP-complete problems. And a number of

methods have been devised to solve them. Among

them FCFS, SJF, Priority Scheduling and RR are of

much importance and are widely used for scheduling

of jobs in a processor. This study is an effort to

develop a simple general algorithm (genetic algorithm

based) for obtaining optimal or near optimal schedules

for Single Processor Scheduling Problems with

minimum computation effort even for large sized

problems. The genetic algorithm is a search algorithm

based on the mechanics of natural selection and

natural genetics [GOL89]. As summarized by

Tomassini [TOM99], the main idea is that, in order for

a population of individuals to adapt to some

environment, it should behave like a natural system.

The genetic algorithm belongs to the family of

evolutionary algorithms, along with genetic

programming, evolution strategies, and evolutionary

programming. Evolutionary algorithms can be

considered as a broad class of stochastic optimization

techniques. An evolutionary algorithm maintains a

population of candidate solutions for the problem at

hand. The population is then evolved by the iterative

application of a set of stochastic operators. The set of

operators usually consists of mutation, recombination,

and selection or something very similar.

Using Tomassini’s terms [TOM99], genetic

algorithms (GA’s) consider an optimization problem

as the environment where feasible solutions are the

individuals living in that environment. The degree of

adaptation of an individual to its environment is

equivalent of the fitness function evaluated on a

solution. Similarly, a set of feasible solutions takes the

place of a population of organisms. An individual is a

string of binary digits or some other set of symbols

drawn from a finite set. Each encoded individual in

the population may be viewed as a representation of a

particular solution to a problem.

II. GENETIC ALGORITHM SOLUTION

The Holland first proposed genetic algorithms in the

1960s. Genetics algorithm is based on the principle of

genetics and evolution using efficient encoding,

crossover and mutation operators. The algorithm

requires population of the feasible solution. The

algorithm is encoded with the suitable encoding

scheme. Then we evaluate the fitness of each purposed

solution followed by selection to select the parent

solution for producing the offspring. Selection of

parents is done by repeated use of method used for

selecting the individual. Then crossover is used to

produce offspring and then is used mutation to prevent

the solution to trap in to local minima. The procedure

is repeated until termination a criterion is met.

A. Encoding scheme

The first step for solving a problem in GA is to encode

the problem at work into a state which can be solved

using GA. The basis of genetics in nature is a

chromosome. Each individual in the search space, i.e.

each solution to the problem worked upon, needs to be

encoded so that it can be modeled as a chromosome.

The application of a genetic algorithm to a problem

starts with the encoding.

The encoding specifies a mapping that transforms a

possible solution to the problem into a structure

containing a collection of decision variables that are

important to the problem worked upon.

A particular solution to the problem can then be

represented by a specific assignment of values to the

decision variables. The set of all possible solutions is

called the search space and a particular solution

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 16

June 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1148

represent a point in that search space. Various types of

encoding schemes are:

1. Binary encoding

2. Permutation encoding

3. Value/Real encoding

4. Tree encoding

5. Octal encoding &

6. Hexadecimal encoding.

For our problem value encoding is required. In value

encoding, every chromosome is a string of some

values. Values can be anything connected to problem,

form numbers, real numbers or chars to some

complicated objects.

B. Fitness function

Coming up with an encoding is the first thing that a

genetic algorithm implementer has to do. The next

step is to specify a function that can assign a score to

any possible solution. The score is a numerical value

that indicates how well a particular solution solves the

problem. The score is the fitness of the individual

solution. It represents how well the individual suits to

the environment. In this case, the environment is the

search space. The task of the GA is to discover

solutions that have higher fitness values among the set

of all possible solutions.

C. Operators

Once the encoding and the fitness function are

specified, the implementer has to choose selection and

genetic operators to evolve new solutions to the

problem being solved. The selection operator

simulates the “survival-of-the-fittest”. There are

various mechanisms to implement this operator, and

the idea is to give preference to better individuals.

Selection replicates individuals with high fitness

values and removes individuals with low fitness

values.

D. Parameters

With an encoding, a fitness function, and operators in

hand, the GA is ready to enter in action. But before

doing that, the user has to specify a number of

parameters such as population size, no. of processes

[LOB00].

Operator probabilities are chosen in order to maintain

the population diversity. For crossover the probability

is 100% i.e. with every iteration/algorithm run

crossover is performed always. Whereas the mutation

operation performed after every five consecutive

algorithm runs.

E. Initialization method & stopping criteria

The last steps of applying a GA are the specification

of an initialization method and stopping criteria. The

genetic algorithm is usually initialized with a

population of random individuals, but sometimes a

fraction of the population is initialized with previously

known (good) solutions [LOB00].

Following the initialization step, each individual is

evaluated according to the user’s specified fitness

function. Thereafter, the GA simulates evolution on

the artificial population of solutions using operators

that imitate the survival-of-the-fittest and principles of

natural genetics such as recombination and mutation

[LOB00]. A number of criteria can be chosen for this

purpose, including among others, a maximum number

of generations or time has elapsed, some predefined

fitness value is reached, or the population has

converged considerably [LOB00]. For our problem,

stopping criteria chosen is no. of iterations and

initialization method is random generation of

population.

III. IMPLEMENTATION & RESULTS

Our problem of interest is to compare the three

different scheduling algorithms. In this chapter,

various algorithms that are required for solving this

stated problem are put forward one after the other.

First algorithm is a SGA (i.e. Standard Genetic

Algorithm) as follows:

START GA

Step 1. Initialize nop and populationsize [input no. of

processes and population size from the user].

Step 2. Initialize brust time of each process randomly

[Using rand function].

Step 3. Initialize population randomly [Using

cpu_createperm function].

Step 4. Evaluate the fitness of each individual [Using

fitness function].

Step 4. FOR no. of iterations DO

Step 5. Select two parents from the randomly

generated population [Perform Roulette Wheel

Selection using wheel function].

Step 6. Crossover two parents [Perform cyclic

crossover using cyclic_crossover function].

Step 7. If i/5=0, Mutate two offspring produced.

[Perform mutation at every fifth iteration using

mutation_interchanging function].

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 16

June 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1149

Step 8. Evaluate Fitness and return the two best fitted

individual to the population [Perform weakparent

replacement using replace_weak function].

Step 9. Is done=Optimization criteria met?

Step 10. If (not) then, i = i + 1.

END FOR

[If optimization criteria met, stop the algorithm].

Step 11. Output the best solution

END GA

Here in this algorithm, “nop” represents number of

processes and “populationsize” is used for holding the

population size. Then the population is initialized

randomly for generation first. Then the fitness of the

population is evaluated. Then after this the selection

operation is performed using the Roulette Wheel

Selection. After selecting the parents for

reproduction/mating, cyclic crossover is performed

resulting in generation of new offspring’s. Then if i is

equal to 5, then mutation is performed. Otherwise

fitness is evaluated for new offspring’s and next

population is generated after replacement based on the

fitness of offspring’s.

Now next operation is to check for the optimization or

terminating criteria. If it is met then stop the algorithm,

else increase the value of i variable with one and

continue the same loop with the new population until

the ending point has been reached, which results in the

maximized values for the function under consideration.

The basic procedure for the selection is as follows:

For all members of population

 Cumulative sum += fitness of this individual

End for

 Do this twice

Choose a random number between 1 and cumulative

sum(end)

 For all members of population

 If number > cumulative sum of that member

 then you have been selected

 end for

 end loop

After selection next operation is to perform crossover,

and crossover operator used is cyclic crossover. This

is performed when encoding scheme used is real/value

encoding. As with our problem the chromosomes are

encoded with real values.

Step 1. Let the two parents selected be: P1 and P2.

Step 2. Select the first Process of P1 and make it as the

first process of offspring O1.

Step 3. To find the next process of offspring O1 search

current process, which is selected from P1 in P2.

Step 4. Find the location of process in P2 and select

the process, which is in the same location in P1.

Step 5. if the process is already present in O1

 Then if no process till now selected from step 4

select the next process from P1 and go to step 2.

 Else stop the procedure. Copies the process

from the parent P2 in the corresponding locations.

After crossover next operation is to perform mutation.

For our problem the mutation used is also of special

type for value-encoded strings. Mutation performed is

interchanging mutation. Algorithm for it is as follows:

Step 1. Select first offspring O1 chromosome.

Step 2. Select two-mutation point at random.

Step 3. Swap values at these two points in first

chromosomes.

Step 4. Repeat the procedure for second chromosome.

After performing mutation operation, new population

generated is evaluated and based on those Genetic

algorithm further proceeds.

RESULTS

As it can be seen in the last chapter, three algorithms

for CPU scheduling are implemented. The results that

came out after the implementation are being discussed

in this chapter. The procedure followed while

implementing it is first started with randomly

generating the population of chromosomes, for this

implementation population chosen is 50 only with

each chromosome having length of 50 genes. This

process in GA has been called as encoding the input

population. Then selection techniques have been

employed over the encoded population and after that a

special type of crossover is performed, i.e. modified

cyclic crossover. After the crossover operation,

mutation is performed, but after every 5 iterations.

Then this operation is repeated for the required

number of iterations. The results generated for our

problem at hand are shown in Figure 1 below:

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 16

June 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1150

Figure 5.5 Results of various scheduling algorithms

The bar graph shown here is about the results showing

the total waiting time of various algorithms. The

results that came out are in favour of genetic algorithm.

Although in some cases genetic algorithm shows more

waiting time as compared to SJF.SJF scheduling

algorithm is provably optimal. That is it gives the

minimum waiting time for a given set of processes. By

executing the short process before the long process

total waiting time of the solution decreases. But with

SJF we must know in advance the length of next CPU

burst, which is not always possible in real world

environment.

 V. CONCLUSION

In this work we have studied how genetic algorithm is

used to find an innovative solution for CPU

Scheduling. Genetics algorithm is based on the

principle of genetics and evolution using efficient

encoding, crossover and mutation operators. The

algorithm requires population of the feasible solution.

The algorithm is encoded with the suitable encoding

scheme. Then we evaluate the fitness of each purposed

solution followed by selection to select the parent

solution for producing the offspring. Selection of

parents is done by repeated use of method used for

selecting the individual. Then crossover is used to

produce offspring and then is used mutation to prevent

the solution to trap in to local minima. The procedure

is repeated until termination a criterion is met. The

result of genetic algorithm is then compared with the

FCFS and SJF scheduling algorithm.

REFERENCES

[1]. [GJO79] Garey, M. & Johnson, D. (1979).

Computers and Intractability: a theory of NP-

Completeness. W.H.Freeman, San Francisco.

[2]. [GOL89] Goldberg, D. E. (1989). Genetic

Algorithms in Search, Optimization, and Machine

Learning. Boston: Addison-Wesley.

[3]. [DAV91] Davis, L. (1991). Handbook of

Genetic Algorithm. Von Nostrand Reinhold,

Newyork.

[4]. [LAU96] Lau, T. L. & Tsang, E. P. K. (1996).

Applying a mutation-based genetic algorithm to the

processor conjuration problem, in Proceedings of

IEEE 8th International Conference on Tools with

Artificial Intelligence, pp. 17-24.

[5]. [MIT96] Mitchell, Melanie (1996). An

Introduction to Genetic Algorithms. MIT Press.

[6]. [BAC97] Back, T., Fogel, David B. &

Michalewicz, Z. (Eds.) (1997). Handbook of

Evolutionary Computation. Computational

Intelligence, Library Oxford University Press in

cooperation with the Institute of Physics

Publishing / CRC Press, Bristol, New York, ring

bound edition. ISBN: 0-7503-0392-1, 978-0-75030-

392-7, 0-7503-0895-8, 978-0-75030-895-3.

[7]. [JON98] Jong, K. De (1998). Learning with

Genetic Algorithm: An overview, Machine Learning

vol. 3, Kluwar Academic publishers.

[8]. [LAU98] Lau, T. L. & Tsang, E. P. K. (1998).

Guided genetic algorithm and its application to the

generalized assignment problem, Submitted to

Computers and Operations Research.

[9]. [TOM99] Tomassini, M. (1999). Parallel

and Distributed Evolutionary Algorithms: A Review.

In Miettinen, K., Makela, M., & Periaux, J. (Eds.),

Evolutionary Algorithms in Engineering and

Computer Science (pp. 113 - 133). Chichester: J.

Wiley and Sons.

[10]. [HAN00] Hanne, Thomas (2000). Global

multiobjective optimization using evolutionary

algorithms. Journal of Heuristics, vol. 6, no. 3, pp.

347-360.

[11]. [LOB00] Lobo, Fernando Miguel (2000).The

parameter-less genetic algorithm: rational and

automated parameter selection for simplified genetic

algorithm operation. Paper submitted in International

Conference on Genetic Algorithms, in Lisboa.

[12]. [GOL02] Goldberg, D. E. (2002). The Design

of Innovation: Lessons from and for Competent

Genetic Algorithms. Norwell, MA: Kluwer.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 16

June 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1151

[13]. [YAL04] Yalcinoz, T. & Altun, H. (2004). A

new genetic algorithm with arithmetic crossover to

economic and environmental economic research

dispatch. Submitted as a project work at Dept. of

Electrical & Electronic Engg.. Nigde University,

Turkey.

[14]. [MOL05] Molga, M. & Smutnicki, C. (2005).

Test functions for optimization needs, in Proceedings

of 4th Conference on Genetic Algorithms.

[15]. [OMA06] Omar, M., Baharum, A., & Hasan,

Y. Abu (2006). A Job-Shop Scheduling Problem

(JSSP) Using Genetic Algorithm ,in Proceedings of

2nd IMT-GT Regional Conference on Mathematics,

Statistics and

[16]. [INA06] Inazawa, H. & Kitakaze, K. (2006).

Locus-Shift Operator for Function Optimization in

Genetic Algorithms. Complex Systems Publications,

Inc.

[17]. [SKA06] Snehal Kamalapur (2006).Efficient

CPU Scheduling: A Genetic Algorithm based

Approach. IEEE, pp.206-207

[18]. [SIV08] Sivanandam, S. N. & Deepa, S. N.

(2008). Introduction to Genetic Algorithms. Springer.

[19]. [BIR09] Birch, J. B. & Wan, W. (2009). An

Improved Genetic Algorithm Using a Directional

Search. Tech report presented at Virginia

Polytechnic Institute and State University,

Blacksburg.

[20]. [HNZ09] H. Nazif(2009). A Genetic

Algorithm on Single Machine Scheduling Problem

toMinimise Total Weighted Completion Time.

European Journal of Scientific Research,Vol.35 No.3,

pp.444-452

[21]. [RKU10] Dr. Rakesh Chawla(2010). Genetic

Algorithm approach to Operating system process

scheduling problem. International Journal of

ngineering Science and Technology, pp. 4247-4252

[22]. [SRA10] S. Ramya[2010] “Window

Constrained Scheduling of Processes in Real Time

CPU Using Multi Objective Genetic

Algorithm“ International Journal of Computer

Applications Volume 1, pp.86-90

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

