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Abstract  
The aim of this paper is to propose and analyze various numerical methods for some representative classes of 
nonlinear Hartree equations, which mainly arise in the problems of quantum mechanics and nonlinear optics. 
Extensive numerical results are also reported, which are geared towards demonstrating the efficiency and accuracy 
of the methods, as well as illustrating the numerical analysis and applications. Although the subjects considered here 
is merely a small sample of nonlinear Hartree equations, it is believed that the methods and results achieved for 
these Hartree equations can be applied or extended to more general cases. The nonlinear Hartree equations, 
including a large body of classes, are widely used models for a great number of problems in the fields of physics, 
chemistry and biology, and have gained a surge of attention from mathematicians ever since they were derived. In 
addition to mathematical analysis, the numeric of these equations is also a beautiful world and the studies on it have 
never stopped. 
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Introduction  
Nonlinear dispersive and wave equations are fundamental models to many areas of physics and engineering like 
plasma physics, nonlinear optics, Bose-Einstein condensates, water waves, and general relativity. Examples include 
the nonlinear Schrondinger, wave, Klein-Gordon, water wave, and Einstein's equations of general relativity. This 
field of PDE has witnessed an explosion in activity in the past twenty, partly because of several successful cross-
pollinations with other areas of mathematics; mainly harmonic analysis, dynamical systems, and probability. It also 
continues to be one of the most active areas of research, rich with problems and open to many interesting directions.  
Although the numerical approximation of solutions of differential equations is a traditional topic in numerical 
analysis, has a long history of development and has never stopped, it remains as the beating heart in this field that to 
propose more sophisticated numerical methods for dispersive equations. 
 
In this study, we consider the Cauchy problems concerning the relativistic Hartree equations: 
 
 

 
(1) 

 
 
 

(2) 
 

The nonlinear part F(u) is of Hartree type such that where 
 
 
 
 
 

Here A is a non-zero real number and  is a positive number less than the space dimension n. 
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The equation (1) is called the semi-relativistic equation which describes the Boson stars, and the second one (2) is 
the well-known Klein-Gordon equation whose physical model is originated from the helium atom - For the 
simplicity of presentation, the mass, speed of light and Planck constant of both equations have been normalized. 
The equations (1) and (2) can be rewritten in the form of the integral equations 
 
 

 
(3) 

 

 
(4) 

 

Where and the associated unitary group U(t) is realized by the Fourier transform as 
 
 
 

 

Where denotes the Fourier transform of g defined by  

The operators cos and sin are defined by replacing  with  and 

 respectively. If the solution u of (1) or (3) has a decay at infinity and smoothness, it satisfies 

two conservation laws: 
 
 
 
 
 

 
(5) 

 

Where is the complex inner product in L2. Also the solution of (2) or (4) or satisfies the conservation law: 
 
 
 

 
(6) 

 
The main concern of this study is to establish the global well-posedness and scattering of radial solutions of the 

equations (1) and  
(2).  
The study of the global well-posedness (GWP) and scattering for the semi- relativistic equation (1) has not been long 

before. In (E. Lenzmann) GWP was considered with a three dimensional Coulomb type potential which corresponds to

. The first and second authors of the present study showed GWP for  if and if 

n=1, for  if ,  
and small data scattering for if In this study we tried to fill the gap for GWP under the 

assumption of radial symmetry. For further study like blowup of solutions, solitary waves, mean field limit problem 

for semi-relativistic equation, see the references. 
 
The first result is on the GWP for radial solutions of (3). 
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Theorem 2. Let and . Let be radially symmetric. If  is sufficiently small, then there exists 

a unique radial solution such that to Moreover, there exist radial functions and

such that 
 
 
 
 
 
 
 
In (Y. Cho, et al. 2006), the authors used the type Strichartz estimates of the Klein-Gordon equation to prove 

GWP and scattering for the equation (1). Contrary to the case of Klein-Gordon equation, semi-relativistic equation 

preserves regularity in a 

contraction argument based on the Strichartz estimate, from which the gap arises naturally in the 

range of for GWP. To tide over this difficulty, we assume the radial symmetry for data and solutions, which 

enables us to estimate fractional  
integrals associated with the nonlinearity . Then we establish an L2 Strichartz estimate for with 

weight which is useful to treat radial functions but also applicable to non-radial functions (a gain of angular 

regularity is achieved in the non-radial case). The one dimensional analog is attainable. 
 
For GWP we use a fractional integral estimate on the unit sphere such that 
 
 
 
 

 

where . The result of Theorem E corresponds to the case   

If n = 3, then the finiteness of integral enforces to be less than as in Theorem H since the integral is finite only 

when . For details see Lemma El and Lemma SI In Theorem El we treated the case for 

which the integral  

is not finite if n = 3. However, the three dimensional GWP can be slightly improved up to by using another Strichartz 

estimate on  
a hybrid Sobolev space. It will be worthy of trying to fill the gap for n = 3.  
The Klein-Gordon equation (4.2) was initially studied by (W. Strauss, 2001 ). In (T. Motai, 2008), the GWP is 

considered for and . It was proved that the scattering operator for (4.2) is well-defined on some 

domain if  
 and . Furthermore, (K. Mochizuki, 2009) showed that if

 and , then the scattering operator can be defined on some neighborhood near zero in 

the energy space.  
In this study the small data scattering of radial solutions is successfully treated below energy space, provided

. To state precisely, let us define a weighted spaces  and a data space  by 
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And , respectively, where  is sufficiently small. 
 

Theorem 3. Let for n = 3 and  for . Then there is a real number and such that 
 
 

 
       (7)   

 

 
where is the solutions to the Cauchy problem 
 
 
 
 

(8) 
 

In the definit ion of initial data space the space can be slightly weak ened by the homogeneous 

Sobolev space . In fact,  for . Let be the weak ened space

. Then one can easily show that the solution and then the 

existence of scattering operator of (2) on a small neighborhood of the origin in . For 

details see Remark M below.  

The lower bound of is caused by the condition (J?J) which follows from the relation between the weight

and the L2 estimate of Bessel function such that 
 
 
 
 
 

For the finiteness, the assumption is inevitable because  as  and 

  
as . For more explicit formula, see the identity below. Hence for the present it seems hard to improve the 

range of for the small data scattering. From the perspective of negative result for the scattering1, it will be very 

interesting to show the  

scattering up to the value of  greater than 1.  
This study is organized as follows. In this Section we introduce a weighted Strichartz estimate for . Some 

fractional integral estimates are considered under radial symmetry.  
If not specified, throughout this study, the notation  and  denote  and , 

respectively. Different positive constants possibly de pending on and a might be denoted by the same letter 

C. means that both and hold. 
 
Relativistic Hartree Equation for Boson Stars  
The nonlinear relativistic Hartree equation was rigorously derived recently for a boson star, which refers to a 
quantum mechanical system of N bosons with relativistic dispersion interacting through a gravitational attractive or 
repulsive Coulomb potential In fact,  
by starting from the TV-body relativistic Schrodinger equation (replacing —A/2 in the Schrodinger equation to
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and choosing the initial wave function to describe a condensate where N bosons are all in the same one-

particle state, in the mean-field limit N oo, one can prove that the time evolution of the one-particle density is 

governed by the nonlinear relativistic Hartree equation (under a proper non-Dimensionalization). Also, one can refer 

to and references therein (with a slightly different dimensionless scaling in some cases) for overviews of other 

physical backgrounds. 
It is easy to show that the equation admits at least two important conserved quantities, i.e. the mass of the system 
 
 

 
(9) 

 
And the energy 
 
 
 

 
(10

) 
 
The well-posedness of the initial-value problem was extensively and references therein. Their results can be 

summarized as: (i) 

there  exists  a  universal  constant (also  referred to  as the "Chandrasekhar  limit  mass"  in  physics  and with  a  lower 

bound )  such  that,  when ,  the solution is globally  well-posed  in  the  energy  space provided  

that ; (ii) when , the solution is locally well-posed; and (iii) when , 

the solution will blow up in finite time, which indicates the "gravitational collapse" of boson stars when the effective 

"mass" exceeds the critical  

value . Another problem of interests is the existence and uniqueness of the ground state, which is defined as the 

minimizer of the following nonconvex minimization problem: 
 

Find  such that 
 

 
(11

) 
 

If , it was shown that the ground state exists iff  and any ground state is smooth, decays 

exponentially when , and is identical to its spherically symmetric rearrangement up to phase and translation. 

Moreover, it was proven recently that, when and , the spherical-symmetric ground state is unique up 

to phase and translation, and the author remarked there that whether such uniqueness result can be extended to the 

whole range of existence remains open. Thus, such critical value plays an important role in 

investigating the ground states and dynamics. One remark here is that based on numerical results

.  
For the Schrodinger-Poisson (or -Newton) equations, i.e. the pseudo differential operator in (1.8) is 

replaced by , different numerical methods were presented in the literature based on finite difference 

discretization. However, these numerical methods have some difficulties in discretizing the 3D relativistic Hartree 

equation efficiently and accurately due to the appearance of the pseudo differential operator. The main aim of this 

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

 Volume 04  Issue 09 
August 2017 

   

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 2766   
 

chapter is to design efficient and accurate numerical methods for  
computing the ground states and the dynamics of the initial-value problem. For this purpose, let and 
 
 
 

 
Then equation is re-written as the relativistic Schrodinger-Poisson (RSP) equation 
 

 
(12

) 
 
 
 

(13

) 
 
With this formulation, the energy functional (10) is re-written as 
 
 
 
 
 
 
 
 
 

 
(14

) 
 
In the spirit of observations drawn in this study, the problem is then truncated into a box with homogeneous 
Dirichlet boundary conditions and a backward Euler sine pseudo spectral method is applied to discretize it. For 
computing the dynamics, again the problem is truncated into a box with homogeneous Dirichlet boundary conditions 
and a time-splitting sine pseudo spectral method is applied to discretize it. In particular, when the potential and 
initial data for dynamics are spherically symmetric, the problem collapses to a quasi-ID problem. 
Numerical Methods for Nonlinear Relativistic Hartree Equation  
Efficient and accurate numerical methods are presented for computing ground states and dynamics of the three-
dimensional (3D) nonlinear relativistic Hartree equation both without and with an external potential. This equation 
was derived recently for describing the mean field dynamics of boson stars. In its numeric, due to the appearance of 
pseudo differential operator which is defined in phase space via symbol, spectral method is more suitable for the 
discretization in space than other numerical methods such as finite difference method, etc. For computing ground 
states, a backward Euler sine pseudo spectral (BESP) method is proposed based on a gradient flow with discrete 
normalization; and respectively, for computing dynamics, a time-splitting sine pseudo spectral (TSSP) method is 
presented based on a splitting technique to decouple the nonlinearity. Both BESP and TSSP are efficient in 
computation via discrete sine transform, and are of spectral accuracy in spatial discretization. TSSP is of second-
order accuracy in temporal discretization and conserves the normalization in discretized level. In addition, when the 
external potential and initial data for dynamics are spherically symmetric, the original 3D problem collapses to a 
quasi-1D problem, for which both BESP and TSSP methods are extended successfully with a proper change of 
variables. Finally, extensive numerical results are reported to demonstrate the spectral accuracy of the methods and 
to show very interesting and complicated phenomena in the mean field dynamics of boson stars. 
 
In this study, we aim to design efficient and accurate numerical methods for computing ground states and dynamics 
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of the three-dimensional (3D) nonlinear relativistic Hartree equation: 
 

 
(1) 

 
With the following initial condition for dynamics 
 
 

(2) 
 
Here, t is time, x = (x, y, z)T is the Cartesian coordinates, ψ = ψ(x, t) is a complex valued dimensionless wave function, a real-valued function V (x) stands for an external potential, m denotes the 
scaled particle mass (m = 1 in most cases) and λ ∈ R is a dimensionless constant describing the interaction strength. The sign of λ depends on the type of interaction: positive for the  
repulsive interaction and negative for the attractive interaction. The pseudo differential operator for the 

kinetic energy  
is defined via multiplication in the Fourier space with the symbol , which is frequently used in relativistic quantum 
mechanical models as a convenient replacement of the full (matrix-valued) Dirac operator. The symbol ∗ stands for the convolution in R3. In 
addition, the initial condition is usually normalized under the normalization condition by a proper non-Dimensionalization. 
 
 

 
(3) 

 
The above nonlinear relativistic Hartree equation (1) was rigorously derived recently for a quantum mechanical 
system of N bosons with relativistic dispersion interacting through a gravitational attractive or repulsive Coulomb 
potential, which is often referred to as a boson star. It was achieved (under a proper non-Dimensionalization) in the 
mean field limit N → ∞ by choosing the initial wave function to describe a condensate where the N bosons are all in 
the same one-particle state, and is now used as a single-particle model for describing the mean field dynamics of 
boson stars. Also, we refer readers to references therein (with a slightly different dimensionless scaling in some 
cases) for other physical backgrounds of (1). It is easy to show that the equation (1.1) admits two important 
conserved quantities, i.e. the mass of the system 
 
 
 

(4) 
 
and the total energy, 
 
 
 

 
(5) 

 

 

 

Where  denotes the complex conjugate of a function f. The well-posedness of the initial-value problem (1)-(2) 

was extensively studied and references therein. Their results are summarized as:  
1. There exists a universal constant λcr (also referred to the “Chandrasekhar limit mass” in physics and with a lower bound λcr > 4/π) such that, when λ > −λcr, the solution is globally well-

posed in the energy space H1/2 (R 3 ) provided that V ∈ L 3 (R 3 ) ∩L∞(R 3 );  

2. When λ ≤ −λcr, the solution is locally well-posed; and   
3. when λ < −λcr, the solution will blow up in finite time, which indicates the “gravitational collapse” of boson 

stars when the effective ‘mass’ exceeds the critical value λcr. Another problem of interests is the existence and 
uniqueness of the ground state for (1), which is defined as the minimizer of the following nonconvex 
minimization problem:  
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(6) 
 
If V (x) ≡ 0, it was shown that the ground state exists iff −λcr < λ < 0 and any ground state is smooth, decays exponentially when |x| → 
∞, and is identical to its spherically symmetric rearrangement up to phase and translation. Moreover, it was proven recently that, when λ 
< 0 and |λ| ≪ 1, the spherical-symmetric ground state is unique up to phase and translation, and the author remarked there that whether 
such uniqueness result can be extended to the whole range of existence −λcr < λ < 0 remains open. Thus, such critical value λcr plays an 
important role in investigating the ground states and dynamics of (1). We remark here that based on our numerical results λcr ≈ 2.69 > 
8/π (cf. Fig).  
For Schrodinger -Poisson (or -Newton) equations, i.e. the pseudo differential operator in (1) is replaced 

by −∆, different numerical methods were presented in the literatures based on finite difference discretization; see, 

e.g.,. However, these numerical methods have some difficulties in discretizing the 3D relativistic Hartree equation 

efficiently and accurately due to the appearance of the pseudo differential operator. To our knowledge, there are 

almost no numerical results for the ground state and dynamics of the relativistic Hartree equation in the literatures. 

The main aim of this paper is to design efficient and accurate numerical methods for computing the ground state of 

(1.1) and the dynamics of the initial value problem (1)-(2). For this purpose, 

let β = 4πλ and  
 
Then (1) is re-written as the relativistic Schrodinger -Poisson (RSP) system 
 

 
(7) 

 

 
(8) 

 
With this formulation, the energy functional (5) is re-written as 
 
 
 
 
 
 
 

 
(9) 

 
In order to design numerical method for computing the ground state, we first construct a gradient flow with discrete 
normalization (GFDN) which was widely and successfully used in computing ground states of Bose-Einstein 
condensation and the Schrodinger - Poisson-Slater equations. Then the problem is truncated into a box with 
homogeneous Dirichlet boundary conditions and a backward Euler sine pseudo spectral method is applied to 
discretize it. For computing the dynamics, again the problem is truncated into a box with homogeneous Dirichlet 
boundary conditions and a time-splitting sine pseudo spectral method is applied to discretize it. In particular, when 
the potential and initial data are spherically symmetric, then the problem collapses to a quasi-1D problem. 
Simplified numerical methods are designed by using a proper change of variables in the quasi-1D problem. The 
paper is organized as follows. A backward Euler sine pseudo spectral method is proposed for computing the ground 
state in 3D. A time-splitting sine pseudo spectral method is presented for computing the dynamics in 3D. In 
simplified numerical methods are 
presented when the potential V (x) and initial data ψ0(x) are spherically symmetric. Extensive numerical results are 
reported in Section 5 to demonstrate the efficiency and accuracy of our numerical methods and to show the ground 
states and mean field dynamics of boson stars. Finally, some closing remarks are drawn. Throughout the study, we 
adopt the standard Sobolev spaces and their corresponding norms. 
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Conclusion  
Nonlinear dispersive and wave equations are fundamental models to many areas of physics and engineering like 
plasma physics, nonlinear optics, Bose-Einstein condensates, water waves, and general relativity. This field of PDE 
has witnessed an explosion in activity in the past twenty, partly because of several successful cross-pollinations with 
other areas of mathematics; mainly harmonic analysis, dynamical systems, and probability. It also continues to be 
one of the most active areas of research, rich with problems and open to many interesting directions. The goal of the 
present study is to continue our explorations of the effect of pe-riodicity on rough initial data for nonlinear evolution 
equations in the context of two important examples: the nonlinear Schrodinger (nlS) and Korteweg-deVries (KdV) 
equations, possessing, respectively, elementary second and third order monomial dispersion. The nonlinear 
dispersive equations, including a large body of classes, are widely used models for a great number of problems in 
the fields of physics, chemistry and biology, and have gained a surge of attention from mathematicians ever since 
they were derived. In addition to mathematical analysis, the numeric of these equations 
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