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ABSTRACT 
 
This paper presents a bit-serial architecture for 
efficient addition and multiplication in binary 
finite fields GF (2m) using a polynomial basis 
representation. Moreover, a low-voltage/low 
power implementation of the arithmetic circuits 
and the registers is pro-posed. The introduced 
multiplier operates over a variety of binary fields 
up to an order of 2m. We detail that the bit-serial 
multiplier architecture can be implemented with 
only 28m gate equivalents, and that it is scalable, 
highly regular, and simple to design. 
 
Index terms: Finite field arithmetic, bit-serial 

multiplier architec-ture, smart card crypto-

coprocessor, low-power VLSI design. 

 

1. INTRODUCTION 
 
Finite fields are increasingly important for many 

applications in cryptography and algebraic coding 
theory [4]. Certain properties of the binary finite 

field GF(2m) like its “carry-free” arithmetic make 
it very attractive for hardware implementation. 

Another advantage of GF(2m) is the availability of 
different equivalent rep-resentations of the field 

elements, e.g. polynomial bases, normal bases, or 

dual bases. Depending on the applications, the 
degree m of the field can vary over a wide range. 

In elliptic curve cryptography [3], m has to be 
prime and is usually between 160 and 200, but it 

can also be as large as 500 or even more. The 
performance of an elliptic curve (EC) 

cryptosystem is primarily determined by the 
efficient implementation of the field arithmetic. 

In environments with limited computational 

power, such as smart cards, a hardware 
acceleration of the field arithmetic is necessary to  

 
 

reach high performance, especially if m is beyond 
200.  

According to the different basis representations,  
a variety of algorithms and architectures for 

multiplication in GF(2m) have been proposed. As 
an example, we refer to [1] for a report on a 
Normal basis multiplier. However, in order to be 
compliant to well accepted standards for EC 
cryptography [5], the polynomial basis 
representation seems to be the best choice. From 
an architectural point of view, a polynomial basis 
multiplier can be realized in a bit-serial, digit-
serial, or bit-parallel fashion. For area-restricted 
devices like smart cards, the bit-serial architecture 
offers a fair area/performance trade-off. Bit-serial 
architectures for polynomial basis multiplication 
are well known since the early 1970s due to their 
exploration in coding theory [6], and later they 
have also been proposed for use in cryptography 
[2].  

This paper presents a bit-serial multiplier 
architecture for the finite field GF(2m) which is 
optimized for elliptic curve cryptogra-phy. 
Contrary to other designs, the proposed 
architecture can also perform addition of field 
elements, and it operates over a wide range of 
finite fields since it is neither restricted to a field 
of a given order, nor does it favor special 
irreducible polynomials like trinomials or 
pentanomials. The field multiplication is 
performed according to the shift-and-add 
principle and requires m clock cycles. The 
reduction modulo the irreducible polynomial (IP) 
is realized by interleaved subtractions of the IP. 
Major advantages of the bit-serial architecture are 
low power consumption and a high degree of 
regularity, which makes it very attractive for 
VLSI implementation.  

The remainder of this paper is structured as 
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follows: Section 2 provides some mathematical 
background information on the finite field GF(2m) 
with an emphasis on the basic arithmetic 
operations (addition, multiplication). In Section 3, 
the bit-serial multiplier architecture is presented. 
Additionally, the execution of a field-
multiplication is explained in Section 3.1. VLSI 
design related issues with a special focus on low-
area and low-power implementation of the field 
arithmetic are sketched in Section 4. The paper 
finishes with a summary of results (i.e. estimation 
of the silicon area) and conclusions in Section 5. 

 

2. ARITHMETIC IN THE FINITE FIELD 

GF(2m) 
 
Abstractly, a finite field (or Galois field) consists 

of a finite set of elements together with the 

description of two operations (addition and 

multiplication) that can be performed on pairs of 

field elements. These operations must possess 

certain properties associativity and commutativity 

of both addition and multiplication, the 

distributive law, existence of an additive identity 

and a multiplicative identity, and existence of 

additive inverses as well as multiplicative 

inverses. GF(2) is the smallest possible finite 

field; it just contains the integers 0 and 1 as field 

elements. Addition and multiplication are 

performed modulo 2, therefore the addition is 

equivalent to the logical XOR, and the 

multiplication corresponds to the logical AND.  
The binary finite field GF(2m) contains 2m 

elements where m is a non-zero positive integer. 
Each of the 2m elements of GF(2m) can be 
uniquely represented with a polynomial of degree 
up to m−1 with coefficients in GF(2). For 
example, if a(t) is an element in GF(2m), then one 
can have m−1  
a(t) = Xai t

i = am−1t
m−1 + ··· + a2t

2 + a1t + a0       (1) 
i=0 with ai ∈ {0, 1}. This binary polynomial can 
also be written in bit-string form as A[m − 1 . . 0], 
whereby A[i] corresponds to the coefficient ai. 
Addition in GF(2m) is implemented as 
component-wise XOR, while a multiplication can 
be performed modulo an irreducible polynomial 
p(t) of degree m with coefficients pi in GF(2). A 

polynomial of degree m is said to be irreducible 
over GF(2) if it can not be factored into a product 
of polynomials each of whose degree is less than 
m with coefficients in GF(2). 

2.1. Addition 
 
The addition of two field elements of GF(2m) is 
performed by adding the coefficients modulo 2, 
which is nothing else than bit-wise XOR-ing the 
coefficients of equal powers of t. That is, if a(t), 
b(t) ∈ GF(2m), the addition is done as follows:  
(m−1)a(t) + b(t) = c(t) = ci t

i with ci = ai + bi  

mod 2 (2) i=0 

Compared to the addition of integers, the addition 

in GF(2m) is much easier as it does not cause a 

carry propagation from less to more significant bit 

positions. A hardware implementation with an 

ensemble of m XOR gates can perform the 

addition in constant time. In the finite field 

GF(2m), each element a(t) is its own additive 

inverse since a(t) + a(t) = 0, the additive identity. 

Thus, addition and subtraction are equivalent 

operations in GF(2m). 

2.2. Multiplication 
 

Contrary to GF(2), a number of different 

representations is com-monly used for the 

elements of a finite field GF(2m). The simplest 

representation is in polynomial basis, where the 

multiplication involves multiplying the two 

polynomials (carry-free coefficient 

multiplication) and then finding the residue 

modulo a given ir-reducible polynomial p(t). In 

general, the reduction modulo an irreducible 

polynomial requires polynomial division. 

However, the polynomial division is very costly 

to implement in hardware. For an efficient 

implementation, it is necessary to find a method 

to perform the field multiplication without 

division.  
One possibility is to interleave the 

reduction modulo p(t) with the 

multiplication operation, instead of 

performing the reduction separately after 
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the multiplication of the polynomials is 

finished. This leads to a method which is 

generally known as “shift-and-add” 

multiplication, where the product is 

obtained by the addition of partial-

products, and the reduction is interleaved 

with the addition steps and performed by 

subtractions of the irreducible polynomial. 

The following pseudo-code describes this 

algorithm for multiplying two polynomials 

a(t), b(t) ∈ GF(2m) modulo an irreducible 

polynomial p(t) of degree m. 
 

1. r(t) ← 0   
2. for i = m − 1 downto 0 do  
2a. r(t) ← t ·r(t) + ai ·b(t)  
2b. if degree(r(t)) = m then r(t) ← r(t) − p(t)   
3. return r(t)  

 
The multiplication of two polynomials a(t), 

b(t) is done by scan-ning the coefficients of the 
multiplier-polynomial a(t) from am−1 to a0 and 
adding the partial-product ai ·b(t) to the 
intermediate result r(t). The partial-product ai 
·b(t) is either 0 (if ai = 0) or the multiplicand-
polynomial b(t) (if ai = 1). After each partial-
product addition, the intermediate result must be 
multiplied by t to align it for the next partial-
product. The reduction modulo the irreducible 
polynomial p(t) is interleaved with the addition 
steps by subtraction of p(t) whenever the degree 
of the intermediate result-polynomial is m. 
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B[3]  B[2]  B[1]  B[0] 

        
mrbit 

 
 
 

R[3] R[2] R[1] R[0] 

mode    

P[3] P[2] P[1] P[0] 

 ... logical AND ... logical XOR  
 
Figure 1: MSB-first bit-serial multiplier architecture for GF(24) 

3. MULTIPLIER ARCHITECTURE 
 

A bit-serial multiplier architecture for m-
bit operands has an area complexity of O(m), and 
also the computation time is propor-tional to m, 
i.e. a multiplication in GF(2m) requires m clock 
cycles. In general, there exist two versions of bit-
serial multiplier architectures, depending on the 
schedule of the operands: The LSB-first version, 
and the MSB-first version. Figure 1 shows a 
MSB-first version of a bit-serial architecture for 
GF(24) using polynomial basis representation. 
According to the bit-string notation introduced in 
Subsection 2.1, the coefficients bi, ri, pi of the 
multiplicand polynomial b(t), the result 
polynomial r(t), and the irreducible polynomial  
p(t) are symbolized as B[i], R[i], and P[i], 
respectively.  

The multiplier architecture depicted in Figure 1 

employs multiplexers to switch between two 

modes of operation: Addition mode and 

multiplication mode. In addition mode (control 

signal mode = 0), the upper inputs of the 

multiplexers in Figure 1 are propagated to the 

outputs. In this mode, the reduction (i.e. 

subtraction of p(t)) is disabled and the multiplier 

performs the addition r(t) ← r(t) + b(t) if the 

multiplier bit mr bit is set to 1. 

Alternatively, in multiplication mode, the 

architecture illustrated in Figure 1 is in principle 
a direct mapping of the “shift-and-add” algorithm 
described in Subsection 2.2. The generation of the 
partial-product ai· b(t) is simply done by a bit-
wise AND operation of the coefficient ai (the 
multiplier bit, denoted as mr bit in Figure 1)  

 
 
and all the coefficients of b(t). The 

multiplication t · r(t) from line (2a.) of the 
algorithm is nothing else than a 1-bit left-shift of 
the bit-string representation of r(t). The only point 
in which a multiplication in the presented 
multiplier architecture differs from the algorithm 
in Section 2.2 is the order of partial-product 
addition and reduction modulo p(t), i.e. 
subtraction of the irreducible poly-nomial. In the 
architecture depicted in Figure 1, these operations 
are performed together within one clock cycle, 
which makes it necessary to subtract the 
irreducible polynomial p(t) when the degree of 
r(t) is m − 1. However, the value to be subtracted 
from r(t) is either 0 (if the coefficient rm−1 = 0) or 
p(t) (if rm−1 = 1). Both cases require a bit-wise 
AND operation between rm−1 and all coefficients 
pi of the irreducible polynomial p(t). It turns out 
that the computation of r(t) = a(t) · b(t) mod p(t) 
requires m steps; at each step we perform the 
following operations: 

– Calculation of t ·r(t) (a 1-bit left-shift).  
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– Generation of the partial-product (logical 

AND between ai and the coefficients of b(t)).   
– Addition of the partial-product (m-bit XOR 

operation).  
– Generation of the subtrahend (logical AND 

between rm−1 and the coefficients of p(t)).   
– Subtraction of subtrahend (m-bit XOR 

operation).  

Thus, the required logical operations are reduced 

to AND, XOR and 1-bit left-shift operations, 
which makes an implementation of the bit-serial 

architecture very simple. 
 

 
 
 
 

rot 
  mrbit 

 

 
Multiplier Register  

 

load_mr   
 

   
 

shift    
 

data_in Multiplicand Register data_out 
 

load_md    
 

clear  
Result Register 

 
 

load_rs   
 

   
 

mrbit GF(2m) Arithmetic Circuit  
 

 m bit w bit 1 bit 
 

 
Figure 2: Block diagram of the proposed 

GF(2m) multiplier 

In the following we propose an implementation 

of the bit-serial architecture which can be used as 

a coprocessor in a smart card. The main design 

goal is to achieve the smallest possible silicon 

area. Some “tricks” employed to reach this goal 

will be presented later in this section. Figure 2 

shows the major components of our bit-serial 

GF(2m)-multiplier. The introduced design can be 

imple-mented to provide a classical coprocessor 

functionality: first the operands are loaded into 

registers within the multiplier, then the arithmetic 

operation (addition or multiplication) is executed, 

and finally the result can be fetched from register 

Result. Note that in Figure 2, the register for the 

irreducible polynomial is not shown. 

The register Multiplier is used to store the bit-

string represen-tation of the multiplier-

polynomial a(t). This register must be able to 

perform 1-bit left-shift operations in MSB 

direction and an m-bit parallel load operation. The 

multiplicand-polynomial b(t) is stored in the 

register Multiplicand. The register Multipli-cand 

is supposed to be able to carry out an m-bit 

parallel load operation and additionally a w-bit 

right-shift operation, whereby w denotes the 

wordsize of the data bus (typically 8 or 16 bit). 

All data transfers from the multiplier core to 

registers outside the crypto-coprocessor and vice 

versa are performed via the register Multiplicand. 

Therefore, register Result supports parallel data 

transfer to register Multiplicand, and register 

Multiplier is able to perform parallel data transfer 

from register Multiplicand. 

 

 

3.1. Execution of a Multiplication 
 
In order to explain how a multiplication is carried 
out in the presented bit-serial multiplier, let us 
assume that at the beginning of the multiplication 
the multiplier-polynomial a(t) resides in register 
Multiplier and the multiplicand-polynomial b(t) is 
stored in register Multiplicand. After the register 
Result has been cleared, the register Multiplier is 
shifted bit by bit in MSB direction, which delivers 
the multiplier-bits (i.e. the coefficients ai) to the 
GF(2m) arithmetic unit, beginning with am−1. The 
calculation of the intermediate result r(t) is 
performed as described earlier in this section. 
After the final coefficient a0 has been processed, 
the result of the multiplication resides within 
register Result. From there it can be loaded into 
register Multiplicand, where it might act as 
multiplicand-polynomial for the next 
multiplication, or from where it can be transferred 
to the world outside the multiplier. 

 

4. IMPLEMENTATION ISSUES 
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In this section we present a possible 

implementation of the regis-ters and the 

arithmetic circuits. Due to the high regularity of 

the multiplier architecture, the register cells and 

the arithmetic cells essentially determine the 

overall size of the crypto-coprocessor. It turns out 

that transmissions gates are very useful for an area 

and power optimized implementation of the 

proposed field multiplier. 

 

4.1. Implementation of the Field Arithmetic 
 
Transmission gates are often used in digital 

design as they allow simple realizations of 

complex circuits. But when designing trans-

mission gate based devices, one has to be aware 

of some problems which are specific for that 

circuit class. A transmission gate is not an ideal 

switch, has limited drive strength, and causes 

delay. 

 

 

 

 

 

 
 
 

 

a q 
 
 

b 
 

Figure 3: Transmission gate XOR 

An example of the effective use of transmission 

gates is the popular XOR circuit shown in Figure 

3 (see [7]). This XOR gate requires only eight 

transistors (including the inverter at the output). 

compared to the twelve transistors required for a 

complementary implementation. Moreover, the 

presented XOR circuit does not require 

complementary input signals and is very well 

suited for low-voltage low-power applications. 

The XNOR function can be realized in a similar 

way as the presented XOR circuit. 

 

 
 

 
Figure 5: Static register cell with two data 

inputs. 

Figure 4 shows a 1-bit arithmetic cell which can 

be used in the GF(2m)-multiplier. The arithmetic 

cell performs generation and addition of the 

partial-product, as well as subtraction of the 

irreducible polynomial if the degree of the result-

polynomial is m−1. Each arithmetic cell contains 

a multiplexer to switch between addition mode 

and multiplication mode. A multiplexer can be 

implemented with two transmission gates and an 

inverter (see [7], p. 212). In this case, the 

presented arithmetic cell consists of 30 

transistors. 

4.2. Static Register Cell Static CMOS logic is 

known to be fast, offers a large noise margin, and 

is very easy to design. But also from the 

viewpoint of power consumption, static register 
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cells provide a significant advantage compared to 

their dynamic counterparts: They do not require a 

clock signal to store their logical state. The 

principle of a gated clock is often used in 

synchronous digital systems to prevent inactive 

circuits from consuming unnecessary power. The 

basic idea of clock gating is to mask off the clock 

to registers which are idle. Synchronous load-

enable registers can be realized in this way by 

inserting AND gates into the clock network. The 

clock pulses are prevented from propagating to 

the registers whenever the load enable signal is 

false. In summary, gating the clock of a register 

saves power in two ways: First, a register 

consumes significantly less power when it is not 

clocked since clock toggling is generally 

considered to cause substantial power dissipation 

in flip-flops. Second, also the corresponding 

portion of the clock tree does not consume power 

when the clock signal is masked off. Especially 

for the register Multiplicand, a gated 

clock can be advantageous since this register is 

only active during operand loading and is always 

idle for the remaining time of the multiplication. 

A static register cell which provides serial and 

parallel load can be composed of four 

transmission gates, four inverters and a 

multiplexer,asshowninFigure5. 

Whenthemultiplexerisrealized by two 

transmission gates and an inverter, the static 

register cell consists of 22 transistors. 

5. SUMMARY OF RESULTS AND 

CONCLUSIONS 

A 1-bit multiplier cell of the proposed bit-serial 

architecture consists of 3 register cells and the 1-

bit arithmetic circuit illustrated in Figure 4. 

Additionally, a simple register cell for the 

irreducible polynomial is required, which can be 

implemented with 16 transistors. Thus, the overall 

transistor count of the 1-bit multiplier cell is 112, 

which results in 28m gates for an m-bit multiplier. 

A multiplier based on the presented architecture 

has a linear array structure with a bit-slice feature. 

The multiplication requires m cycles, whereby the 

max. clock frequency is independent of m, but 

primarily determined by the delay of the 

arithmetic circuit. Low power consumption can 

be achieved by clock gating, and contrary to LSB-

first architectures only two registers (Result and 

Multiplier) have to be clocked at any given cycle. 

An m-bit multiplier operates over a variety of 

fields. For example, a multiplier originally 

dimensioned for 200 bits can also be used for 

fields of smaller order (e.g. 163 bits) by left-

aligning all operands in the registers. Therefore, 

the presented design is very well suited to 

implement a small-area and low-power GF(2m)-

multiplier for elliptic curve cryptography. 
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