

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 68

Factoring Technique Based Low Power Finite Field Multiplier

Digit Serial Polynomial
Ms. Ms. Sirangi Sai Chathurya & Mr. S.Ranjith Kumar

1. Department of ECE, Ganapathy Engineering College , Warangal, India.

2. Associate Professor, Department of ECE , Ganapathy Engineering College , Warangal, India

ABSTRACT

This paper presents a bit-serial architecture for
efficient addition and multiplication in binary
finite fields GF (2m) using a polynomial basis
representation. Moreover, a low-voltage/low
power implementation of the arithmetic circuits
and the registers is pro-posed. The introduced
multiplier operates over a variety of binary fields
up to an order of 2m. We detail that the bit-serial
multiplier architecture can be implemented with
only 28m gate equivalents, and that it is scalable,
highly regular, and simple to design.

Index terms: Finite field arithmetic, bit-serial

multiplier architec-ture, smart card crypto-

coprocessor, low-power VLSI design.

1. INTRODUCTION

Finite fields are increasingly important for many

applications in cryptography and algebraic coding
theory [4]. Certain properties of the binary finite

field GF(2m) like its “carry-free” arithmetic make
it very attractive for hardware implementation.

Another advantage of GF(2m) is the availability of
different equivalent rep-resentations of the field

elements, e.g. polynomial bases, normal bases, or

dual bases. Depending on the applications, the
degree m of the field can vary over a wide range.

In elliptic curve cryptography [3], m has to be
prime and is usually between 160 and 200, but it

can also be as large as 500 or even more. The
performance of an elliptic curve (EC)

cryptosystem is primarily determined by the
efficient implementation of the field arithmetic.

In environments with limited computational

power, such as smart cards, a hardware
acceleration of the field arithmetic is necessary to

reach high performance, especially if m is beyond
200.

According to the different basis representations,
a variety of algorithms and architectures for

multiplication in GF(2m) have been proposed. As
an example, we refer to [1] for a report on a
Normal basis multiplier. However, in order to be
compliant to well accepted standards for EC
cryptography [5], the polynomial basis
representation seems to be the best choice. From
an architectural point of view, a polynomial basis
multiplier can be realized in a bit-serial, digit-
serial, or bit-parallel fashion. For area-restricted
devices like smart cards, the bit-serial architecture
offers a fair area/performance trade-off. Bit-serial
architectures for polynomial basis multiplication
are well known since the early 1970s due to their
exploration in coding theory [6], and later they
have also been proposed for use in cryptography
[2].

This paper presents a bit-serial multiplier
architecture for the finite field GF(2m) which is
optimized for elliptic curve cryptogra-phy.
Contrary to other designs, the proposed
architecture can also perform addition of field
elements, and it operates over a wide range of
finite fields since it is neither restricted to a field
of a given order, nor does it favor special
irreducible polynomials like trinomials or
pentanomials. The field multiplication is
performed according to the shift-and-add
principle and requires m clock cycles. The
reduction modulo the irreducible polynomial (IP)
is realized by interleaved subtractions of the IP.
Major advantages of the bit-serial architecture are
low power consumption and a high degree of
regularity, which makes it very attractive for
VLSI implementation.

The remainder of this paper is structured as

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 69

follows: Section 2 provides some mathematical
background information on the finite field GF(2m)
with an emphasis on the basic arithmetic
operations (addition, multiplication). In Section 3,
the bit-serial multiplier architecture is presented.
Additionally, the execution of a field-
multiplication is explained in Section 3.1. VLSI
design related issues with a special focus on low-
area and low-power implementation of the field
arithmetic are sketched in Section 4. The paper
finishes with a summary of results (i.e. estimation
of the silicon area) and conclusions in Section 5.

2. ARITHMETIC IN THE FINITE FIELD

GF(2m)

Abstractly, a finite field (or Galois field) consists

of a finite set of elements together with the

description of two operations (addition and

multiplication) that can be performed on pairs of

field elements. These operations must possess

certain properties associativity and commutativity

of both addition and multiplication, the

distributive law, existence of an additive identity

and a multiplicative identity, and existence of

additive inverses as well as multiplicative

inverses. GF(2) is the smallest possible finite

field; it just contains the integers 0 and 1 as field

elements. Addition and multiplication are

performed modulo 2, therefore the addition is

equivalent to the logical XOR, and the

multiplication corresponds to the logical AND.
The binary finite field GF(2m) contains 2m

elements where m is a non-zero positive integer.
Each of the 2m elements of GF(2m) can be
uniquely represented with a polynomial of degree
up to m−1 with coefficients in GF(2). For
example, if a(t) is an element in GF(2m), then one
can have m−1
a(t) = Xai t

i = am−1t
m−1 + ··· + a2t

2 + a1t + a0 (1)
i=0 with ai ∈ {0, 1}. This binary polynomial can
also be written in bit-string form as A[m − 1 . . 0],
whereby A[i] corresponds to the coefficient ai.
Addition in GF(2m) is implemented as
component-wise XOR, while a multiplication can
be performed modulo an irreducible polynomial
p(t) of degree m with coefficients pi in GF(2). A

polynomial of degree m is said to be irreducible
over GF(2) if it can not be factored into a product
of polynomials each of whose degree is less than
m with coefficients in GF(2).

2.1. Addition

The addition of two field elements of GF(2m) is
performed by adding the coefficients modulo 2,
which is nothing else than bit-wise XOR-ing the
coefficients of equal powers of t. That is, if a(t),
b(t) ∈ GF(2m), the addition is done as follows:
(m−1)a(t) + b(t) = c(t) = ci t

i with ci = ai + bi

mod 2 (2) i=0

Compared to the addition of integers, the addition

in GF(2m) is much easier as it does not cause a

carry propagation from less to more significant bit

positions. A hardware implementation with an

ensemble of m XOR gates can perform the

addition in constant time. In the finite field

GF(2m), each element a(t) is its own additive

inverse since a(t) + a(t) = 0, the additive identity.

Thus, addition and subtraction are equivalent

operations in GF(2m).

2.2. Multiplication

Contrary to GF(2), a number of different

representations is com-monly used for the

elements of a finite field GF(2m). The simplest

representation is in polynomial basis, where the

multiplication involves multiplying the two

polynomials (carry-free coefficient

multiplication) and then finding the residue

modulo a given ir-reducible polynomial p(t). In

general, the reduction modulo an irreducible

polynomial requires polynomial division.

However, the polynomial division is very costly

to implement in hardware. For an efficient

implementation, it is necessary to find a method

to perform the field multiplication without

division.
One possibility is to interleave the

reduction modulo p(t) with the

multiplication operation, instead of

performing the reduction separately after

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 70

the multiplication of the polynomials is

finished. This leads to a method which is

generally known as “shift-and-add”

multiplication, where the product is

obtained by the addition of partial-

products, and the reduction is interleaved

with the addition steps and performed by

subtractions of the irreducible polynomial.

The following pseudo-code describes this

algorithm for multiplying two polynomials

a(t), b(t) ∈ GF(2m) modulo an irreducible

polynomial p(t) of degree m.

1. r(t) ← 0
2. for i = m − 1 downto 0 do
2a. r(t) ← t ·r(t) + ai ·b(t)
2b. if degree(r(t)) = m then r(t) ← r(t) − p(t)
3. return r(t)

The multiplication of two polynomials a(t),

b(t) is done by scan-ning the coefficients of the
multiplier-polynomial a(t) from am−1 to a0 and
adding the partial-product ai ·b(t) to the
intermediate result r(t). The partial-product ai
·b(t) is either 0 (if ai = 0) or the multiplicand-
polynomial b(t) (if ai = 1). After each partial-
product addition, the intermediate result must be
multiplied by t to align it for the next partial-
product. The reduction modulo the irreducible
polynomial p(t) is interleaved with the addition
steps by subtraction of p(t) whenever the degree
of the intermediate result-polynomial is m.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online:

https://edupediapublications.org/journals/index.php/IJR/ P a g e | 71

B[3] B[2] B[1] B[0]

mrbit

R[3] R[2] R[1] R[0]

mode

P[3] P[2] P[1] P[0]

 ... logical AND ... logical XOR

Figure 1: MSB-first bit-serial multiplier architecture for GF(24)

3. MULTIPLIER ARCHITECTURE

A bit-serial multiplier architecture for m-
bit operands has an area complexity of O(m), and
also the computation time is propor-tional to m,
i.e. a multiplication in GF(2m) requires m clock
cycles. In general, there exist two versions of bit-
serial multiplier architectures, depending on the
schedule of the operands: The LSB-first version,
and the MSB-first version. Figure 1 shows a
MSB-first version of a bit-serial architecture for
GF(24) using polynomial basis representation.
According to the bit-string notation introduced in
Subsection 2.1, the coefficients bi, ri, pi of the
multiplicand polynomial b(t), the result
polynomial r(t), and the irreducible polynomial
p(t) are symbolized as B[i], R[i], and P[i],
respectively.

The multiplier architecture depicted in Figure 1

employs multiplexers to switch between two

modes of operation: Addition mode and

multiplication mode. In addition mode (control

signal mode = 0), the upper inputs of the

multiplexers in Figure 1 are propagated to the

outputs. In this mode, the reduction (i.e.

subtraction of p(t)) is disabled and the multiplier

performs the addition r(t) ← r(t) + b(t) if the

multiplier bit mr bit is set to 1.

Alternatively, in multiplication mode, the

architecture illustrated in Figure 1 is in principle
a direct mapping of the “shift-and-add” algorithm
described in Subsection 2.2. The generation of the
partial-product ai· b(t) is simply done by a bit-
wise AND operation of the coefficient ai (the
multiplier bit, denoted as mr bit in Figure 1)

and all the coefficients of b(t). The

multiplication t · r(t) from line (2a.) of the
algorithm is nothing else than a 1-bit left-shift of
the bit-string representation of r(t). The only point
in which a multiplication in the presented
multiplier architecture differs from the algorithm
in Section 2.2 is the order of partial-product
addition and reduction modulo p(t), i.e.
subtraction of the irreducible poly-nomial. In the
architecture depicted in Figure 1, these operations
are performed together within one clock cycle,
which makes it necessary to subtract the
irreducible polynomial p(t) when the degree of
r(t) is m − 1. However, the value to be subtracted
from r(t) is either 0 (if the coefficient rm−1 = 0) or
p(t) (if rm−1 = 1). Both cases require a bit-wise
AND operation between rm−1 and all coefficients
pi of the irreducible polynomial p(t). It turns out
that the computation of r(t) = a(t) · b(t) mod p(t)
requires m steps; at each step we perform the
following operations:

– Calculation of t ·r(t) (a 1-bit left-shift).

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 72

– Generation of the partial-product (logical

AND between ai and the coefficients of b(t)).
– Addition of the partial-product (m-bit XOR

operation).
– Generation of the subtrahend (logical AND

between rm−1 and the coefficients of p(t)).
– Subtraction of subtrahend (m-bit XOR

operation).

Thus, the required logical operations are reduced

to AND, XOR and 1-bit left-shift operations,
which makes an implementation of the bit-serial

architecture very simple.

rot
 mrbit

Multiplier Register

load_mr

shift

data_in Multiplicand Register data_out

load_md

clear
Result Register

load_rs

mrbit GF(2m) Arithmetic Circuit

 m bit w bit 1 bit

Figure 2: Block diagram of the proposed

GF(2m) multiplier

In the following we propose an implementation

of the bit-serial architecture which can be used as

a coprocessor in a smart card. The main design

goal is to achieve the smallest possible silicon

area. Some “tricks” employed to reach this goal

will be presented later in this section. Figure 2

shows the major components of our bit-serial

GF(2m)-multiplier. The introduced design can be

imple-mented to provide a classical coprocessor

functionality: first the operands are loaded into

registers within the multiplier, then the arithmetic

operation (addition or multiplication) is executed,

and finally the result can be fetched from register

Result. Note that in Figure 2, the register for the

irreducible polynomial is not shown.

The register Multiplier is used to store the bit-

string represen-tation of the multiplier-

polynomial a(t). This register must be able to

perform 1-bit left-shift operations in MSB

direction and an m-bit parallel load operation. The

multiplicand-polynomial b(t) is stored in the

register Multiplicand. The register Multipli-cand

is supposed to be able to carry out an m-bit

parallel load operation and additionally a w-bit

right-shift operation, whereby w denotes the

wordsize of the data bus (typically 8 or 16 bit).

All data transfers from the multiplier core to

registers outside the crypto-coprocessor and vice

versa are performed via the register Multiplicand.

Therefore, register Result supports parallel data

transfer to register Multiplicand, and register

Multiplier is able to perform parallel data transfer

from register Multiplicand.

3.1. Execution of a Multiplication

In order to explain how a multiplication is carried
out in the presented bit-serial multiplier, let us
assume that at the beginning of the multiplication
the multiplier-polynomial a(t) resides in register
Multiplier and the multiplicand-polynomial b(t) is
stored in register Multiplicand. After the register
Result has been cleared, the register Multiplier is
shifted bit by bit in MSB direction, which delivers
the multiplier-bits (i.e. the coefficients ai) to the
GF(2m) arithmetic unit, beginning with am−1. The
calculation of the intermediate result r(t) is
performed as described earlier in this section.
After the final coefficient a0 has been processed,
the result of the multiplication resides within
register Result. From there it can be loaded into
register Multiplicand, where it might act as
multiplicand-polynomial for the next
multiplication, or from where it can be transferred
to the world outside the multiplier.

4. IMPLEMENTATION ISSUES

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 73

In this section we present a possible

implementation of the regis-ters and the

arithmetic circuits. Due to the high regularity of

the multiplier architecture, the register cells and

the arithmetic cells essentially determine the

overall size of the crypto-coprocessor. It turns out

that transmissions gates are very useful for an area

and power optimized implementation of the

proposed field multiplier.

4.1. Implementation of the Field Arithmetic

Transmission gates are often used in digital

design as they allow simple realizations of

complex circuits. But when designing trans-

mission gate based devices, one has to be aware

of some problems which are specific for that

circuit class. A transmission gate is not an ideal

switch, has limited drive strength, and causes

delay.

a q

b

Figure 3: Transmission gate XOR

An example of the effective use of transmission

gates is the popular XOR circuit shown in Figure

3 (see [7]). This XOR gate requires only eight

transistors (including the inverter at the output).

compared to the twelve transistors required for a

complementary implementation. Moreover, the

presented XOR circuit does not require

complementary input signals and is very well

suited for low-voltage low-power applications.

The XNOR function can be realized in a similar

way as the presented XOR circuit.

Figure 5: Static register cell with two data

inputs.

Figure 4 shows a 1-bit arithmetic cell which can

be used in the GF(2m)-multiplier. The arithmetic

cell performs generation and addition of the

partial-product, as well as subtraction of the

irreducible polynomial if the degree of the result-

polynomial is m−1. Each arithmetic cell contains

a multiplexer to switch between addition mode

and multiplication mode. A multiplexer can be

implemented with two transmission gates and an

inverter (see [7], p. 212). In this case, the

presented arithmetic cell consists of 30

transistors.

4.2. Static Register Cell Static CMOS logic is

known to be fast, offers a large noise margin, and

is very easy to design. But also from the

viewpoint of power consumption, static register

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 74

cells provide a significant advantage compared to

their dynamic counterparts: They do not require a

clock signal to store their logical state. The

principle of a gated clock is often used in

synchronous digital systems to prevent inactive

circuits from consuming unnecessary power. The

basic idea of clock gating is to mask off the clock

to registers which are idle. Synchronous load-

enable registers can be realized in this way by

inserting AND gates into the clock network. The

clock pulses are prevented from propagating to

the registers whenever the load enable signal is

false. In summary, gating the clock of a register

saves power in two ways: First, a register

consumes significantly less power when it is not

clocked since clock toggling is generally

considered to cause substantial power dissipation

in flip-flops. Second, also the corresponding

portion of the clock tree does not consume power

when the clock signal is masked off. Especially

for the register Multiplicand, a gated

clock can be advantageous since this register is

only active during operand loading and is always

idle for the remaining time of the multiplication.

A static register cell which provides serial and

parallel load can be composed of four

transmission gates, four inverters and a

multiplexer,asshowninFigure5.

Whenthemultiplexerisrealized by two

transmission gates and an inverter, the static

register cell consists of 22 transistors.

5. SUMMARY OF RESULTS AND

CONCLUSIONS

A 1-bit multiplier cell of the proposed bit-serial

architecture consists of 3 register cells and the 1-

bit arithmetic circuit illustrated in Figure 4.

Additionally, a simple register cell for the

irreducible polynomial is required, which can be

implemented with 16 transistors. Thus, the overall

transistor count of the 1-bit multiplier cell is 112,

which results in 28m gates for an m-bit multiplier.

A multiplier based on the presented architecture

has a linear array structure with a bit-slice feature.

The multiplication requires m cycles, whereby the

max. clock frequency is independent of m, but

primarily determined by the delay of the

arithmetic circuit. Low power consumption can

be achieved by clock gating, and contrary to LSB-

first architectures only two registers (Result and

Multiplier) have to be clocked at any given cycle.

An m-bit multiplier operates over a variety of

fields. For example, a multiplier originally

dimensioned for 200 bits can also be used for

fields of smaller order (e.g. 163 bits) by left-

aligning all operands in the registers. Therefore,

the presented design is very well suited to

implement a small-area and low-power GF(2m)-

multiplier for elliptic curve cryptography.

REFERENCES

[1] G.B.Agnew,R.C.Mullin,andS.A.Vanstone.

Animplementationofellipticcurvecryptosystemso

verF2155. IEEEJournal on Sel. Areas in

Communications, 11(5):804–813, June 1993. [2]

T. Beth, B. M. Cook, and D. Gollmann.

Architectures for exponentiation in GF(2n).

Advances in Cryptology — CRYPTO ’86, LNCS

263 pp. 302–310. Springer Verlag, 1987. [3] I. F.

Blake, G. Seroussi, and N. P. Smart. Elliptic

Curves in Cryptography. Cambridge University

Press, 1999. [4] R. Lidl and H. Niederreiter.

Introduction to Finite Fields and Their

Applications. Cambridge University Press, 1994.

[5] National Institute of Standards and

Technology (NIST). Recommended elliptic

curves for federal government use, 1999. [6] W.

W. Peterson and E. J. Weldon. Error-Correcting

Codes. MIT Press, second edition, 1972. [7] J. M.

Rabaey. Digital Integrated Circuits – A Design

Perspective. Prentice Hall, 1996.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

