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ABSTRACT 

 Pulse compression technique is used to achieve high 

range resolution, but pulse compressor outputs have 

sidelobes.  By overlaying orthogonal binary Phase 

coding on any coherent train of identical radar 

pulses can removes most of the autocorrelation near 

sidelobes and lowers the recurrent lobes.  
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I. INTRODUCTION 

Pulse compression codes have used Phase 

modulation and Frequency modulation.  Pulse 

compression technique is used to achieve high range 

resolution but pulse compressor outputs have 

correlation sidelobes. These side lobes can be 

eliminated to a decent extent by overlaying 

orthogonal phase coding on any coherent train of 

identical radar pulses.   In this work both   binary 

orthogonal overlay and its Derivative phase (DP) 

frequency modulation equivalent are discussed.  

II. EXPERIMENTAL WORK 

There are some signals which are utilized as input 

signals for project. They are   Barker Binary phase 

coded pulse train, Constant frequency train of 

pulses, linear frequency modulated pulse train, 

Costas array of pulse train and modified Costas array 

of pulse train. 

Barker Binary Phase Coded Pulse Train: 

The binary phase  is represented as the 0 or π for 

each sub-pulse.  The advanced envelope of the 

phase-coded pulse is given by: 

𝑠(𝑡) =
1

√𝑇
∑ 𝑠. 𝑟𝑒𝑐𝑡(

𝑡 − (𝑚 − 1)𝑡𝑏

𝑡𝑏
)

𝑀

𝑚=1

 

Un-modulated or constant frequency pulses: 

 

 

Before we start considering the train of constant 

frequency pulses, let us just notice a single pulse 

first. 

The complex envelope of a constant-frequency or 

un- modulated pulse is given by: 

u(t) =
1  

√T
rect(

t

T
 ) 

Radar ambiguity diagram for the signal s(t)  is given 

by 

|𝑥(𝜏, 𝑓)|2 = | ∫ 𝑠(𝑡)𝑠∗ 
∞

−∞

(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑡  𝑑𝑡|2 

Where s(t) is input signal. When the target of interest 

can be located at (τ,f)=(0,0), and the ambiguity 

diagram is centered at the same point. 

  Solving the integrals and taking absolute value 

provides, 

|𝑥(𝜏, 𝑓)|2 = | (1 −
|𝜏|

𝑇
)

sin[𝜋𝑇𝑓(1−
|𝜏|

𝑇
)]

𝜋𝑇𝑓(1−
|𝜏|

𝑇
)

|    ,   |τ|≤T,  

Zero elsewhere the cut along the delay axis is 

obtained by setting f=0, providing 

   |x (τ,0)|2  =   1 −
|τ|

T
 ,           |τ|≤T, Zero elsewhere 

        The cut along the Doppler axis is obtained by 

setting τ=0, providing 

              |x (0, f)|2  =   |
sinπfT

πfT
|  

Linear Frequency Modulated Pulse Train: 

Linear frequency modulation (LFM) is still preferred 

pulse compression technique. The essential plan is to 

comb the waveband B linearly throughout the pulse 

length T.  
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  The advanced envelope of a linear-FM pulse is 

given by  

𝑠(𝑡) =
1

√𝑇
𝑟𝑒𝑐𝑡(

𝑡

𝑇
)exp (𝑗𝜋𝜋𝑘𝑡) , k=±B/T 

 Costas Array of Pulse Train: 

     Costas used frequency coding as the alternative 

of the linear law utilized in LFM. The distinction is 

incontestable by the binary matrices in Fig. 1. The 

columns represent M contiguous time slices (each of 

period tb), and therefore the rows represent M 

distinct frequencies, equally spaced by ∆f 

 

 

 

 

           

Binary matrix of linear frequency modulated and 

Costas coding 

           The frequency hopping orders represented in 

Fig.1 are solely two out of M! Possible orders that 

meet the restriction of one dot per column and per 

row. The hopping order powerfully affects the 

ambiguity function (AF) of the signal. The AF may 

be expected roughly by overlaying a replica of the 

binary matrix on itself, so shifting one relative to the 

opposite consistent with the specified delay 

(horizontal shifts) and Doppler (vertical shifts). 

Once a given delay–Doppler shift leads to a 

coincidence of N points, the ambiguity function is 

expected to provide a peak of roughly N/M at the 

corresponding delay–Doppler coordinate. 

OVERLAYING CODES  

Orthogonal Phase Overlay Matrix: 

     The orthogonal set was enforced using phase 

modulation. Associate example of a P-by-M binary 

orthogonal set, wherever P =M =8, may be delineate 

with the phase matrix [1], 

 

 

 

 

 

 

 

 

 

 

The actual orthogonal set is given by the matrix 

A={ap,m}={exp(jᵠp,m)} 

           Clearly, the elements of A get solely two 

values: +1 and -1. Recall that the matrix A is alleged 

to be orthogonal once the real number between any 

two columns of A is zero, implying that the matrix 

ATA is diagonal. Note additionally that orthogonal 

P-by-M matrices A exist just for M · P. The overlay 

is enforced by phase modulating the pth pulse by the 

pth row of A. One downside caused by adding a 

binary phase-coded overlay, is that the broadening of 

the spectrum. 

Derivative Phase (DP) Overlay Matrix: 

           DP modulation differs from standard binary 

phase modulation by replacement phase jumps with 

phase slopes [1]. The frequency steps area unit 

therefore designed that at the end of the slice period 

ts the accumulated phase change is that the desired 

zero or𝜋. Phase accumulation of π (or -π) is 

achieved by maintaining the frequency step of -∆f 

throughout the complete slice. The DP used here is 

the split slice, within which the frequency 

modulation (FM) is [∆f,-∆f] is utilized in the 

primary slice of a sequence, and whenever this slice 

is a twin of the previous slice [-∆f,-∆f] is employed 

once this slice is totally different from the previous 

slice.  

     In the phase-coded overlay, it had been easy to 

point out that the overlay (namely A) was 

orthogonal. In the frequency-coded overlay 

delineated on top of, which means of orthogonality 

is not therefore easy.           In this work we used five 

different input signals with overlaying, orthogonal 

phase overlaying or derivative phase overlaying.  

 

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 17 

July 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 428 
 

 

 

III. RESULTS AND DISCUSSION 

For Un-Modulated Pulses 

   With no overlay: As we can observe that the 

ambiguity function obtained from this input is called 

BED of NAILS.  

      The coherent pulse train provides independent 

control of delay and Doppler resolutions that is not 

possible in single pulse case. The delay resolution is 

controlled by pulse duration while the Doppler 

resolution is controlled by the total signal length. 

On the other hand the Doppler and delay 

ambiguities are tied. We can observe that there are 

many side lobes in the AF of un-modulated pulse 

train. These side lobes can be reduced by overlaying 

methods. 

 

 
Signal structure of un-modulated pulses with no 

overlay. 

 

 
ACF of un-modulated pulses with no overlay. 

 

 
Ambiguity function of un-modulated pulses with 

no overlay 

With orthogonal phase overlay: The actual 

orthogonal set is given by the matrix 

A={ap,m}={exp(jᵠp,m)}. A train of eight constant 

frequency (i.e., un-modulated) pulses, with and 

without binary overlay. Figs.3 (a), 3(b), and 3(c) 

present the signal structure, ACF, and ambiguity 

function of a coherent train of un-modulated pulses. 

Therefore it is aforementioned orthogonal phase 

overlaying decreases side-lobes however it broadens 

the spectrum. 

 
Signal structure of constant frequency pulses 

with orthogonal phase overlay. 
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ACF of constant frequency pulses with 

orthogonal phase overlay. 

 

 
Ambiguity function of constant frequency pulses 

with orthogonal phase overlay. 

 

With derivative phase overlay: Fig 4(a) shows the 

ACF of un-modulated pulses with derivative phase 

overlays shown in fig spectrums of the complicated 

envelope of the signal are going to be shifted 

downward in frequency. Fig 4(b) shows the 

Ambiguity function of constant frequency pulses 

with derivative phase overlay. 

    

 
ACF of constant frequency pulses with 

derivative phase overlay. 

 
Ambiguity function of constant frequency 

pulses with derivative phase overlay. 

Pulse train with 13 bits Barker Codes 

By overlaying the orthogonal phase matrix on barker 

phase modulated input the side-lobes is reduced to a 

good extent and also the derivative phase overlaying 

is additional economical in removal of side-lobes. 

Fig 5(a) shows the Signal structure of barker code of 

13 elements with no overlay. Fig 5(b) shows the 

Ambiguity function of barker code with no overlay. 

Fig 5(c) shows the Ambiguity function of barker 

code with orthogonal phase overlay. Figure 5(d) 

shows the Ambiguity function of barker code with 

derivative phase overlay. It shows that so most of the 

close to side lobes area unit removed.  

 
Signal structure of barker code of 13 elements 

with no overlay. 
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Ambiguity function of barker code with no 

overlay. 

 

Ambiguity function of barker code with 

orthogonal phase overlay. 

 

Ambiguity function of Barker code with 

derivative phase overlay. 

For LFM of pulse train 

            In this case pulse in pulse train has linearly 

increasing frequency. Fig 6(a) shows the Signal 

structure of LFM pulses. Fig 6(b) shows the 

Ambiguity function of LFM pulses with no overlay. 

Fig 6(c) shows the Ambiguity function of LFM 

pulses with orthogonal phase overlay. Fig 6(d) 

shows the   Ambiguity function of LFM pulses with 

derivative phase overlay. 

 

 
Signal structure of LFM pulses. 

 

 

 

Ambiguity function of LFM pulses with no 

overlay. 
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Ambiguity function of LFM pulses with 

orthogonal phase overlay. 

 

 
Ambiguity function of LFM pulses with 

derivative phase overlay. 

 

IV. CONCLUSION 
In this work binary phase orthogonal overlay and 

derivative phase overlay on Barker coded pulse train 

and linear frequency coded pulse train signal is 

discussed.  It is found that overlay coding deceases 

autocorrelation side-lobe.   
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