

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 502

Real-Time Fault-Tolerant Analytics using

Distributed Database in-Memory

Shaik Shoyab & V.Sriharsha
1 PG Scholar, Department of CSE, PACE Institute of Technology and Sciences,Vallur, Prakasam,,

Andhrapradesh, India
2 Associate Professor, Department of CSE, PACE Institute of Technology and Sciences,Vallur,

Prakasam, Andhrapradesh, India

Abstract— Modern data management systems

are required to address new breeds of OLTAP

applications. These applications demand real time

analytical insights over massive data volumes not

only on dedicated data warehouses but also on

live mainstream production environments where

data gets continuously ingested and modified.

Oracle introduced the Database In-memory

Option (DBIM) in 2014 as a unique dual row and

column format architecture aimed to address the

emerging space of mixed OLTAP applications

along with traditional OLAP workloads. The

architecture allows both the row format and the

column format to be maintained simultaneously

with strict transactional consistency. While the

row format is persisted in underlying storage, the

column format is maintained purely in-memory

without incurring additional logging overheads in
OLTP.

Maintenance of columnar data purely in

memory creates the need for distributed data

management architectures. Performance of

analytics incurs severe regressions in single server

architectures during server failures as it takes

non-trivial time to recover and rebuild terabytes of

in-memory columnar format. A distributed and

distribution aware architecture therefore becomes

necessary to provide real time high availability of

the columnar format for glitch-free in-memory

analytic query execution across server failures

and additions, besides providing scale out of

capacity and compute to address real time

throughput requirements over large volumes of

inmemory data. In this paper, we will present the

high availability aspects of the distributed

architecture of Oracle DBIM that includes

extremely scaled out application transparent

column format duplication mechanism, distributed

query execution on duplicated in-memory

columnar format, and several scenarios of fault

tolerant analytic query execution across the in-

memory column format at various stages of

redistribution of columnar data during cluster
topology changes.

Keywords—real-time analytics, OLTAP,

Oracle Database Inmemory, distributed

architecture, high availability, distributed in-

memory fault tolerant analytics

I.INTRODUCTION

Over the last few years, the capacity to price ratios

of DRAM has been observed to increase manifolds

[1]. It is therefore getting cheaper to place more and

more data as close as possible to compute. In

parallel, as data ingestion sources and volumes keep

on exploding, new breeds of mixed OLTAP

applications have emerged [2]. These new

applications demand real time analytical insights

over massive data volumes as data gets ingested and

modified in live mainstream production

environments. These applications and workloads are

very different from traditional OLAP practices [3]

where data has to be first curated into dedicated

static data warehouses and analytics workloads are

run on static data.

Oracle introduced the Database In-memory Option

in 2014 as a unique dual format architecture aimed

to address these emerging mixed OLTAP

applications along with traditional OLAP workloads

[4][5] . The unique architecture allows both row

format and column format to be maintained at an

Oracle object level (Fig. 1). Both formats are

simultaneously active and are not mutually

exclusive. Strict transactional consistency is

guaranteed between the formats in real time. While

the row format is persisted in underlying storage and

gets logged for recovery purposes, the column

format is maintained purely in memory without

incurring logging overheads. The in-memory

columnar format provides breakthrough performance

for analytics while the row format handles OLTP

workloads. Strict consistency between the formats

alleviates the need to maintain and synchronize sets

of auxiliary analytic indexes therefore improving

OLTP as well.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 503

Fig. 1.Dual row and column format for OLAP and OLTAP

workloads

compared to persistent storage. Main memory

volumes are increasing but data ingestion volumes

are increasing at much higher rates. Scale out in

terms of both memory and compute resources

becomes necessary to meet the required real time

throughput requirements over large volumes of data

in memory. It can be argued that scale up within a

single server may be sufficient for most workloads

[6], but single server based architectures neither

provide real time availability of the main memory

data nor provide fault tolerance in execution on the

same. Ironically, real time availability and fault

tolerant query execution are some of the most

relevant requirements for pure no-logging main-

memory architectures. Therefore a distributed high

available architecture becomes a must.

The overall distributed architecture of Oracle

Database in Memory and its scale-out aspects are

highlighted in [5][7]. Besides providing distribution

and query execution scale out across a cluster of

servers, the distributed architecture has been

designed to provide real-time duplication of the

inmemory columnar format for high availability

along with fault tolerant query execution across

server failures. The architecture also ensures

minimal recovery impact on the columnar format

across cluster topology changes through efficient

rebalancing mechanisms and glitch-free in-memory

query execution during rebalancing. In this paper,

we will primarily focus on these aspects of the

architecture.

The main sections of the paper are organized as

follows. Section II presents a quick overview of the

distributed architecture. Section III introduces the set

of duplication options provided by the architecture.

Section IV presents a detailed overview of the

column format duplication mechanism. Section V

describes the fault tolerant query execution

mechanism and details the mechanisms for providing

glitch free query execution on several cluster

topology change scenarios, such as exit of a server,

during asynchronous scaled out redistribution of in-

memory data across remaining servers, and

subsequent redistribution of inmemory data when the

server gets added back again in the cluster topology.

Section VI presents a set performance evaluation

experiments to validate the availability and fault

tolerance aspects of the architecture.

II.DISTRIBUTED DBIM–A QUICKREVIEW

This section presents a quick review of the

distributed architecture of the Oracle Database In-

memory. The building block of the architecture is an

In-memory Compression Unit (IMCU) [4], which

serves as the smallest unit of distribution,

duplication, and distributed access of the columnar

format across a cluster of servers. Each IMCU is a

columnarized representation ‘populated’ from a

substantial set of rows of the RDBMS object

persisted in Oracle Data Blocks [8] (Fig. 2). It

contains contiguous runs of columns (Column

Compression Units), where each run can be

compressed using different compression levels.

Columnar data within an IMCU is a readonly

snapshot consistent as of a point in time; subsequent

changes in the underlying data blocks are tracked by

an accompanying Snapshot Metadata Unit (SMU)

[4]. As more and more changes accumulate in the

SMU, the IMCU undergoes heuristics based fully

online repopulation mechanism that results in a new

clean version.

Fig. 2.In-memory Compression Unit (IMCU) populated from

Oracle RDBMS Data Blocks

The IMCU format inherits all the compute and

capacity utilization advantages of columnar format.

Several data processing optimizations [4], such as

vector processing operations, predicate evaluation

push down, bloom filter push down, in-memory

storage indexes for data pruning, etc. have been

implemented on top of the IMCU format. These

optimizations serve as the backbone for

breakthrough analytics performance.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 504

Fig. 3.Distributed Oracle Database In-memory Architecture

 The distributed architecture employs Oracle Real

Application Cluster (RAC) configurations [8] that

allows a cluster of RDBMS servers (instances) to

operate on an Oracle database persisted in

underlying storage, abstracting the database as a

single entity (Fig. 3). Fig. 3 illustrates the

components most relevant to the distributed

architecture.

• The shared buffer cache [9] is a collective cache
of Oracle data blocks across the cluster. It is
equipped with a Cache Fusion service that
synchronizes access of the data blocks across the
cluster.

• The In-memory Column Store (Fig. 4) [7] is the
new inmemory area that hosts the IMCUs across
the cluster. It is a shared-nothing container of
IMCUs within an instance. An in-memory object
is defined as a collection of IMCUs across all in-
memory column stores within a cluster that have
been populated from the data blocks of the same
underlying RDBMS object. Therefore, there is
one-to-one correspondence between an in-
memory object and an RDBMS object (Oracle
table/partition/subpartition) on which the in-
memory option is enabled. Each instancespecific
In-memory Column Store is equipped with a
globally-consistent yet fully local In-memory
Home Location service that provides for
seamless interfacing of the column format with

the row format based transaction manager and
SQL execution engines.

• The transaction manager [7] ensures strict real-
time consistency between the data blocks and
their corresponding IMCUs. It also ensures that
block modifications due to on-line transaction
processing operations (OLTP) are propagated to
the appropriate IMCUs across the cluster.

• The distribution manager [7], as the name
suggests, handles all the distribution, duplication,
availability, and the fault tolerance aspects of the
architecture. It also provides access awareness to
the transaction manager and the SQL execution
engine.

• The parallel SQL execution engine [10] employs
the buffer cache for OLTP-style queries that
benefit from index based accesses. The in-
memory column store is employed for all query
workloads except indexed based accesses.

Fig. 4.In-memory Column Store with IMCUs distributed

across 4 instances

 III. DUPLICATIONDURINGDISTRIBUTION

This section presents a detailed overview of the

schemes and mechanisms associated with in-

memory object duplication across a cluster of

servers. By default, Oracle DBIM does not duplicate

IMCUs, i.e., there exists only one IMCU across the

cluster for a given set of Oracle data blocks, as

illustrated in Fig. 4. However, the architecture

provides several duplication options to users for real-

time high availability of in-memory objects and fault

tolerant in-memory query execution.

A.Duplication Options

Oracle DBIM provides two duplication schemes,

namely, DUPLICATE or 1-safe duplication, and

DUPLICATE ALL. The user can specify one of

these two options while enabling the in-memory

option for an RDBMS object. In case of

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 505

DUPLICATE, the same set of underlying Oracle

data blocks are represented by two IMCU copies

distributed in two different instances in the cluster

(Fig. 5).

Fig. 5.IMCU distributed with DUPLICATE option in two

instances

In case of DUPLICATE ALL, each instance in the

cluster hosts the same copy of the IMCU populated

from the same set of underlying Oracle data blocks

(Fig. 6).

Fig. 6.IMCU distributed with DUPLICATE ALL option in all

instances

For the remainder of this paper, we will just focus on

the methods and mechanism related to the

DUPLICATE option, using the same hypothetical

RDBMS object and a cluster of 4 RDBMS server

instances (Fig. 4).

IV.DUPLICATION MECHANISM

The duplication mechanism is initiated on detection

of missing representation of data blocks of

in-memory enabled Oracle RDBMS objects in the

global column store across the cluster. The detection

is performed either during a scan by a user-issued

query or by a dedicated background monitor process

executing on each database instance. The duplication

mechanism is a three phase mechanism. It consists

of a very brief phase of serialization and duplication

context generation for consensus, followed by a fully

scaled out, load balanced, and application

transparent duplication of IMCUs across the cluster,

and a final broadcast of duplication completion

timestamp across the cluster.

A.Serialization and Consensus Broadcast

The serialization phase consists of the following

steps, namely, 1) Master Selection, 2) Duplication

Context Generation for Consensus, 3)

Acknowledgement of Acceptance, and 4) Master

Downgrade.

Master election becomes necessary to

serialize the distribution and duplication of an

RDBMS object across the cluster, thereby

preventing concurrent duplication of the same object

at the same time. Master selection is based on

competing for a global object distribution lock

exclusively in no-wait mode (Fig. 7).

Fig. 7.Leader instance election

The instance acquiring this lock gets selected as the

‘master’ for coordinating the duplication of the

object. The lock is a completely non-blocking lock,

i.e., it does not block concurrent OLTP operations or

concurrent queries on the object. The lock is taken at

an object level, which implies that multiple ‘masters’

can co-exist in the cluster to coordinate concurrent

duplication of multiple RDBMS objects.

Once the ‘master’ instance gets selected, it generates

a very minimal distribution and duplication context

for consensus on the set of data blocks that are

required to be columnarized and duplicated across

the global column store. The consensus context is a

payload of a few hundred bytes, which remains

constant irrespective of the size of the object to be

duplicated or the size of the cluster. Once the context

gets generated, the ‘master’ broadcasts the payload

to the rest of the ‘inactive’ instances and waits for

acknowledgement from each of these instances (Fig.

8). The constant size of the payload ensures minimal

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 506

cross-instance communication overheads across a

large cluster of RDBMS instances.

Fig. 8.Payload broadcast, acceptance, and acknowledgement

On receiving the payload from the ‘master’, the rest

of the ‘inactive’ instances ‘accept’ the payload. Each

of these instance en-queue requests for shared access

on the same object distribution lock and send

‘acknowledgements’ back to the ‘master’. At this

point, these instances have to wait on the lock as the

‘master’ has exclusive access on the same. On

receiving ‘acknowledgements’ from each of the

‘inactive’ instances, the ‘master’ atomically

downgrades its access on the object distribution lock

from exclusive to shared and attains the role of a

‘follower’ (Fig. 9).

Fig. 9.Change of instance roles to ‘followers’

Once the downgrade takes place, the rest of the

‘inactive’ instances acquire shared access on the lock

and get upgraded as ‘follower’ instances. At this

point, each of the ‘follower’ instances proceeds with

the decentralized IMCU duplication phase

independently of each other. Until all these instances

release access on the shared lock, no instance can be

assigned as the ‘master’ for duplicating the same

object.

B.Distributed Duplication of IMCUs

Once the decentralized phase commences, each

‘follower’ instance executes the following steps,

namely, 1) Attaining Distributed Consensus on

IMCU Contexts, 2) Attaining Distributed Consensus

on Multiple Home Locations for IMCU Contexts,

and 3) IMCU Population and Home Location

Directory Registration. These steps are executed in

the same order by each ‘follower’ instance, but with

complete asynchrony.

On commencement of the ‘decentralized’ phase, the

follower instance ‘decodes’ the minimal payload

received from the ‘master’ to generate a set of

globally consistent IMCU contexts to be duplicated

across the cluster. A ‘unique’ mechanism is used by

each ‘follower’ instance to determine the globally

consistent set of IMCU contexts, irrespective of the

constantly changing underlying RDBMS object due

to OLTP activity. Each instance therefore achieves

distributed agreement [11] on the set of IMCUs with

its peer instances, but without incurring peer-to-peer

communication (Fig. 10).

Fig. 10.4 IMCU contexts generated with distributed consensus

without peerpeer communication

Once the set of IMCU contexts have been

determined by a ‘follower’ instance, the instance

needs to assign two globally consistent ‘home

location’ instances for each IMCU context. The

‘home location’ instance for an IMCU context serves

as the dedicated instance where the IMCU gets

physically populated in the local in-memory column

store. Similar to the first step, each instance has to

come up with the same ‘home location’ instances for

the same IMCU context, to achieve distributed

agreement with its peers, but without incurring peer-

to-peer communication overheads.

The globally consistent assignment of ‘home

locations’ is based on a variant of consistent hashing

mechanism called Highest Random Weight (HRW)

hashing or Rendezvous hashing [12]. Given an

object O and a set of ‘n’ active sites, the scheme

assigns a random weight for each site based on a key

derived from object O. The site with the highest

weight gets chosen as the ‘home location’ for the

object O. To achieve consistent multiple ‘home

locations’, two sites per IMCU context are selected;

the site with the highest weight is elected as the

primary home location, and the site with the lowest

weight is elected as the secondary home location.

On execution of the above steps, each instance

comes up with the same IMCU context assignment

matrix (Fig. 11). The strictly consistent IMCU

context assignment matrix could have been

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 507

generated by a purely centralized approach where

the ‘master’ would have generated the contexts and

communicated the same with all instances or each

instance would have communicated the contexts

with one-another across the cluster. However, in a

mainstream production environment with hundreds

of gigabyte-to-terabyte sized objects being

duplicated at the same time along with concurrent

OLTP and OLAP activities, cross-instance

communication of millions of IMCU contexts across

the cluster would have choked the network causing

scale-out throughput bottlenecks. On the other hand,

instances could not have arrived with strictly

consistent set of IMCU contexts if the mechanism

had been purely decentralized.

Fig. 11.Home location assignment matrix generated with

distributed consensus without peer-peer communication

Once the IMCU context assignment matrix has been

generated by a ‘follower’ instance, the contexts are

compiled into two disjoint sets. The first set of

contexts includes the ones where either the primary

or the secondary home locations match the id of the

executing ‘follower’ instance. The second set

includes the rest of the contexts where neither the

primary nor the secondary home locations match the

id of the executing instance. The IMCU contexts in

the first set are executed in parallel by dedicated

background processes. These IMCUs are physically

populated from the underlying data blocks defined in

the IMCU context into the local in-memory column

store. Physical population includes storage I/O, data

transformation, compression (if applicable),

allocation of instance-local shared memory for the

set of Columnar Compression Units within the

IMCU, and memory-copy of the IMCU in the

allocated memory from the local column store.

Physical population of the IMCU is followed by

registration of the IMCU context with the column-

store home location service. A home location entry

(HLE) gets created with the IMCU memory offset

and other metadata (described in the subsequent

section). Once the entry is inserted and committed in

the home location service index, the IMCU context

becomes visible to the transaction manager and the

SQL execution engines.

Fig. 12.Globally consistent home location service with duplicated

IMCUs

The IMCU contexts in the second set are executed

by a single background process as they are not

required to be physically populated in the local

column store. However, these IMCU contexts are

still registered with the local in-memory home

location service index where the corresponding

HLEs store the remote primary and the secondary

home locations of the IMCU contexts.

Once all ‘follower’ instances release shared access

on the object distribution lock, each instance

eventually generates a globally consistent view of

the local home location service map with IMCUs

duplicated on appropriate designated home locations

(Fig. 12).

C. Finalization Broadcast

The instance that had been chosen as the ‘master’ in

phase A en-queues waited request for exclusive

access on the object distribution lock once it

completes phase B. By the time it becomes the

‘master’ again by acquiring exclusive access on the

lock, all ‘follower’ instances have completed the

steps of the decentralized phase B. The ‘master’

takes a timestamp and broadcasts it to all instances.

Each instance records the completion timestamp of

the current duplication procedure at an object level.

V.Fault Tolerant Query Execution

The column store home location service serves as the

fundamental data structure that seamlessly interfaces

with the SQL parallel query execution engine and

provides distributed fault tolerant completely local

in-memory compression unit scans.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 508

Fig. 13.In-memory home location service: collection of home

location indexes

A. In-memory Home Location Service

The in-memory home location service serves as the

fundamental data structure enabling distributed fault

tolerant query execution across all column stores in

the cluster. It serves as a data block address based

lookup service for fast access of home location

entries or HLEs, where each HLE holds a set of

information related to a single IMCU context. The

service divides the entire on-disk database block

address space into regions of 128 TB of linear

address space, where each individual 128 TB of data

block address space is represented by an index (Fig.

13). Given the data block boundaries of the IMCU

context in an HLE, the intermediate branch and leaf

nodes are created on demand before inserting the

HLE. The home location service provides a basic

application programming interface that takes in a set

of data block addresses and returns the set of IMCU

contexts for the IMCUs that cover these data blocks,

when applicable. The service is used by the

transaction manager as well as the SQL execution

engine to detect whether columnar representation

exists for a data block of an RDBMS object either in

the local column store or a remote column store.

The relevant set of information held by each HLE is

enumerated as follows:

• IMCU memory offset oNULL is remote

IMCU oNon-NULL if IMCU populated in

local column store

• IMCU home location information for Copy 1

o Instance Home Location o

 Timestamp of Registering this Home

Location

• IMCU home location information for Copy 2

o Instance Home Location o

 Timestamp of Registering this Home

Location

• IMCU boundaries

 o Set of data block address runs

 Start data block address

 Contiguous run of data blocks

For example, the HLEs for IMCU context ‘IMCU 1’

in column store of instance A and instance B contain

the same values except the IMCU memory offset;

non-zero physical offset in case of instance A where

the IMCU is physically populated (Fig. 14).

Fig. 14.IMCU context IMCU1 with globally consistent

boundaries and home locations

B. Parallel Query Execuiion in a Stable Cluster

Let’s consider the scenario where an analytic query

is executed on an RDBMS object in a stable cluster

on completion of duplicated distribution of the

corresponding inmemory object. The fact that the in-

memory home location service is globally consistent

across the column store enables a database client to

initiate query workloads from any database instance

in the cluster. We select instance D as the query

coordinating instance for ease of explanation of the

rest of section V.

Once the query is coordinated, the SQL query

optimizer [13] calculates the degree of parallelism

based on the cost of accessing the in-memory object

and ensures that at least one parallel execution

scanner process gets allocated on the instances

populated with the IMCUs for the in-memory object.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 509

Fig. 15.Query coordinated on instance D in a stable cluster

after initial duplication

The coordinator process first retrieves the set of

Oracle data blocks relevant for the query. It then

consults its instancelocal home location service to

generate ‘IMCU-aligned’ worksets or ‘granules’ that

are ‘designated’ to be represented inmemory either

local or remote (Fig. 15). The target locations of

granules missing representation in the column store

are flagged as UNDEFINED. For the rest of the

‘IMCU-aligned’ granule, the following mechanism

is employed by the coordinator to assign the target

location for the granule.
1. The status of both home location instances is

checked using Oracle RAC cluster membership
table. An instance home location is considered
active for the in-memory object if its most
recent start up timestamp is lesser or earlier than
the most recent global object distribution
timestamp. An instance is considered dead for
an inmemory object if it is actually dead or the
recent start up timestamp is later than the most
recent global object distribution timestamp. If
one of the locations is not active, the other
location is selected towards step 2. If both are
active, step 2 gets employed for both home
locations. If both are inactive, both locations are
unsuitable candidates for target location of the
granule, and the target location of the granule is
flagged as UNDEFINED.

2. The registration timestamp of the chosen home
location is compared with the global object
distribution completion timestamp. If the
registration timestamp is lesser than the
distribution timestamp, the location serves as a
candidate for target location for the granule.

3. At this point, if a single home location stays as

the target location candidate for the granule, the

granule is assigned the home location. If both

home locations are unsuitable,

the granule is tagged with an UNDEFINED

target location. If both locations are suitable,

either the primary home location or the

secondary home location gets selected as the

target granule location based on a hash function

on the coordinator process id. This allows for

both execution scale out as well as utilization of

both copies by multiple concurrent queries in a

stable cluster.

Fig. 16.IMCU-aligned granules generated based on primary

IMCU home locations ensuring full in-memory scans

The coordinator allocates (N+1) granule distributors,

one for each of the N instances in the cluster, and

one for nonaffined granules. Once the target

locations have been assigned to all granules, the

granules get compiled into the instancespecific

distributors. Granules that are tagged with

UNDEFINED locations as well as granules that are

not represented in-memory as per the local home

location service are compiled into the non-affined

distributor.

On completion of granule distribution, each parallel

execution scanner process starts de-queuing granules

from its respective distributor (Fig. 16). For each

granule, it consults its local home location service to

ensure completely local inmemory access of the

IMCUs. As evident from Fig. 15 and Fig. 16, in a

stable cluster, the registration timestamps of both

home locations for all IMCU contexts are lesser than

the global duplication timestamp. Therefore, either

of the home locations for an IMCU context can serve

as target location candidates for ‘IMCU-aligned’

granules. The coordinator selects the set of either all

primary locations for all IMCU contexts or the set of

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 510

all secondary home locations for all IMCU contexts

to set up granule contexts. This allows for efficient

scale-out for analytic scans as well as load balancing

across duplicate copies of the IMCUs across the

cluster on concurrent query workloads, evident from

Fig. 16 and Fig. 17.

Besides distributed execution in a stable cluster, the

mechanism described in this section ensures glitch-

free faulttolerant query execution during rebalancing

of in-memory objects on cluster topology changes.

The rest of the section will demonstrate the fault

tolerance aspects of distributed query execution

through a set of cluster topology change scenarios.

Fig. 17.IMCU-aligned granules generated based on secondary

IMCU home locations ensuring full in-memory scans

C. Parallel Execution on Server Failure

When analytic queries are executed on a duplicated

inmemory object after failure of a single instance

(let’s consider instance B), the coordinator granule

generation mechanism ensures that parallel

execution processes still undergo completely local

IMCU scans (Fig. 18 and Fig. 19). Both home

locations for IMCU contexts IMCU1 and IMCU3

remain suitable as target location for the granules

<E1, E2’> and <E3’’, E4’>.

Fig. 18.Query coordinated on instance D after death of

instance B

However, for granules <E2’’, E3’> and <E4’’>, the

coordinator selects instance D as the target home

locations because the cluster membership table has

updated the status of the instance B to be non-active.

Therefore, granules <E1, E2’> and <E3’’, E4’> are

executed in instances A and C while granules <E2’’,

E3’> and <E4’’> are executed in instance D,

resulting in fully local IMCU accesses.

Fig. 19.Glitch free full in-memory parallel query execution on

a server failure utlizing duplicate copies of IMCU

contexts IMCU2 and IMCU4

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 511

D. Parallel Execution during Concurrent

Redistribution across Remaining Servers

The fact that IMCU contexts IMCU2 and IMCU4

are left with a single copy across the global column

store triggers the redistribution of these IMCU

contexts in the remaining active instances in the

cluster. The redistribution mechanism is the same as

the one described in section IV, but uses the same

object layout snapshot as of the previous duplication

such that the same IMCU contexts are generated.

Since the set of participating instances exclude

instance B, one of the home locations for the IMCU

contexts IMCU 2 and IMCU 4 get modified (Fig.

20), while they remain the same for rest of the

IMCU contexts.

Fig. 20.Change in home loction assignments for IMCU contexts

IMCU2 and IMCU4 due to eviction of instance B

The fact that the actual IMCU duplication is

performed by each of the instances asynchronously

without peer-peer communication implies that the

home location changes get updated out-of-sync on

each column store home location service. However,

even though they get updated asynchronously, the

updates modify the registration times with

timestamps greater than the previous global

duplication timestamp. Therefore, during the time

when the duplication of IMCU contexts IMCU2 and

IMCU4 takes place, query coordinators of

concurrent queries select the stable home location

(instance D) for both IMCU2 and IMCU4 contexts

and therefore for granules <E2’’, E3’> and <E4’’>

(Fig. 21). With the completion of the duplication,

once the global object duplication timestamp gets

updated, both home locations for IMCU contexts

IMCU2 and IMCU4 become suitable target locations

for granules <E2’’, E3’> and <E4’’> (Fig. 22).

Fig. 21.Query coordinated on instance D during redistribution

of copies of IMCU contexts IMCU2 and IMCU4 in the

cluster of 3 instances

Fig. 22.Glitch free full in-memory parallel query

execution on stable copies of IMCU contexts while

duplicate copies of IMCU contexts IMCU2 and

IMCU4get created in new home locations

E.Parallel Execution during Redistribution on

Server Addition

Once instance B comes up and becomes active

again, redistribution of the in-memory object gets

triggered to rebalance the duplicate copies across the

cluster. The duplication mechanism is the same as

before and again it uses the same object layout

snapshot as of the previous duplication such that the

same IMCU contexts are generated. Since the set of

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 512

participating instances now includes instance B, the

Rendezvous Hashing scheme generates home

locations that are consistent with the ones generated

during the initial duplication of the in-memory

object. The home locations of the IMCU contexts

IMCU1 and IMCU3 remain the same, while the

home locations for the IMCU contexts IMCU 2 and

IMCU 4 get modified to the original values (Fig.

23).

Fig. 23.Original home loction assignments for IMCU contexts

IMCU2 and IMCU4 due to addition of instance B

During the redistribution of the copies of IMCU

contexts IMCU2 and IMCU4 back into instance B,

the asynchronous peerless cluster-wide duplication

mechanism may result in updating home location

entries for IMCU2 and IMCU4 in instances A, C,

and D with instance B as one of the home locations

even when the actual population of the contexts have

not taken place in instance B.

Fig. 24.Query coordinated on instance D during redistribution

of copies of IMCU contexts IMCU2 and IMCU4 in the

cluster of 3 instances

However, the updates modify the registration times

with timestamps greater than the previous global

duplication timestamp. Therefore, during the time

when the population of IMCU contexts IMCU2 and

IMCU4 takes place in instance B, query coordinators

of concurrent queries select the stable home location

(instance D) for both IMCU2 and IMCU4 contexts

and therefore for granules <E2’’, E3’> and <E4’’>.

(Fig. 24) With the completion of the duplication,

once the global object duplication timestamp gets

updated, both home locations for IMCU contexts

IMCU2 and IMCU4 become suitable target locations

for granules <E2’’, E3’> and <E4’’> (Fig. 25).

Fig. 25.Glitch free full in-memory parallel query execution on

stable copies of IMCU contexts while duplicate copies of

IMCU contexts IMCU2 and IMCU4get redistributed in

their original home location (instance B)

The following section demonstrates the impact of

duplication of the columnar format on performance

of analytic query workloads across these cluster

topology change scenarios through a series of

validation experiments.

VI. Performance evaluation of high

availability architecture

Since its release in 2014, the scale-out performance

of the distributed architecture of Oracle Database In-

memory gets exhaustively evaluated continuously

through real-world enterprise workloads in the field.

However, real-world evaluation of the high

availability aspects of the architecture is not a

routine affair and remains untested until

deployments incur cluster outages. In this section,

we present a preliminary evaluation primarily to

validate the high availability and fault tolerance

aspects of the distributed architecture through a set

of experiments simulating cluster topology changes.

The experiments have been designed to demonstrate

and verify the capabilities of the architecture that

include comparison of query performance across a

server failure on duplicated inmemory and non-

duplicated in-memory objects a) across a server

failure, b) during redistribution of IMCUs across

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 513

remaining servers after server failure, and c) during

redistribution of IMCUs once the failed server is

added back to the cluster. We conclude the section

demonstrating sustained query throughput on a

duplicated RDBMS table inmemory in an

experimental setup on an 8-instance cluster

undergoing constant topology changes, where

queries are coordinated on a dedicated instance that

is kept stable, while the rest of the instances get

automatically aborted and restarted one-at-a-time.

A.Hardware and Schema Setup

All four experiments are conducted on Oracle

Exadata Database Machine version X4-2 [14], a

state-of-the-art database multi-processor multi-core

server and storage cluster system introduced in 2013.

The X4-2 database machine allows a RAC

configuration of 8 RDBMS server instances, each

equipped with 2 12-core Intel Xeon processors and

256GB DRAM, and 14 shared storage servers

amounting to 200TB total storage capacity, over a

state-of-the-art Direct-to-Wire 2 x 36 port QDR (40

Gb/sec) InfiniBand interconnect.

We use an in-house ‘ATOMICS’ table created with

1 billion rows and 13 columns resulting in an on-

disk storage size of 84.62GB for the experiments.

Two more versions of the table ‘ATOMICS2SF’ and

‘ATOMICS4SF’ are further created on the base

atomics table with a scale factor of 2 and 4

respectively. The size of the in-memory column

store is set to 128GB on all database instances.

B.Experiments

1)Single Server Failure Exeriment
Three different RAC configurations (2 instance

cluster, 4 instance cluster, and full 8 instance

cluster) are used for this experiment to demonstrate

the impact of loss of columnar format on query

performance after server failure when the

‘ATOMICS’ table gets distributed without

duplication. For the 2-instance scenario, the original

84.62GB ATOMICS table is used, while for the 4-

instance and 8-instance scenarios, the 2x and 4x

scale factor tables are used. The tables are first

distributed with NO DUPLICATE option resulting

in single copy of the IMCUs of the corresponding in-

memory tables. Fifty iterations of three different

analytic queries are executed on stable clusters. Then

one of the instances is aborted manually, and the

twenty iterations of the same query set are executed.

A manual parameter is set to prevent redistribution

of the in-memory object while the queries take place.

The above experiment is repeated with same tables

but distributed with DUPLICATE option.

Fig. 26 demonstrates regression in average query

elapsed times on non-duplicated tables on server

failures. The percentage of regression is observed to

be most significant on the 2-instance cluster test

case, as around half of the inmemory columnar data

gets lost due to the loss of an instance, while on the

8-instance cluster test case, around one-eighth of the

data get lost due to the loss of an instance. On the

other hand, no visible performance regression of

average query elapsed times is observed on

duplicated in-memory tables on a single server

failure irrespective of the size of the cluster.

Fig. 26.Average elapsed times of query sets executed on non-

duplicated and duplicated ‘ATOMICS’,

‘ATOMICS2SF’, and ‘ATOMICS4SF’ tables on a single

server failure

2)Redistribution Across Remaining

Servers
The same experiment setup employed in subsection

B is reused for this experiment, without explicitly

setting a manual parameter to prevent redistribution.

Therefore, all queries get executed while

redistribution of the lost IMCUs takes place across

the cluster. Fig. 27 illustrates the elapsed time

performance of the query set executions. For non-

duplicated tables, performance regression is still

observed when compared to the elapsed times

observed in stable cluster configurations. However,

the average elapsed time decreases due to the fact

that the lost IMCUs get populated in the remaining

instances over the duration of the experiment. For

duplicated tables, no visible differences are observed

when compared to results from stable cluster

configurations.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 514

3)Redistribution After Server Addition
The same experiment setup employed in subsections

B and C is reused for this experiment, with the

aborted instances in the above test cases restarted

and added back to the cluster. The experiment forces

all queries to get executed once the redistribution

phases of the IMCUs get initiated. Fig. 28 illustrates

the elapsed time performance of the query set

executions. The redistribution process moves

duplicate copies of relevant IMCUs back to their

original home location of the restarted instance.

Therefore, even for non-duplicated tables, no visible

performance regression is observed when compared

to the elapsed times observed in stable cluster

configurations as IMCU copies are available in

instances due to redistribution of IMCUs lost from

the aborted instance that takes place in the test

scenarios described in subsection C. As expected, no

visible differences are observed for duplicated tables

when compared to results from stable cluster

configurations.

Fig. 27.Average elapsed times of query sets executed on non-

duplicated and duplicated ‘ATOMICS’,

‘ATOMICS2SF’, and ‘ATOMICS4SF’ tables during

reduplication of IMCUs across remaining servers

Fig. 28.Average elapsed times of query sets executed on non-

duplicated and duplicated ‘ATOMICS’,

‘ATOMICS2SF’, and ‘ATOMICS4SF’ tables during

redistribution of duplicated IMCUs in restarted server

instance

4)Sustained Query Execution on

Continuous Cluster Topology Change
The final set of experiments in this evaluation

exercise combines all the scenarios described in

subsections 2, 3, and 4 by configuring sustained

query execution over a period of three hour while the

cluster undergoes topology changes. For this

experiment, the 2x scale factor ‘ATOMICS2X’ is

distributed in duplicate mode in a cluster configured

with 4 instances. The test case is configured such

that instance A always remains active while rest of

the instances (B, C, and D) are aborted and restarted

(after 3 minutes of abortion) one after the other in a

round robin fashion in 5 minute intervals. All queries

are executed from the stable instance A. Fig. 29

illustrates average elapsed time collected every 60

seconds across the three hour period. Sustained

elapsed times are observed due to glitch free fault

tolerant distributed query executions undergoing

fully local in-memory columnar format scans across

all active servers at any given snapshot within the

three hour execution window.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 515

Fig. 29.Fault tolerant in-memory parallel query execution on

‘ATOMICS2SF’ sustained for a duration of 3 hours

under constant cluster topology changes due to removal

and addition of a server at regular intervals in a cluster

The preliminary evaluation provides a compact yet

complete demonstration of the high availability and

fault tolerance capabilities of Oracle DBIM. The

results do demonstrate that Oracle DBIM ensures

seamless distributed query execution on duplicated

in-memory objects across a cluster of servers

undergoing continuous topology changes, as long as

long as there exist one stable copy of the underlying

in-memory compression units

VII.Conclusion

A new breed of mixed OLTAP applications have

emerged that require real-time analytic insights on

massive volumes of data in live mainstream

production environments as well as traditional data

warehouse ones. Oracle introduced the Database In-

memory Option (DBIM) in 2014 as the industryfirst

dual format in-memory RDBMS highly optimized to

break performance barriers in analytic query

workloads without compromising or even improving

performance of regular transactional workloads.

Since the new columnar format is maintained purely

in-memory without additional logging overheads, the

new in-memory option has been implemented as a

distributed architecture to provide maximal

availability of the columnar format supporting fault-

tolerant in-memory query execution across cluster

topology changes, besides scaling out main memory

capacity and query execution throughput. This paper

primarily presents the maximal availability

architecture of Oracle DBIM. The architecture

provides real-time duplication of the in-memory

columnar format for high availability along with

fault tolerant query execution across server failures.

The architecture also ensures minimal recovery

impact on the columnar format across cluster

topology changes by guaranteeing fully glitchfree in-

memory query execution mechanisms during

completely asynchronous efficient rebalancing

phases.

VIII.References

[1] N. Elmqvist, P. Irani, “Ubiquitous analytics:
interacting with Big Data anywhere, anytime,”
Computer, 46, 4, April 2013.

[2] A. Goel et. al., “Towards scalable real-time

analytics: an architecture for scale-out of OLxP

workloads,” Proceedings of the 41st

International Conference on Very Large Data

Bases, vol. 8, pp. 1716-1727, August 2015.

[3] D. Burdick, P. M. Deshpande, T. S. Jayram, R.

Ramakrishnan, and S. Vaithyanathan, “OLAP

over uncertain and imprecise data,” The

International Journal on Very Large Data Bases

, vol. 16, pp. 123-144, April 2007.

[4] “Oracle database in-memory, an Oracle white

paper,” Oracle Openworld, October 2014.

[5] T. Lahiri et al., “Oracle database in-memory: a

dual format in-memory database,” Proceedings

of the 2015 IEEE 31st International Conference

on Data Engineering, pp. 1253- 1258, April

2015.

[6] M. Michael, “Scale-up x Scale-out: A Case

Study using Nutch/Lucene,” Proceedings of the

IEEE International Symposium on Parallel and

Distributed Processing. IPDPS’07. IEEE, pp. 1–

8, 2007.

[7] N. Mukherjee et al., “Distributed architecture of

Oracle database inmemory,” Proceedings of the

41st International Conference on Very Large

Data Bases, vol. 8, pp. 1630-1641, August 2015.

[8] “Oracle12c Concepts Release 1 (12.0.1),”

Oracle Corporation, 2013.

[9] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J.

Loaiza, and N. MacNaughton, "The Oracle

universal server buffer manager", in

Proceedings of VLDB ‘97, pp. 590-594, 1997.

[10] “Parallel Execution with Oracle 12c

Fundamentals,” An Oracle White Paper, Oracle

Openworld, 2014.

[11] N. Lynch, “Distributed Algorithms,”

 Morgan Kaufmann
Publishers. ISBN 978-1-55860-348-6.

[12] J. C. Laprie, "Dependable computing and fault

tolerance: concepts and terminology,”

Proceedings of 15th International Symposium

on FaultTolerant Computing (FTSC-15), pp. 2–

11, 1985.

[13] D. Das et. al., “Query optimization in Oracle

12c database in-memory,” Proceedings of the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 17

July 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 516

41st International Conference on Very Large

Data Bases, vol. 8, pp. 1770-1781, August 2015.

[14] R. Greenwal, M. Bhuller, R. Stackowiak, and

M. Alam, “Achieving extreme performance

with Oracle Exadata,” McGraw-Hill, 2011.

Mr. Shaik Shoyab
pursuing M. Tech in

Computer Science and

Engineering from PACE

Institute Of Technology

and Sciences affiliated to

the Jawaharlal Nehru

Technological University

,Kakinada.

Mr.V.Sri Harsha has

received his B.Tech

and M.Tech PG. He is

Dedicated to Teaching

Field from the last 6

Years. He has Guided

10 P.G Students and

20 U.G Students. At

Present He is

Working as

Asst.Professor in

PACE Institute Of

Technology and Sciences, Vallur, Prakasam(Dt), AP,

India.He is Highly Passionate and Enthusiastic about

his Teaching and Believes that Inspiring Students to

Give of his best in order to Discover what he Already

knows is better than Simply Teaching.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

