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Abstract— Modern data management systems 

are required to address new breeds of OLTAP 

applications. These applications demand real time 

analytical insights over massive data volumes not 

only on dedicated data warehouses but also on 

live mainstream production environments where 

data gets continuously ingested and modified.  

Oracle introduced the Database In-memory 

Option (DBIM) in 2014 as a unique dual row and 

column format architecture aimed to address the 

emerging space of mixed OLTAP applications 

along with traditional OLAP workloads. The 

architecture allows both the row format and the 

column format to be maintained simultaneously 

with strict transactional consistency. While the 

row format is persisted in underlying storage, the 

column format is maintained purely in-memory 

without incurring additional logging overheads in 
OLTP.   

Maintenance of columnar data purely in 

memory creates the need for distributed data 

management architectures. Performance of 

analytics incurs severe regressions in single server 

architectures during server failures as it takes 

non-trivial time to recover and rebuild terabytes of 

in-memory columnar format. A distributed and 

distribution aware architecture therefore becomes 

necessary to provide real time high availability of 

the columnar format for glitch-free in-memory 

analytic query execution across server failures 

and additions, besides providing scale out of 

capacity and compute to address real time 

throughput requirements over large volumes of 

inmemory data. In this paper, we will present the 

high availability aspects of the distributed 

architecture of Oracle DBIM that includes 

extremely scaled out application transparent 

column format duplication mechanism, distributed 

query execution on duplicated in-memory 

columnar format, and several scenarios of fault 

tolerant analytic query execution across the in-

memory column format at various stages of 

redistribution of columnar data during cluster 
topology changes.  

Keywords—real-time analytics, OLTAP, 

Oracle Database Inmemory, distributed 

architecture, high availability, distributed in-

memory fault tolerant analytics  

I.INTRODUCTION 

Over the last few years, the capacity to price ratios 

of DRAM has been observed to increase manifolds 

[1]. It is therefore getting cheaper to place more and 

more data as close as possible to compute. In 

parallel, as data ingestion sources and volumes keep 

on exploding, new breeds of mixed OLTAP 

applications have emerged [2]. These new 

applications demand real time analytical insights 

over massive data volumes as data gets ingested and 

modified in live mainstream production 

environments. These applications and workloads are 

very different from traditional OLAP practices [3] 

where data has to be first curated into dedicated 

static data warehouses and analytics workloads are 

run on static data.  

Oracle introduced the Database In-memory Option 

in 2014 as a unique dual format architecture aimed 

to address these emerging mixed OLTAP 

applications along with traditional OLAP workloads 

[4][5] . The unique architecture allows both row 

format and column format to be maintained at an 

Oracle object level (Fig. 1). Both formats are 

simultaneously active and are not mutually 

exclusive. Strict transactional consistency is 

guaranteed between the formats in real time. While 

the row format is persisted in underlying storage and 

gets logged for recovery purposes, the column 

format is maintained purely in memory without 

incurring logging overheads. The in-memory 

columnar format provides breakthrough performance 

for analytics while the row format handles OLTP 

workloads. Strict consistency between the formats 

alleviates the need to maintain and synchronize sets 

of auxiliary analytic indexes therefore improving 

OLTP as well.  
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Fig. 1.Dual row and column format for OLAP and OLTAP 

workloads 

 

compared to persistent storage. Main memory 

volumes are increasing but data ingestion volumes 

are increasing at much higher rates. Scale out in 

terms of both memory and compute resources 

becomes necessary to meet the required real time 

throughput requirements over large volumes of data 

in memory. It can be argued that scale up within a 

single server may be sufficient for most workloads 

[6], but single server based architectures neither 

provide real time availability of the main memory 

data nor provide fault tolerance in execution on the 

same. Ironically, real time availability and fault 

tolerant query execution are some of the most 

relevant requirements for pure no-logging main-

memory architectures. Therefore a distributed high 

available architecture becomes a must.  

The overall distributed architecture of Oracle 

Database in Memory and its scale-out aspects are 

highlighted in [5][7]. Besides providing distribution 

and query execution scale out across a cluster of 

servers, the distributed architecture has been 

designed to provide real-time duplication of the 

inmemory columnar format for high availability 

along with fault tolerant query execution across 

server failures. The architecture also ensures 

minimal recovery impact on the columnar format 

across cluster topology changes through efficient 

rebalancing mechanisms and glitch-free in-memory 

query execution during rebalancing. In this paper, 

we will primarily focus on these aspects of the 

architecture.   

The main sections of the paper are organized as 

follows. Section II presents a quick overview of the 

distributed architecture. Section III introduces the set 

of duplication options provided by the architecture. 

Section IV presents a detailed overview of the 

column format duplication mechanism. Section V 

describes the fault tolerant query execution 

mechanism and details the mechanisms for providing 

glitch free query execution on several cluster 

topology change scenarios, such as exit of a server, 

during asynchronous scaled out redistribution of in-

memory data across remaining servers, and 

subsequent redistribution of inmemory data when the 

server gets added back again in the cluster topology. 

Section VI presents a set performance evaluation 

experiments to validate the availability and fault 

tolerance aspects of the architecture. 

II.DISTRIBUTED DBIM–A QUICKREVIEW  

This section presents a quick review of the 

distributed architecture of the Oracle Database In-

memory. The building block of the architecture is an 

In-memory Compression Unit (IMCU) [4], which 

serves as the smallest unit of distribution, 

duplication, and distributed access of the columnar 

format across a cluster of servers. Each IMCU is a 

columnarized representation ‘populated’ from a 

substantial set of rows of the RDBMS object 

persisted in Oracle Data Blocks [8] (Fig. 2). It 

contains contiguous runs of columns (Column 

Compression Units), where each run can be 

compressed using different compression levels. 

Columnar data within an IMCU is a readonly 

snapshot consistent as of a point in time; subsequent 

changes in the underlying data blocks are tracked by 

an accompanying Snapshot Metadata Unit (SMU) 

[4]. As more and more changes accumulate in the 

SMU, the IMCU undergoes heuristics based fully 

online repopulation mechanism that results in a new 

clean version.   

 
Fig. 2.In-memory Compression Unit (IMCU) populated from 

Oracle RDBMS Data Blocks  

The IMCU format inherits all the compute and 

capacity utilization advantages of columnar format. 

Several data processing optimizations [4], such as 

vector processing operations, predicate evaluation 

push down, bloom filter push down, in-memory 

storage indexes for data pruning, etc. have been 

implemented on top of the IMCU format. These 

optimizations serve as the backbone for 

breakthrough analytics performance.  
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Fig. 3.Distributed Oracle Database In-memory Architecture  

 The distributed architecture employs Oracle Real 

Application Cluster (RAC) configurations  [8] that 

allows a cluster of RDBMS servers (instances) to 

operate on an Oracle database persisted in 

underlying storage, abstracting the database as a 

single entity (Fig. 3). Fig. 3 illustrates the 

components most relevant to the distributed 

architecture.   

• The shared buffer cache [9] is a collective cache 
of Oracle data blocks across the cluster. It is 
equipped with a Cache Fusion service that 
synchronizes access of the data blocks across the 
cluster.   

• The In-memory Column Store (Fig. 4) [7] is the 
new inmemory area that hosts the IMCUs across 
the cluster. It is a shared-nothing container of 
IMCUs within an instance. An in-memory object 
is defined as a collection of IMCUs across all in-
memory column stores within a cluster that have 
been populated from the data blocks of the same 
underlying RDBMS object. Therefore, there is 
one-to-one correspondence between an in-
memory object and an RDBMS object (Oracle 
table/partition/subpartition) on which the in-
memory option is enabled. Each instancespecific 
In-memory Column Store is equipped with a 
globally-consistent yet fully local In-memory 
Home Location service that provides for 
seamless interfacing of the column format with 

the row format based transaction manager and 
SQL execution engines.  

• The transaction manager [7] ensures strict real-
time consistency between the data blocks and 
their corresponding IMCUs. It also ensures that 
block modifications due to on-line transaction 
processing operations (OLTP) are propagated to 
the appropriate IMCUs across the cluster.   

• The distribution manager [7], as the name 
suggests, handles all the distribution, duplication, 
availability, and the fault tolerance aspects of the 
architecture. It also provides access awareness to 
the transaction manager and the SQL execution 
engine.   

• The parallel SQL execution engine [10] employs 
the buffer cache for OLTP-style queries that 
benefit from index based accesses. The in-
memory column store is employed for all query 
workloads except indexed based accesses.  

 

 

Fig. 4.In-memory Column Store with IMCUs distributed 

across 4 instances  

 III. DUPLICATIONDURINGDISTRIBUTION  

This section presents a detailed overview of the 

schemes and mechanisms associated with in-

memory object duplication across a cluster of 

servers. By default, Oracle DBIM does not duplicate 

IMCUs, i.e., there exists only one IMCU across the 

cluster for a given set of Oracle data blocks, as 

illustrated in Fig. 4. However, the architecture 

provides several duplication options to users for real-

time high availability of in-memory objects and fault 

tolerant in-memory query execution.   

A.Duplication Options  

Oracle DBIM provides two duplication schemes, 

namely, DUPLICATE or 1-safe duplication, and 

DUPLICATE ALL. The user can specify one of 

these two options while enabling the in-memory 

option for an RDBMS object. In case of 
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DUPLICATE, the same set of underlying Oracle 

data blocks are represented by two IMCU copies 

distributed in two different instances in the cluster 

(Fig. 5).   

 

 
Fig. 5.IMCU distributed with DUPLICATE option in two 

instances   

In case of DUPLICATE ALL, each instance in the 

cluster hosts the same copy of the IMCU populated 

from the same set of underlying Oracle data blocks 

(Fig. 6).  

 

 
Fig. 6.IMCU distributed with DUPLICATE ALL option in all 

instances   

For the remainder of this paper, we will just focus on 

the methods and mechanism related to the 

DUPLICATE option, using the same hypothetical 

RDBMS object and a cluster of 4 RDBMS server 

instances (Fig. 4).  

 

IV.DUPLICATION MECHANISM 

The duplication mechanism is initiated on detection 

of missing representation of data blocks of                                                                 

in-memory enabled Oracle RDBMS objects in the 

global column store across the cluster. The detection 

is performed either during a scan by a user-issued 

query or by a dedicated background monitor process 

executing on each database instance. The duplication 

mechanism is a three phase mechanism. It consists 

of a very brief phase of serialization and duplication 

context generation for consensus, followed by a fully 

scaled out, load balanced, and application 

transparent duplication of IMCUs across the cluster, 

and a final broadcast of duplication completion 

timestamp across the cluster.  

A.Serialization and Consensus Broadcast  

The serialization phase consists of the following 

steps, namely, 1) Master Selection, 2) Duplication 

Context Generation for Consensus, 3) 

Acknowledgement of Acceptance, and 4) Master 

Downgrade.   

Master election becomes necessary to 

serialize the distribution and duplication of an 

RDBMS object across the cluster, thereby 

preventing concurrent duplication of the same object 

at the same time. Master selection is based on 

competing for a global object distribution lock 

exclusively in no-wait mode (Fig. 7).   

 

 
   

Fig. 7.Leader instance election   

The instance acquiring this lock gets selected as the 

‘master’ for coordinating the duplication of the 

object. The lock is a completely non-blocking lock, 

i.e., it does not block concurrent OLTP operations or 

concurrent queries on the object. The lock is taken at 

an object level, which implies that multiple ‘masters’ 

can co-exist in the cluster to coordinate concurrent 

duplication of multiple RDBMS objects.   

 

Once the ‘master’ instance gets selected, it generates 

a very minimal distribution and duplication context 

for consensus on the set of data blocks that are 

required to be columnarized and duplicated across 

the global column store. The consensus context is a 

payload of a few hundred bytes, which remains 

constant irrespective of the size of the object to be 

duplicated or the size of the cluster. Once the context 

gets generated, the ‘master’ broadcasts the payload 

to the rest of the ‘inactive’ instances and waits for 

acknowledgement from each of these instances (Fig. 

8). The constant size of the payload ensures minimal 
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cross-instance communication overheads across a 

large cluster of RDBMS instances.  

 

 
Fig. 8.Payload broadcast, acceptance, and acknowledgement  

On receiving the payload from the ‘master’, the rest 

of the ‘inactive’ instances ‘accept’ the payload. Each 

of these instance en-queue requests for shared access 

on the same object distribution lock and send 

‘acknowledgements’ back to the ‘master’. At this 

point, these instances have to wait on the lock as the 

‘master’ has exclusive access on the same. On 

receiving ‘acknowledgements’ from each of the 

‘inactive’ instances, the ‘master’ atomically 

downgrades its access on the object distribution lock 

from exclusive to shared and attains the role of a 

‘follower’ (Fig. 9).   

 

 
Fig. 9.Change of instance roles to ‘followers’  

Once the downgrade takes place, the rest of the 

‘inactive’ instances acquire shared access on the lock 

and get upgraded as ‘follower’ instances. At this 

point, each of the ‘follower’ instances proceeds with 

the decentralized IMCU duplication phase 

independently of each other. Until all these instances 

release access on the shared lock, no instance can be 

assigned as the ‘master’ for duplicating the same 

object.  
 

B.Distributed Duplication of IMCUs  

Once the decentralized phase commences, each 

‘follower’ instance executes the following steps, 

namely, 1) Attaining Distributed Consensus on 

IMCU Contexts, 2) Attaining Distributed Consensus 

on Multiple Home Locations for IMCU Contexts, 

and 3) IMCU Population and Home Location 

Directory Registration. These steps are executed in 

the same order by each ‘follower’ instance, but with 

complete asynchrony.  

On commencement of the ‘decentralized’ phase, the 

follower instance ‘decodes’ the minimal payload 

received from the ‘master’ to generate a set of 

globally consistent IMCU contexts to be duplicated 

across the cluster. A ‘unique’ mechanism is used by 

each ‘follower’ instance to determine the globally 

consistent set of IMCU contexts, irrespective of the 

constantly changing underlying RDBMS object due 

to OLTP activity. Each instance therefore achieves 

distributed agreement [11] on the set of IMCUs with 

its peer instances, but without incurring peer-to-peer 

communication (Fig. 10).   

 

Fig. 10.4 IMCU contexts generated with distributed consensus 

without peerpeer communication   

Once the set of IMCU contexts have been 

determined by a ‘follower’ instance, the instance 

needs to assign two globally consistent ‘home 

location’ instances for each IMCU context. The 

‘home location’ instance for an IMCU context serves 

as the dedicated instance where the IMCU gets 

physically populated in the local in-memory column 

store. Similar to the first step, each instance has to 

come up with the same ‘home location’ instances for 

the same IMCU context, to achieve distributed 

agreement with its peers, but without incurring peer-

to-peer communication overheads.  

The globally consistent assignment of ‘home 

locations’ is based on a variant of consistent hashing 

mechanism called Highest Random Weight (HRW) 

hashing or Rendezvous hashing [12]. Given an 

object O and a set of ‘n’ active sites, the scheme 

assigns a random weight for each site based on a key 

derived from object O. The site with the highest 

weight gets chosen as the ‘home location’ for the 

object O. To achieve consistent multiple ‘home 

locations’, two sites per IMCU context are selected; 

the site with the highest weight is elected as the 

primary home location, and the site with the lowest 

weight is elected as the secondary home location.  

On execution of the above steps, each instance 

comes up with the same IMCU context assignment 

matrix (Fig. 11). The strictly consistent IMCU 

context assignment matrix could have been 
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generated by a purely centralized approach where 

the ‘master’ would have generated the contexts and 

communicated the same with all instances or each 

instance would have communicated the contexts 

with one-another across the cluster. However, in a 

mainstream production environment with hundreds 

of gigabyte-to-terabyte sized objects being 

duplicated at the same time along with concurrent 

OLTP and OLAP activities, cross-instance 

communication of millions of IMCU contexts across 

the cluster would have choked the network causing 

scale-out throughput bottlenecks. On the other hand, 

instances could not have arrived with strictly 

consistent set of IMCU contexts if the mechanism 

had been purely decentralized.   

 

Fig. 11.Home location assignment matrix generated with 

distributed consensus without peer-peer communication  

Once the IMCU context assignment matrix has been 

generated by a ‘follower’ instance, the contexts are 

compiled into two disjoint sets. The first set of 

contexts includes the ones where either the primary 

or the secondary home locations match the id of the 

executing ‘follower’ instance. The second set 

includes the rest of the contexts where neither the 

primary nor the secondary home locations match the 

id of the executing instance. The IMCU contexts in 

the first set are executed in parallel by dedicated 

background processes. These IMCUs are physically 

populated from the underlying data blocks defined in 

the IMCU context into the local in-memory column 

store. Physical population includes storage I/O, data 

transformation, compression (if applicable), 

allocation of instance-local shared memory for the 

set of Columnar Compression Units within the 

IMCU, and memory-copy of the IMCU in the 

allocated memory from the local column store. 

Physical population of the IMCU is followed by 

registration of the IMCU context with the column-

store home location service. A home location entry 

(HLE) gets created with the IMCU memory offset 

and other metadata (described in the subsequent 

section). Once the entry is inserted and committed in 

the home location service index, the IMCU context 

becomes visible to the transaction manager and the 

SQL execution engines.  

 
Fig. 12.Globally consistent home location service with duplicated 

IMCUs  

The IMCU contexts in the second set are executed 

by a single background process as they are not 

required to be physically populated in the local 

column store. However, these IMCU contexts are 

still registered with the local in-memory home 

location service index where the corresponding 

HLEs store the remote primary and the secondary 

home locations of the IMCU contexts.   

Once all ‘follower’ instances release shared access 

on the object distribution lock, each instance 

eventually generates a globally consistent view of 

the local home location service map with IMCUs 

duplicated on appropriate designated home locations 

(Fig. 12).  

C. Finalization Broadcast  

The instance that had been chosen as the ‘master’ in 

phase A en-queues waited request for exclusive 

access on the object distribution lock once it 

completes phase B. By the time it becomes the 

‘master’ again by acquiring exclusive access on the 

lock, all ‘follower’ instances have completed the 

steps of the decentralized phase B. The ‘master’ 

takes a timestamp and broadcasts it to all instances. 

Each instance records the completion timestamp of 

the current duplication procedure at an object level.   

V.Fault Tolerant Query Execution  

The column store home location service serves as the 

fundamental data structure that seamlessly interfaces 

with the SQL parallel query execution engine and 

provides distributed fault tolerant completely local 

in-memory compression unit scans. 
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Fig. 13.In-memory home location service: collection of home 

location indexes  

A. In-memory Home Location Service  

The in-memory home location service serves as the 

fundamental data structure enabling distributed fault 

tolerant query execution across all column stores in 

the cluster. It serves as a data block address based 

lookup service for fast access of home location 

entries or HLEs, where each HLE holds a set of 

information related to a single IMCU context. The 

service divides the entire on-disk database block 

address space into regions of 128 TB of linear 

address space, where each individual 128 TB of data 

block address space is represented by an index (Fig. 

13). Given the data block boundaries of the IMCU 

context in an HLE, the intermediate branch and leaf 

nodes are created on demand before inserting the 

HLE. The home location service provides a basic 

application programming interface that takes in a set 

of data block addresses and returns the set of IMCU 

contexts for the IMCUs that cover these data blocks, 

when applicable.  The service is used by the 

transaction manager as well as the SQL execution 

engine to detect whether columnar representation 

exists for a data block of an RDBMS object either in 

the local column store or a remote column store.  

The relevant set of information held by each HLE is 

enumerated as follows:  

• IMCU memory offset oNULL is remote 

IMCU oNon-NULL if IMCU populated in 

local column store  

• IMCU home location information for Copy 1 

o Instance Home Location  o

 Timestamp of Registering this Home 

Location  

• IMCU home location information for Copy 2 

o Instance Home Location  o

 Timestamp of Registering this Home 

Location  

• IMCU boundaries  

 o Set of data block address runs  

 Start data block address  

 Contiguous run of data blocks  

For example, the HLEs for IMCU context ‘IMCU 1’ 

in column store of instance A and instance B contain 

the same values except the IMCU memory offset; 

non-zero physical offset in case of instance A where 

the IMCU is physically populated (Fig. 14).   

 

Fig. 14.IMCU context IMCU1 with globally consistent 

boundaries and home locations  

B. Parallel Query Execuiion in a Stable Cluster  

Let’s consider the scenario where an analytic query 

is executed on an RDBMS object in a stable cluster 

on completion of duplicated distribution of the 

corresponding inmemory object. The fact that the in-

memory home location service is globally consistent 

across the column store enables a database client to 

initiate query workloads from any database instance 

in the cluster. We select instance D as the query 

coordinating instance for ease of explanation of the 

rest of section V.  

Once the query is coordinated, the SQL query 

optimizer [13] calculates the degree of parallelism 

based on the cost of accessing the in-memory object 

and ensures that at least one parallel execution 

scanner process gets allocated on the instances 

populated with the IMCUs for the in-memory object.   
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Fig. 15.Query coordinated on instance D in a stable cluster 

after initial duplication  

The coordinator process first retrieves the set of 

Oracle data blocks relevant for the query. It then 

consults its instancelocal home location service to 

generate ‘IMCU-aligned’ worksets or ‘granules’ that 

are ‘designated’ to be represented inmemory either 

local or remote (Fig. 15). The target locations of 

granules missing representation in the column store 

are flagged as UNDEFINED. For the rest of the 

‘IMCU-aligned’ granule, the following mechanism 

is employed by the coordinator to assign the target 

location for the granule.  
1. The status of both home location instances is 

checked using Oracle RAC cluster membership 
table. An instance home location is considered 
active for the in-memory object if its most 
recent start up timestamp is lesser or earlier than 
the most recent global object distribution 
timestamp. An instance is considered dead for 
an inmemory object if it is actually dead or the 
recent start up timestamp is later than the most 
recent global object distribution timestamp. If 
one of the locations is not active, the other 
location is selected towards step 2. If both are 
active, step 2 gets employed for both home 
locations. If both are inactive, both locations are 
unsuitable candidates for target location of the 
granule, and the target location of the granule is 
flagged as UNDEFINED.  

2. The registration timestamp of the chosen home 
location is compared with the global object 
distribution completion timestamp. If the 
registration timestamp is lesser than the 
distribution timestamp, the location serves as a 
candidate for target location for the granule.   

3. At this point, if a single home location stays as 

the target location candidate for the granule, the 

granule is assigned the home location. If both 

home locations are unsuitable,  

the granule is tagged with an UNDEFINED 

target location. If both locations are suitable, 

either the primary home location or the 

secondary home location gets selected as the 

target granule location based on a hash function 

on the coordinator process id. This allows for 

both execution scale out as well as utilization of 

both copies by multiple concurrent queries in a 

stable cluster.  

 

 
Fig. 16.IMCU-aligned granules generated based on primary 

IMCU home locations ensuring full in-memory scans  

The coordinator allocates (N+1) granule distributors, 

one for each of the N instances in the cluster, and 

one for nonaffined granules. Once the target 

locations have been assigned to all granules, the 

granules get compiled into the instancespecific 

distributors. Granules that are tagged with 

UNDEFINED locations as well as granules that are 

not represented in-memory as per the local home 

location service are compiled into the non-affined 

distributor.  

On completion of granule distribution, each parallel 

execution scanner process starts de-queuing granules 

from its respective distributor (Fig. 16). For each 

granule, it consults its local home location service to 

ensure completely local inmemory access of the 

IMCUs. As evident from Fig. 15 and Fig. 16, in a 

stable cluster, the registration timestamps of both 

home locations for all IMCU contexts are lesser than 

the global duplication timestamp. Therefore, either 

of the home locations for an IMCU context can serve 

as target location candidates for ‘IMCU-aligned’ 

granules. The coordinator selects the set of either all 

primary locations for all IMCU contexts or the set of 
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all secondary home locations for all IMCU contexts 

to set up granule contexts. This allows for efficient 

scale-out for analytic scans as well as load balancing 

across duplicate copies of the IMCUs across the 

cluster on concurrent query workloads, evident from 

Fig. 16 and Fig. 17.   

Besides distributed execution in a stable cluster, the 

mechanism described in this section ensures glitch-

free faulttolerant query execution during rebalancing 

of in-memory objects on cluster topology changes. 

The rest of the section will demonstrate the fault 

tolerance aspects of distributed query execution 

through a set of cluster topology change scenarios.    

 

 
Fig. 17.IMCU-aligned granules generated based on secondary 

IMCU home locations ensuring full in-memory scans  

C. Parallel Execution on Server Failure  

When analytic queries are executed on a duplicated 

inmemory object after failure of a single instance 

(let’s consider instance B), the coordinator granule 

generation mechanism ensures that parallel 

execution processes still undergo completely local 

IMCU scans (Fig. 18 and Fig. 19). Both home 

locations for IMCU contexts IMCU1 and IMCU3 

remain suitable as target location for the granules 

<E1, E2’> and <E3’’, E4’>.  

 

 
 

Fig. 18.Query coordinated on instance D after death of 

instance B  

However, for granules <E2’’, E3’> and <E4’’>, the 

coordinator selects instance D as the target home 

locations because the cluster membership table has 

updated the status of the instance B to be non-active. 

Therefore, granules <E1, E2’> and <E3’’, E4’> are 

executed in instances A and C while granules <E2’’, 

E3’> and <E4’’> are executed in instance D, 

resulting in fully local IMCU accesses.  

 

 
Fig. 19.Glitch free full in-memory parallel query execution on 

a server failure utlizing duplicate copies of IMCU 

contexts IMCU2 and IMCU4  
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D. Parallel Execution during Concurrent 

Redistribution across Remaining Servers  

The fact that IMCU contexts IMCU2 and IMCU4 

are left with a single copy across the global column 

store triggers the redistribution of these IMCU 

contexts in the remaining active instances in the 

cluster. The redistribution mechanism is the same as 

the one described in section IV, but uses the same 

object layout snapshot as of the previous duplication 

such that the same IMCU contexts are generated. 

Since the set of participating instances exclude 

instance B, one of the home locations for the IMCU 

contexts IMCU 2 and IMCU 4 get modified (Fig. 

20), while they remain the same for rest of the 

IMCU contexts.   

 

 
Fig. 20.Change in home loction assignments for IMCU contexts 

IMCU2 and IMCU4 due to eviction of instance B  

The fact that the actual IMCU duplication is 

performed by each of the instances asynchronously 

without peer-peer communication implies that the 

home location changes get updated out-of-sync on 

each column store home location service. However, 

even though they get updated asynchronously, the 

updates modify the registration times with 

timestamps greater than the previous global 

duplication timestamp. Therefore, during the time 

when the duplication of IMCU contexts IMCU2 and 

IMCU4 takes place, query coordinators of 

concurrent queries select the stable home location 

(instance D) for both IMCU2 and IMCU4 contexts 

and therefore for granules <E2’’, E3’> and <E4’’> 

(Fig. 21). With the completion of the duplication, 

once the global object duplication timestamp gets 

updated, both home locations for IMCU contexts 

IMCU2 and IMCU4 become suitable target locations 

for granules <E2’’, E3’> and <E4’’> (Fig. 22).  

 
 

Fig. 21.Query coordinated on instance D during redistribution 

of copies of IMCU contexts IMCU2 and IMCU4 in the 

cluster of 3 instances  

 

 

Fig. 22.Glitch free full in-memory parallel query 

execution on stable copies of IMCU contexts while 

duplicate copies of IMCU contexts IMCU2 and 

IMCU4get created in new home locations  

E.Parallel Execution during Redistribution on 

Server Addition  

Once instance B comes up and becomes active 

again, redistribution of the in-memory object gets 

triggered to rebalance the duplicate copies across the 

cluster. The duplication mechanism is the same as 

before and again it uses the same object layout 

snapshot as of the previous duplication such that the 

same IMCU contexts are generated. Since the set of 
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participating instances now includes instance B, the 

Rendezvous Hashing scheme generates home 

locations that are consistent with the ones generated 

during the initial duplication of the in-memory 

object. The home locations of the IMCU contexts 

IMCU1 and IMCU3 remain the same, while the 

home locations for the IMCU contexts IMCU 2 and 

IMCU 4 get modified to the original values (Fig. 

23).  

 

 
Fig. 23.Original home loction assignments for IMCU contexts 

IMCU2 and IMCU4 due to addition of instance B  

During the redistribution of the copies of IMCU 

contexts IMCU2 and IMCU4 back into instance B, 

the asynchronous peerless cluster-wide duplication 

mechanism may result in updating home location 

entries for IMCU2 and IMCU4 in instances A, C, 

and D with instance B as one of the home locations 

even when the actual population of the contexts have 

not taken place in instance B.    

 

 
 

Fig. 24.Query coordinated on instance D during redistribution 

of copies of IMCU contexts IMCU2 and IMCU4 in the 

cluster of 3 instances  

However, the updates modify the registration times 

with timestamps greater than the previous global 

duplication timestamp. Therefore, during the time 

when the population of IMCU contexts IMCU2 and 

IMCU4 takes place in instance B, query coordinators 

of concurrent queries select the stable home location 

(instance D) for both IMCU2 and IMCU4 contexts 

and therefore for granules <E2’’, E3’> and <E4’’>. 

(Fig. 24) With the completion of the duplication, 

once the global object duplication timestamp gets 

updated, both home locations for IMCU contexts 

IMCU2 and IMCU4 become suitable target locations 

for granules <E2’’, E3’> and <E4’’> (Fig. 25).   

 

 
Fig. 25.Glitch free full in-memory parallel query execution on 

stable copies of IMCU contexts while duplicate copies of 

IMCU contexts IMCU2 and IMCU4get redistributed in 

their original home location (instance B)  

The following section demonstrates the impact of 

duplication of the columnar format on performance 

of analytic query workloads across these cluster 

topology change scenarios through a series of 

validation experiments.  

 

VI. Performance evaluation of high 

availability architecture  

Since its release in 2014, the scale-out performance 

of the distributed architecture of Oracle Database In-

memory gets exhaustively evaluated continuously 

through real-world enterprise workloads in the field. 

However, real-world evaluation of the high 

availability aspects of the architecture is not a 

routine affair and remains untested until 

deployments incur cluster outages. In this section, 

we present a preliminary evaluation primarily to 

validate the high availability and fault tolerance 

aspects of the distributed architecture through a set 

of experiments simulating cluster topology changes. 

The experiments have been designed to demonstrate 

and verify the capabilities of the architecture that 

include comparison of query performance across a 

server failure on duplicated inmemory and non-

duplicated in-memory objects a) across a server 

failure, b) during redistribution of IMCUs across 
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remaining servers after server failure, and c) during 

redistribution of IMCUs once the failed server is 

added back to the cluster. We conclude the section 

demonstrating sustained query throughput on a 

duplicated RDBMS table inmemory in an 

experimental setup on an 8-instance cluster 

undergoing constant topology changes, where 

queries are coordinated on a dedicated instance that 

is kept stable, while the rest of the instances get 

automatically aborted and restarted one-at-a-time.  

A.Hardware and Schema Setup  

All four experiments are conducted on Oracle 

Exadata Database Machine version X4-2 [14], a 

state-of-the-art database multi-processor multi-core 

server and storage cluster system introduced in 2013. 

The X4-2 database machine allows a RAC 

configuration of 8 RDBMS server instances, each 

equipped with 2 12-core Intel Xeon processors and 

256GB DRAM, and 14 shared storage servers 

amounting to 200TB total storage capacity, over a 

state-of-the-art Direct-to-Wire 2 x 36 port QDR (40 

Gb/sec) InfiniBand interconnect.  

We use an in-house ‘ATOMICS’ table created with 

1 billion rows and 13 columns resulting in an on-

disk storage size of 84.62GB for the experiments. 

Two more versions of the table ‘ATOMICS2SF’ and 

‘ATOMICS4SF’ are further created on the base 

atomics table with a scale factor of 2 and 4 

respectively. The size of the in-memory column 

store is set to 128GB on all database instances.   

 

B.Experiments  

1)Single Server Failure Exeriment  
Three different RAC configurations (2 instance 

cluster, 4 instance cluster, and full 8  instance 

cluster) are used for this experiment to demonstrate 

the impact of loss of columnar format on query 

performance after server failure when the 

‘ATOMICS’ table gets distributed without 

duplication. For the 2-instance scenario, the original 

84.62GB ATOMICS table is used, while for the 4-

instance and 8-instance scenarios, the 2x and 4x 

scale factor tables are used. The tables are first 

distributed with NO DUPLICATE option resulting 

in single copy of the IMCUs of the corresponding in-

memory tables. Fifty iterations of three different 

analytic queries are executed on stable clusters. Then 

one of the instances is aborted manually, and the 

twenty iterations of the same query set are executed. 

A manual parameter is set to prevent redistribution 

of the in-memory object while the queries take place. 

The above experiment is repeated with same tables 

but distributed with DUPLICATE option.   

Fig. 26 demonstrates regression in average query 

elapsed times on non-duplicated tables on server 

failures. The percentage of regression is observed to 

be most significant on the 2-instance cluster test 

case, as around half of the inmemory columnar data 

gets lost due to the loss of an instance, while on the 

8-instance cluster test case, around one-eighth of the 

data get lost due to the loss of an instance. On the 

other hand, no visible performance regression of 

average query elapsed times is observed on 

duplicated in-memory tables on a single server 

failure irrespective of the size of the cluster.   

 

 
Fig. 26.Average elapsed times of query sets executed on non-

duplicated and duplicated ‘ATOMICS’, 

‘ATOMICS2SF’, and ‘ATOMICS4SF’ tables on a single 

server failure  

2)Redistribution Across Remaining 

Servers  
The same experiment setup employed in subsection 

B is reused for this experiment, without explicitly 

setting a manual parameter to prevent redistribution. 

Therefore, all queries get executed while 

redistribution of the lost IMCUs takes place across 

the cluster. Fig. 27 illustrates the elapsed time 

performance of the query set executions. For non-

duplicated tables, performance regression is still 

observed when compared to the elapsed times 

observed in stable cluster configurations. However, 

the average elapsed time decreases due to the fact 

that the lost IMCUs get populated in the remaining 

instances over the duration of the experiment. For 

duplicated tables, no visible differences are observed 

when compared to results from stable cluster 

configurations.   
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3)Redistribution After Server Addition  
The same experiment setup employed in subsections 

B and C is reused for this experiment, with the 

aborted instances in the above test cases restarted 

and added back to the cluster. The experiment forces 

all queries to get executed once the redistribution 

phases of the IMCUs get initiated. Fig. 28 illustrates 

the elapsed time performance of the query set 

executions. The redistribution process moves 

duplicate copies of relevant IMCUs back to their 

original home location of the restarted instance. 

Therefore, even for non-duplicated tables, no visible 

performance regression is observed when compared 

to the elapsed times observed in stable cluster 

configurations as IMCU copies are available in 

instances due to redistribution of IMCUs lost from 

the aborted instance that takes place in the test 

scenarios described in subsection C. As expected, no 

visible differences are observed for duplicated tables 

when compared to results from stable cluster 

configurations.  

 

 
Fig. 27.Average elapsed times of query sets executed on non-

duplicated and duplicated ‘ATOMICS’, 

‘ATOMICS2SF’, and ‘ATOMICS4SF’ tables during 

reduplication of IMCUs across remaining servers  

 

 

Fig. 28.Average elapsed times of query sets executed on non-

duplicated and duplicated ‘ATOMICS’, 

‘ATOMICS2SF’, and ‘ATOMICS4SF’ tables during 

redistribution  of duplicated IMCUs in restarted server 

instance  

4)Sustained Query Execution on 

Continuous Cluster Topology Change  
The final set of experiments in this evaluation 

exercise combines all the scenarios described in 

subsections 2, 3, and 4 by configuring sustained 

query execution over a period of three hour while the 

cluster undergoes topology changes. For this 

experiment, the 2x scale factor ‘ATOMICS2X’ is 

distributed in duplicate mode in a cluster configured 

with 4 instances. The test case is configured such 

that instance A always remains active while rest of 

the instances (B, C, and D) are aborted and restarted 

(after 3 minutes of abortion) one after the other in a 

round robin fashion in 5 minute intervals. All queries 

are executed from the stable instance A. Fig. 29 

illustrates average elapsed time collected every 60 

seconds across the three hour period. Sustained 

elapsed times are observed due to glitch free fault 

tolerant distributed query executions undergoing 

fully local in-memory columnar format scans across 

all active servers at any given snapshot within the 

three hour execution window.  
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Fig. 29.Fault tolerant in-memory parallel query execution on 

‘ATOMICS2SF’ sustained for a duration of 3 hours 

under constant cluster topology changes due to removal 

and addition of a server at regular intervals in a cluster  

The preliminary evaluation provides a compact yet 

complete demonstration of the high availability and 

fault tolerance capabilities of Oracle DBIM. The 

results do demonstrate that Oracle DBIM ensures 

seamless distributed query execution on duplicated 

in-memory objects across a cluster of servers 

undergoing continuous topology changes, as long as 

long as there exist one stable copy of the underlying 

in-memory compression units  

 

VII.Conclusion 

A new breed of mixed OLTAP applications have 

emerged that require real-time analytic insights on 

massive volumes of data in live mainstream 

production environments as well as traditional data 

warehouse ones. Oracle introduced the Database In-

memory Option (DBIM) in 2014 as the industryfirst 

dual format in-memory RDBMS highly optimized to 

break performance barriers in analytic query 

workloads without compromising or even improving 

performance of regular transactional workloads. 

Since the new columnar format is maintained purely 

in-memory without additional logging overheads, the 

new in-memory option has been implemented as a 

distributed architecture to provide maximal 

availability of the columnar format supporting fault-

tolerant in-memory query execution across cluster 

topology changes, besides scaling out main memory 

capacity and query execution throughput. This paper 

primarily presents the maximal availability 

architecture of Oracle DBIM. The architecture 

provides real-time duplication of the in-memory 

columnar format for high availability along with 

fault tolerant query execution across server failures. 

The architecture also ensures minimal recovery 

impact on the columnar format across cluster 

topology changes by guaranteeing fully glitchfree in-

memory query execution mechanisms during 

completely asynchronous efficient rebalancing 

phases.  
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