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ABSTRACT: In the paper we discuss about the 

extreme learning machine (ELM) interface which 

has potential to restore the lost sensorimotor 

functions in people. The key element used in 

brainmachine interface (BMI) is neural decoder. 

Extreme learning machine interface controls the 

external devices by modulating their neural 

activity. A mathematical algorithm is introduced to 

record the neural activity in extreme learning 

machine interface. The proposed system utilizes a 

decoder to initialize the feedback approach.  A 

motor ELM is modelled as closed loop control 

system, where the controller is brain. At last the 

proposed system takes limited number of input 

channels and reduces the number of programmable 

weights.  

KEY WORDS: Brain machine interface (BMI), 

Extreme learning machine (ELM), neural 

decoder, neural network.  

I.INTRODUCTION 

Brain-Machine Interfaces (BMIs) have the 

potential of helping patients with motor 

disabilities to restore some of their lost 

motor functions. BMIs typically use a 

decoding algorithm to translate the 

recorded neural activity into a control 

signal to actuate an external device. In 

closed-loop neural decoding, the BMI 

subject receives visual feedback in real 

time that allows the subject to correct 

movement errors to enhance control 

performance. Brain-Machine Interfaces 

(BMIs) have the potential to restore lost 

motor functions for patients with severe 

motor disabilities. In cortically-controlled 

BMIs, neural activity I recorded from 

ensembles of neurons using multi-

electrode arrays implanted in the subject’s 

cortex and is then translated in real-time 

by neural decoders into motor commands 

that actuate an external device Such as a 

robotic arm.  

 

 

A key element of this process is the neural 

decoder, which is typically designed using 

a biomimetic approach that relies on the 

concurrent recording of the neural activity 

and the actual (or imagined) arm 

movement. 

 

This approach assumes that movement 

parameters are ‘encoded’ in the activity of 

the neuronal ensemble, and that a BMI 

algorithm can ‘decode’ such movement 

representation in order to control an 

external device. It also assumes precise 

synchrony between neural and kinematic 

or motor imagery data, which may not be 

known, for example, in the case of self-

paced movement initiation. In addition, the 

collection of such training data. Imposes a 

practical problem for the ultimate clinical 

application in which users are unable to 

produce overt movements or constantly 

need a caregiver to calibrate the decoder 

on a daily basis. From below figure (1) we 

can observe that BMI as closed loop 

control system.  

 
 
 

A closed-loop controller controls a plant 

using commands that are decided based on 

the plant’s forward dynamics model and 

the real-time feedback of its current state. 

In the 

Fig. 1. BMI as closed loop control system 
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Case of a motor BMI, the controller is the 

brain, the plant is the external device (e.g., 

the robotic arm) to be controlled, and the 

feedback is the biofeedback received by 

the brain. The majority of BMI decoders 

were 

Trained in an open-loop manner. Decoders 

can also use as input the spike events, 

which indicate the presence or absence of 

a spike at a given time. Thus using insights 

and tools from control theory could guide 

the design of decoding algorithms to 

further make them tailored to the brain 

system. 

 

II.LITERATURE SURVEY 

In this paper, we present a machine 

learning coprocessor (MLCP) achieving 

low-power operation through massive 

parallelism,Sub-threshold analog 

processing and careful choice of algorithm. 

The below figure (2) contrasts our 

approach with traditional approaches. Our 

MLCP acts in conjunction with the digital 

signal processor (DSP) already present in 

implants (for spike sorting, detection and 

packetizing) to provide the decoded 

outputs.  

 
 

 

 

The bulk of processing is done on the 

MLCP while simple digital functions are 

performed on the DSP. Compared to 

traditional designs that perform the 

decoding outside the implant, our 

envisioned system that provides 

opportunity for huge data compression by 

integrating the decoder in the implant. The 

MLCP is characterized by measurement. 

Integrating the neural decoding algorithm 

with the neural recording device is also 

desired to reduce the wireless data 

transmission rate.  

III. PROPOSED SYSTEM 

The below figure (3) shows the 

architecture of proposed system. Basically, 

The DSP only needs to send very simple 

control signals to the MLCP and performs 

the calculation of the second stage of 

ELM. The input to the MLCP comes from 

spike sorting that can be performed on 

theDSP. 

 
 

 

Here high computation efficiency is 

achieved by exploiting fabrication 

mismatch abundantly found in analog 

devices. Since the number of computations 

in first stage far outnumbers those in the 

second stage. Up to 128 input channels 

and 128 hidden layer nodes are supported 

by the MLCP. On receiving a spike from 

the neural amplifier array the DSP sends a 

pulse to the DEMUX. Each row of the 

MLCP has a 6-bit window counter to 

count the total number of input spikes in a 

moving window.  

 

The counter value in j-th row is converted 

into input feature current for the ELM. The 

delay length can be selected from among 5 

delay steps ranging from 20 ms to 100 

Fig. 2. a) Architecture of ELM b) use of 

ELM in neutral decoding. 

Fig. 3. Proposed system 
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ms.the input feature current from each row 

is further mirrored into all hidden-layer 

nodes by a current mirror array. Hence, 

ratiosof the current mirrors are essentially 

the input weights, and are inherently 

random due to fabrication mismatch of the 

transistors.  

 

The hidden layer node is implemented by a 

current controlled oscillator (CCO) driving 

a 14-bit counter with a 3-bit programmable 

stop value to implement a saturating 

nonlinearity. The advantage of choosing 

this nonlinearity is that it can be digitally 

set and also some neurons can be 

configured to be linear. The output of CCO 

is a pulse frequency modulated signal with 

the frequency proportional to total input 

current. At last it can observe that this 

system reduces the effect of power supply 

variations.  

 

IV. RESULTS 

 

 
 

 

 
 

 

 

 

 
 

 

V.CONCLUSION 

The proposed system achieves real-time 

motor intention decoding in an efficient 

way.  The ELM algorithm used 

In the decoder is quite general and has 

been shown to be a universal 

approximator. Higher dimensions of inputs 

and hidden layers can be handled by 

making a larger IC and also by reusing the 

same hidden layer several times. Higher 

input dimensions can be accommodated at 

same power by reducing the bias current 

input of the splitter DACs in input 

channels. So the proposed system gives 

effective results. 
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