International Journal of Research Available at https://edupediapublications.org/journals

TEN-SWITCH UNIFIED POWER QUALITY CONDITIONING SYSTEM

Shaik Ejazuddin ${ }^{1}$, Shaik Mohammed Imran ${ }^{2}$
${ }^{1}$ PG Scholar, Dept. Of EEE, Dr.K.V.Subba Reddy Institute of Technology, Kurnool, A.P.
${ }^{2}$ Assistant Professor, Dept. Of EEE, Dr.K.V.Subba Reddy Institute of Technology, Kurnool, A.P.

Abstract

: This paper proposes a new topological configuration for a unified power quality conditioner (UPQC). Generally, the power structure of the three-phase three-wire UPQC consists of two voltage source inverters (VSI) by using 12 switches, connected in six for shunt and six for series arrangement with the grid. For this configuration, six of the series inverter switches will be underutilized most of the time. To improve the semiconductor utilization and consequently to reduce switching losses, this paper proposes a new reduced switch topology for the UPQC. The proposed topology is realized using only ten switches and retains all the performance merits of the 12 -switch UPQC while minimizing its underutilization without increasing the switch VA rating. The paper provides a detailed analytical study and evaluation by comparing the proposed topology with the twelve- and nine-switch-based UPQC system configurations.

I INTRODUCTION

A unified power quality conditioner (UPQC), it is probable to ensure a controlled voltage for the loads, balanced and with low harmonic distortion and at the same time draining undistorted currents from the utility grid, even if the grid voltage and the load current have harmonic substances. The UPQC contains of two active filters, the Series Active Filter (SAF) and the Shunt or Parallel Active Filter (PAF)THE ever increasing use of solid state technology in industrial and domestic applications is extensively contributing towards line current harmonics, leading to nonlinear voltage drops, cables overheating, poor power factor and additional power losses at distribution levels [1][2].

This paper proposes a new reduced switch UPQC system topology that comprises of ten switches in total. The main objective is to reduce the overall switch count of the back-to back UPQC system while retaining its operational features without any performance tradeoff. To
maintain the linear modulation range and uniform switching frequency for all the switches within the proposed topology, a carrier based double zero sequence injection scheme is also developed. An appropriate control algorithm is developed to achieve the seamless operation of the proposed UPQC topology under different operating conditions.

A UPQC generally consists of two voltage source inverters (VSI), connected in shunt and series configuration with the grid, at the point of common coupling (PCC) and share a common dc link capacitor [4]. The series VSI protects the downstream loads from sags/swells in the PCC voltage whereas the shunt VSI reduces the upstream line losses by compensating the harmonic distortion and reactive component of the load current. When the voltage at PCC is distorted, the series VSI can be additionally controlled to mitigate and prevent the voltage harmonics from reaching the load [10]. The proposed topology is realized using only ten switches and retains all the performance merits of the twelve- switch UPQC while minimizing its underutilization without increasing the switch VA rating.

II THREE PHASE THREE WIRE UPQC SYSTEM CONFIGURATIONS

For three-phase-three-wire system, generally, the back-to back inverter based UPQC system is
widely used and is shown in Fig. 1.

Fig. 1. Twelve-switch UPQC topology.
It comprises of twelve power semiconductor switches in total. Switches constitute the shunt VSI which is connected at the PCC, whereas, the switches constitute the series VSI and is connected between the PCC and load. Both inverters share the common dc link capacitor. As shown in Fig. 1, the twelve- switch UPQC deploys two dedicated inverters for performing the UPQC functionalities. This feature allows UPQC to have shunt VSI connected at either the PCC or load with no effect on the compensation ability.

Recently, there has been an effort to reduce the total switch count of in Fig. 1, the reduced nineswitch UPQC topology is achieved. This configuration has a set of three shared switches as illustrated in Fig. 2.
the UPQC as reported. By merging the lower three switches of the shunt VSI

switches in each leg. Therefore, six out of nine switches must be oversized for adequate operation of the nine-switch UPQC. In addition, all the nine switches must remain operational irrespective of the UPQC compensation mode. Thus, the reliability of the nine-switch UPQC reduces for a single switch malfunction.

III PROPOSED TEN-SWITCH UPQC TOPOLOGY

In this paper, a new topology of UPQC, based on ten switches, is proposed for power quality enhancement applications. As depicted in Fig. 3, the proposed topology is realized by combining the phase C switches of shunt and series VSI
$\left\{\mathrm{SC}_{1}, \mathrm{SC}_{2}\right\}$ and
$\left\{\mathrm{S}_{\mathrm{C} 1} \mathrm{~F}, \mathrm{~S}_{\mathrm{C} 2} \mathrm{~F}\right\}$ in Fig. 1, respectively, into a common leg
with a shared set of two switches SC1 and SC2. Until now the ten-switch structure has been utilized in following subsection provides an overview of the ten- switch related work in the literature UPQC topology

Fig. 3. Proposed ten-switch.

A. Existing constraints and background work related to ten switch structure

Like most reduced semiconductor topologies, ten-switch structure faces restriction on its allowable switching states for the shared leg (phase C in Fig. 3).

TABLE I
SWITCHING STATES FOR PHASE "C" OF SHUNT AND SERIES VSI IN TWELVESWITCH CONFIGURATION

Voltage	Switching State
$V_{s h}=V_{s r}=V_{d c}$	$S_{C 1}, S_{C^{\prime} 1}=0 \mathrm{~N}$ and $S_{C 2}, S_{c^{\prime} 2}=0 \mathrm{FF}$
$V_{\text {sh }}=V_{s t}=0$	$S_{C_{2},}, S_{C^{\prime} 2}=0 \mathrm{~N}$ and $S_{C_{1},}, S_{C^{\prime} 1}=0 \mathrm{FF}$
$V_{\text {sh }}=V_{\text {dc }}$ and $V_{s t}=0$	$S_{C 1}, S_{C^{\prime} 2}=0 \mathrm{~N}$ and $S_{C 2}, S_{C^{\prime} 1}=0 \mathrm{FF}$
$V_{\text {sh }}=0$ and $V_{s t}=V_{d c}$	$S_{C 2}, S_{C^{\prime} 1}=0 \mathrm{~N}$ and $S_{C 2}, S_{c^{\prime} 1}=0 \mathrm{FF}$

The switching state where the upper terminal is connected to and lower terminal is connected to ground or vice-versa is not realizable as it will result in a direct short circuit of the dc bus. The blocking of two (out of four) states limits the dc link voltage available for the shared leg ("phase C") to half of its value for back-to back configuration.

TABLE II

SWITCHING STATES FOR PHASE "C" OF SHUNT AND SERIES VSI IN TENSWITCH CONFIGURATION

Voltage	Switching State
$V_{s h}=V_{s r}=V_{d c}$	$S_{C 1}=0 \mathrm{~N}$ and $S_{C 2}=0 \mathrm{FF}$
$V_{s h}=V_{s r}=0$	$S_{C 1}=0 \mathrm{FF}$ and $S_{C 2}=0 \mathrm{~N}$
$V_{s h}=V_{d c}$ and $V_{s r}=0$	Not Realizable
$V_{s h}=0$ and $V_{s r}=V_{d c}$	Not Realizable

Ten-switch configuration was earlier reported in [14]-[16] to replace twelve-switch back- to-back converter for dual induction machine drive system. Although the configuration allows independent control of both machines with a wide range of variation in load torque and
rotational speeds, it imposes a limitation on the dc link voltage.

If $\mathrm{U}_{\mathrm{m} 1}$ and $\mathrm{U}_{\mathrm{m} 2}$ are the maximum values of phase- to- phase voltages at the terminals of the induction machine M_{1} and M_{2} , respectively, it is shown that,
$V_{D C} \geq \max \left(U_{m 1}+U_{m}\right)$, for the ten - switch system
$V_{D C} \geq \max \left(U_{m 1}+U_{m}\right)$, for the twelve switch system (1)

Where VDC is the voltage across the dc link capacitor. In the special case of $\mathrm{U}_{\mathrm{m} 1}=$ $\mathrm{U}_{\mathrm{m} 2}=\mathrm{U}$ the following constraints can be established.
$V_{D C} \geq 2 U$, for the ten - switch system
$V_{D C} \geq 2 \mathrm{U}$, for the twelve - switch system (2)
Equation (2) implies that the dc-link voltage must be doubled to achieve the maximum rotational speed for both machines simultaneously. Doubling of dc-link voltage increases all the component stress by two folds, thus offsetting the saving of two switches. For the same dc-link voltage, the ten-switch structure leads to reduction in the terminal voltage and consequent speed range of both machines.

Attempts to enhance the dc-bus utilization for the ten-switch architecture have been reported in [18]-[21]. The improvement reported in [18] is obtained at the expense of identical operating (speeding and loading) conditions for both machines. In [19], the
controller divides the dc-link voltage by allocating prede- fined switching vectors to each machine. The restriction that the controller must have prior knowledge of the voltage profile for each machine makes the scheme impractical for variable in- dustrial loads. In [20], the ten-switch configuration is employed to drive the two induction motors in the center-driven winders. It overcomes the limitation of dc-link oversizing given by (1) and (2) due to "inverse loading profile" of the two machines. When one motor operates at maximum speed, the other motor operates at minimum speed and vice versa. Since both mo- tors increase/decrease speed in an alternate fashion, their volt- age requirement is completely different (opposite). This allows the ten-switch system to remain operational for center-driven winders utilizing the same dc-link voltage required for back-to- back converter. However, the center-driven winder is a special case, and, in general, the ten-switch configuration has not shown much economic value for dualmotor drive systems.

B Proposal

This paper proposes the use of ten-switch configuration as the most suitable candidate for shunt-series configuration, such as, UPQC. The rationale behind this recommendation is given pelpsy.l.shgred leg during normal (upper) and sag (lower) mode of operation in the proposed
configuration.

Fig. 4. Modulation references transition for As shown in Fig. 3, the outputs of the upper VSI are connected to the PCC constituting the shunt configuration whereas, the outputs of lower VSI are connected in series with the same PCC constituting the series configuration. The shared set of switches

SC 1 and SC 2 are driven by the modulation signal which is calculated as follows.
$\mathrm{m}_{\mathrm{res}}=\mathrm{m}_{\text {sh }}+\mathrm{m}_{\text {sr }} \quad$ (3)
where $\mathrm{m}_{\text {sh }}$ and $\mathrm{m}_{\text {sr }}$ are the amplitude of the modulating sig- nal for shunt and series VSIs, respectively. $\mathrm{m}_{\text {res }}$ is the resultant modulating signal for the shated set of switches. Fig. 4(ł) shows these details within the bandwidth of the dc-link voltage in per unit (p.u.), where $1,0,1$ corresponds to $\mathrm{V}_{\mathrm{dc}}, 0, \mathrm{~V}_{\mathrm{dc}}$. To maintain the linear range of modulation for $\mathrm{S}_{\mathrm{C} 1}$ and $\mathrm{S}_{\mathrm{C} 2}$, the maximum allowable limit for $\mathrm{m}_{\mathrm{res}}$ is 1 to +1 . This limit can be further stretched by 15% using third-harmonic injection [11],
[12] extending the linear range from 1,1 to
as shown
in Fig. 4(b) and (d). Thus, up to 15% total
harmonic distortion (THD) in the PCC voltage can be compensated with- out increasing the dclink voltage. For higher values of voltage THD, (i.e., >15\%), like all existing configurations, the proposed topology will also require a higher dclink voltage.

During normal condition, the shunt VSI supplies harmonic and fundamental reactive component of the load current, while the series VSI injects the inverse of PCC voltage harmonics usually <5\% [11]. Since the shunt VSI operates at the same voltage level as PCC (1 p.u.), its reference signal amplitude is also unity. From (3), the amplitude of the reference signal for shared leg can go as high as 1.05 as shown in Fig. 4(a). If an ideal grid is considered (with no distortion in PCC voltage), the series VSI will simply operate with a modulation index of zero and
$\mathrm{m}_{\mathrm{res}}=\mathrm{m}_{\mathrm{sh}}=1$.
Now consider that there is sag of magnitude $\Delta V_{\text {sag }}$ (p.u.) in the PCC voltage. On the occurrence of sag, the PCC voltage undergoes a reduction of $\Delta \mathrm{V}_{\text {sag. }}$. The shunt VSI modulation index also decreases proportionally to the new value of $\left(1-\Delta \mathrm{V}_{\text {sag }}\right)$. The series VSI compensates the sag by injecting a fundamental voltage given by
$V \mathrm{sr}=V^{*} L-V \mathrm{pcc}$
where $V^{*} L$ is the nominal load voltage. The new modulation index of the series VSI increases from 0.05 to $\Delta V_{\text {sag }}+0.05$. Fig. 4(c) reflects the
transition in all three modulation indexes $\mathrm{m}_{\mathrm{sr}}, \mathrm{m}_{\text {sh }}, \mathrm{m}_{\text {res }}$ from normal to sag mode of operation.

It can Ee observed from Fig. 4(a) and (c) that the resultant modulation $\stackrel{k}{\mathrm{k}}$ signal for the shared leg (phase " C ") does not ex- tend out of the dc-link bandwidth during both (normal and sag) modes of operation. This is attributed to the fact that amplifica- tion in m_{sr} by any amount is always accompanied by a reduction in $\mathrm{m}_{\text {sh }}$ by the same factor. The self-tuning feature of both the modulation references causes the shared leg switches to always operate in the linear range of modulation. Thus, the proposed configuration can be considered as the most suitable application of a ten-switch topology. Fig. 4(b) and (d) reflects the opera- tional area of the ten-switch UPQC for normal and sag mode of operations, respectively. The operating points $\{0.05,1\}$ in Fig. 4(b) and $\{0.505,0.4\}$ in Fig. 4(d) correspond to the normal mode in Fig. 4(a) and sag mode in Fig. 4(c), respectively.

IV SWITCH RATING ANALYSIS

In Section III, a subjective explanation is presented to use ten- switch configuration as UPQC. Despite its two switch saving feature, the effectiveness of the proposed ten-switch UPQC can only be evaluated after comprehensive analysis of its switch rating. Therefore, an analytical study is presented in this section to

International Journal of Research
Available at https://edupediapublications.org/journals
determine and compare the switch rating of the ten-switch UPQC with the twelve- and nineswitch topologies.

From Fig. 1, the p.u. current flowing in the series and shunt VSI can be expressed as

$$
\left.\begin{array}{l}
i_{\mathrm{sf}}=\frac{i_{L} L \theta_{L a}}{n_{t}}=\sum_{h=1}^{\infty} I_{L} \cos \left(h w_{L} t+\varphi_{L h}\right)=I_{L} \angle \theta_{L}=1 \angle \theta_{L} \\
i_{\mathrm{sh}}=\sum_{h=1}^{\infty} I_{\mathrm{sh}} \cos \left(h w_{\mathrm{sh}} t+\varphi_{\mathrm{sh}-h}\right)=\left(1 \angle \theta_{L}-1 \cos \theta_{L}\right)+I_{1 K} \tag{5}
\end{array}\right\}
$$

where $\mathrm{h}=1,2,3$ is the harmonic order, and $\mathrm{i}_{\text {sr }}$ and $i_{\text {sh }}$ are the terminal currents of series and shunt VSIs, respectively. Con sidering the load current magnitude as the base and angle of the fundamental PCC voltage as the reference angle, transformer turns ratio n_{t} as unity, the series VSI current $i_{\text {sr }}$ is 1 p.u. as shown in the first part of (5). The shunt VSI current $i_{\text {sh }}$ consists of fundamental reactive and harmonic portion of load current. In the second part of (5), $\cos \theta L$ denotes the fundamental active component of load current, whereas $I 1 K$ accounts for the additional fundamental active component required to maintain the dc-link voltage. During steady state, $I 1 K$ represents the loss component of the UPQC system, and during sag condition, it also contains the active power component to achieve the overall power balance [7]. For simplicity, neglecting the inverter losses and defining the sag depth as $k=1-V L$. The current $I 1 \mathrm{~K}$ can be expressed as be expressed as

$$
I_{1 K}=\left\{\begin{array}{lr}
0, & \text { if } \quad k=0 \tag{6}\\
\left(\frac{1}{1-k}\right) \cos \theta_{L}, & \text { if } \quad 0 \leq k \leq 1
\end{array}\right\} .
$$

From (6), it is clear that $I 1 K$ is a function of the load power factor and sag depth during off nominal conditions. Furthermore, it can be observed from (5) that isr and ish have different magnitudes and phase angles.

A. Switch Rating of the Back-to-Back UPQC

Using the derivations given in [22], the switch current for the back-to-back UPQC of Fig. 1 can be expressed as

$$
\left.\begin{array}{l}
i_{S A_{1}}=\sum_{\sigma=1 \rightarrow f s w}\left\{2\left(k_{1}\right)\left(T-T_{1}\right) i_{\mathrm{sh}}\right\}_{\sigma} \\
i_{S A_{1}^{\prime}}=\sum_{\sigma=1 \rightarrow f s w}\left\{2\left(k_{2}\right)\left(T_{2}\right) i_{\mathrm{sr}}\right\}_{\sigma} \\
k_{1}=\left\{\begin{array}{ll}
1, & i_{\mathrm{sh}} \leq 0 \\
0, & i_{\mathrm{sh}}>0
\end{array} k_{2}= \begin{cases}1, & i_{\mathrm{sr}} \leq 0 \\
0, & i_{\mathrm{sr}}>0\end{cases} \right. \tag{7}
\end{array}\right\}
$$

where $i S A 1$ and $i S A _1$ are phase A switch currents of shunt and series VSIs, respectively. T is the half switching period of the carrier waveform. $T 1$ is the time interval during which the amplitude of carrier is higher than the modulating signal $S A 1$ amplitude. $T 2$ is the time interval during which the amplitude of modulating signal $S A 1$ is higher than the carrier. $k 1$ and $k 2$ are symbolic variables governing the unidirectional current through $S A 1$ and $S A 1$. Based on (7), the maximum current rating of each switch in series VSI is $1 \angle \theta L$ (p.u) and shunt VSI is $(1 \angle \theta L-1 \cos \theta L)+I 1 K($ p.u $)$. The

International Journal of Research Available at https://edupediapublications.org/journals
voltage rating of each switch in the 12 -switch converter is the same as the dc-link voltage. Considering the nominal rms load voltage (1 p.u.) as base, the dc-link voltage would be $2 \sqrt{ } 2$ (p.u).

B. Switch Rating of the Nine-Switch UPQC

In the nine-switch UPQC topology of Fig. 2, the switch current can be expressed as follows [22], [23]: Based on (8) and the derivation in [23], the maximum current handled by three upper switches of the shunt VSI \{SA1, $S B 1, S C 1\}$ and three lower switches of the series VSI $\{S A 2, S B 2, S C 2\}$ is $(2 \angle \theta L-\cos \theta L)+I 1 K$ (p.u.).

The current rating of the shared set of switches will bemax of (ish, isr). The voltage rating of all the switches is $2 \sqrt{2}$ (p.u.) similar to the $12-$ switch UPQC. Further explanation on nineswitch converter rating and loss analysis can be found in [22] and [23].

$$
\begin{align*}
& i_{S A_{1}}=\sum_{\sigma=1 \rightarrow f s w}\left\{\begin{array}{c}
2\left(k_{1}\right)\left(T-T_{1}-T_{2}\right) i_{\mathrm{sh}} \\
+\left(k_{3}\right) T_{2}\left(i_{\mathrm{sh}}+i_{\mathrm{sr}}\right)
\end{array}\right\}_{\sigma} \\
& i_{S A_{12}}=\sum_{\sigma=1 \rightarrow f s w}\left\{\begin{array}{c}
2\left(1-k_{1}\right)\left(T_{1}\right) i_{\mathrm{sh}} \\
+\left(k_{2}\right) T_{2} i_{\mathrm{sr}}
\end{array}\right\}_{\sigma} \\
& i_{S A_{2}}=\sum_{\sigma=1 \rightarrow f s w}\left\{\begin{array}{c}
2\left(1-k_{2}\right)\left(T-T_{1}-T_{2}\right) i_{\mathrm{sr}} \\
+\left(1-k_{3}\right) T_{1}\left(i_{\mathrm{sh}}+i_{\mathrm{sr}}\right)
\end{array}\right\}_{\sigma} \\
& k_{1}=\left\{\begin{array}{l}
1, i_{\mathrm{sh}} \leq 0 \\
0, i_{\mathrm{sh}}>0
\end{array} \quad, \quad k_{2}=\left\{\begin{array}{cc}
1, & i_{\mathrm{sr}} \leq 0 \\
0, & i_{\mathrm{sr}}>0
\end{array}\right.\right. \\
& k_{3}=\left\{\begin{array}{l}
1, i_{\mathrm{sh}}+i_{\mathrm{sr}} \leq 0 \\
0, i_{\mathrm{sh}}+i_{\mathrm{sr}}>0
\end{array}\right. \tag{8}
\end{align*}
$$

C. Switch Rating of the Proposed Ten-Switch UPQC

The instantaneous current for the shared set of witches SC1and SC2 in the proposed tenswitch UPQC of Fig. 3 can be expressed as follows:

$$
\begin{align*}
& i_{S C_{1}}=\sum_{\sigma=1 \rightarrow f s w}\left\{2\left(k_{1}\right)\left(T_{1}\right) i_{\mathrm{sh}}\right\}_{\sigma} \\
& i_{S C_{2}}=\sum_{\sigma=1 \rightarrow f s w}\left\{2\left(k_{2}\right)\left(T_{2}\right) i_{\mathrm{sr}}\right\}_{\sigma} \\
& k_{1}=\left\{\begin{array}{ll}
1, & i_{\mathrm{sh}} \geq 0 \\
0, & i_{\mathrm{sh}}<0
\end{array} \quad k_{2}=\left\{\begin{array}{ll}
1, & i_{\mathrm{sr}} \leq 0 \\
0, & i_{\mathrm{sr}}>0
\end{array}\right\}\right. \tag{9}
\end{align*}
$$

The current rating of the above two shared set of switches will be max of (ish, isr). The remaining four shunt VSI switch currents and four series

International Journal of Research
Available at https://edupediapublications.org/journals

VSI currents are identical to that of the 12switch shunt and series VSIs, respectively.

Similar to nine switch topology, the voltage rating of all the switches is $2 \sqrt{2}$ p.u.

TABLE III
Per Unit Component Rating of Semiconductors and Overall Va Rating for Various UPQC Topologies

$\begin{aligned} & \text { UPQC } \\ & \text { TOPOLOGY } \end{aligned}$	No of switches	Maximum Switch Voltage Rating	Maximum Switch Current Rating			Overall UPQC VA Rating
			Dedicated Shunt VSI switches	Dedicated Series VSI switches	Shared switches	
Twelve-switch	12	$2 \sqrt{2}$	$\begin{gathered} \left(1 \angle \theta_{L}-\cos \theta_{L}\right)+ \\ I_{1 K} \end{gathered}$	$1 \angle \theta_{L}$	-	$\begin{gathered} \boldsymbol{V} A=6 \boldsymbol{X} \\ X=2 \sqrt{2}\left(\left(2 \angle \theta_{L}-\cos \theta_{L}\right)+I_{1 K}\right) \end{gathered}$
Nine-switch	9	$2 \sqrt{2}$	$\begin{gathered} \left(2 \angle \theta_{L}-\cos \theta_{L}\right)+ \\ I_{1 K} \end{gathered}$	$\begin{gathered} \left(2 \angle \theta_{L}-\cos \theta_{L}\right)+ \\ I_{1 K} \end{gathered}$	$\max \left(i_{\text {sh }}, i_{\text {sr }}\right)$	$\begin{gathered} \boldsymbol{V} \boldsymbol{A}=6 \boldsymbol{X}+3 \boldsymbol{Y} \\ X=2 \sqrt{2}\left(\left(2 \angle \theta_{L}-\cos \theta_{L}\right)+I_{1 K}\right) \\ Y=2 \sqrt{2}\left(\max \left(i_{\mathrm{sh}}, i_{\mathrm{sr}}\right)\right) \end{gathered}$
Proposed Ten-switch	10	$2 \sqrt{2}$	$\begin{gathered} \left(1 \angle \theta_{L}-\cos \theta_{L}\right)+ \\ I_{1 K} \end{gathered}$	$1 \angle \theta_{L}$	$\max \left(i_{\text {sh }}, i_{\text {sr }}\right)$	$\begin{gathered} \boldsymbol{V} \boldsymbol{A}=4 \boldsymbol{X}+2 \boldsymbol{Y} \\ X=2 \sqrt{2}\left(\left(2 \angle \theta_{L}-\cos \theta_{L}\right)+I_{1 K}\right) \\ Y=2 \sqrt{2}\left(\max \left(i_{\mathrm{sh}}, i_{\mathrm{sr}}\right)\right) \end{gathered}$

TABLE IV
PER Unit VA Loading of UPQC For Various Sag Depths

UPQC TOPOLOGY	Normal conditions			0.2			0.4			0.6		
	X	Y	total									
Twelve-switch ($V A=6 X$)	3.74	-	22.45	6.19	-	37.16	7.12	-	42.75	9.03	-	54.17
Nine-switch UPQC ($V A=6 X+3 Y$)	3.74	2.8	30.9	6.19	5.68	54.1	7.12	6.68	62.76	9.03	8.69	80.23
Proposed Ten-switch ($V A=4 X+2 Y$)	3.74	2.8	20.62	6.19	5.68	36.2	7.12	6.68	41.84	9.03	8.69	53.48

D. Comparative Analysis

Using the aforementioned expressions for the currents and dclink voltage requirements, a comparative switch rating analysis is conducted for the three UPQC topologies. Table III provides a summary of the comparison. It can be clearly seen that the total VA rating of the nineswitch UPQC is higher than 12-switch topology
by a factor of $3 Y$. Since the maximum value of Y is always less than X [i.e., max (ish, isr) $<$ (ish + isr)], the total VA rating of the proposed UPQC topology will always be lower than the 12 -switch topology. For a better illustration, an analytical comparison of VA
loading for the three UPQC topologies is conducted and given in Table IV. The sag depths of $0.2,0.4$, and 0.6 are considered with a linear inductive load of $1 \angle-30^{\circ}$. It can be seen from

Table IV that among all three topologies, the nine-switch topology requires highest VA loading, whereas the proposed topology performs the same tasks with the least VA loading of the UPQC system.
For example, for a sag depth of 0.6 p.u., it can be observed that compared with the 12 -switch topology, the proposed topology, in addition to saving of two semiconductor switches, requires 2% less VA, whereas the nine-switch topology needs at least 60% higher VA loading.

V. MODULATION SCHEME FOR THE

 TEN-SWITCH UPQCFig. 5 shows the developed modulation scheme to generate gate pulses for the proposed tenswitch UPQC topology. It involves dual-stage zero-sequence injection in the modulating references. The inputs to the modulator block are three reference signals each from the shunt and series VSI control blocks (further explained in Section VI). The developed modulation technique has two stages that are explained below. In the first stage, to enhance the dc bus utilization, the third-harmonic injection is carried out. Let V'sha, b, c and V'sra, b, c be
the reference signals determined by the shunt and series VSI control blocks, respectively. These signals can be represented as

Fig. 5. Modulation scheme for the proposed ten-switch UPQC system.

$$
\left.\begin{array}{l}
V_{\mathrm{sh}-a}^{*}=M_{\mathrm{sh}} \cos \left(w_{\mathrm{sh}} t+\emptyset_{\mathrm{sh}}\right) \\
V_{\mathrm{sh}-b}^{*}=M_{\mathrm{sh}} \cos \left(w_{\mathrm{sh}} t-120^{\circ}+\emptyset_{\mathrm{sh}}\right) \tag{11}\\
V_{\mathrm{sh}-c}^{*}=M_{\mathrm{sh}} \cos \left(w_{\mathrm{sh}} t-240^{\circ}+\emptyset_{\mathrm{sh}}\right) \\
V_{\mathrm{sr}-a}^{*}=M_{\mathrm{sr}} \cos \left(w_{\mathrm{sr}} t+\emptyset_{\mathrm{sr}}\right) \\
V_{\mathrm{sr}-b}^{*}=M_{\mathrm{sr}} \cos \left(w_{\mathrm{sr}} t-120^{\circ}+\emptyset_{\mathrm{sr}}\right) \\
V_{\mathrm{sr}-c}^{*}=M_{\mathrm{sr}} \cos \left(w_{\mathrm{sr}} t-240^{\circ}+\emptyset_{\mathrm{sr}}\right)
\end{array}\right\}
$$

where M sh, w sh , and \varnothing sh are the modulation ratio, angular frequency, and phase angle of the
shunt VSI.Msr , wsr , and \varnothing sr are the corresponding values for the series VSI, respectively. Using the third-harmonic injection method [11], the zero-sequence signal can be obtained as

$$
\begin{align*}
& V_{\mathrm{no} 0-\mathrm{sh}}=-0.5 \cdot\left[\operatorname{Max}\left(V_{\text {sha }, b, c}^{*}\right)+\operatorname{Min}\left(V_{\text {sha } a, b, c}^{*}\right)\right](12) \\
& V_{\mathrm{no} 0-\mathrm{sr}}=-0.5 \cdot\left[\operatorname{Max}\left(V_{\mathrm{sra} a, b, c}^{*}\right)+\operatorname{Min}\left(V_{\text {sra }, b, c}^{*}\right)\right] \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
V_{\mathrm{sh}-i 1}^{*} & =V_{\mathrm{sh}-i}^{*}+V_{\mathrm{no}-\mathrm{sh}} \tag{14}\\
V_{\mathrm{sr}-i 1}^{*} & =V_{\mathrm{sr}-i}^{*}+V_{\mathrm{no} 0-\mathrm{sr}} \tag{15}
\end{align*}
$$

where V^{*} sh- i and $V^{*} s r-i(i=a, b, c)$ represent the three modified sinusoidal reference signals for shunt and series VSIs, respectively. In the second stage, five modulating signals for each leg, from the six aforementioned references, are generated. The series VSI reference for the shared phase " C " is added to the three modified shunt VSI references of (14). Similarly, the shunt VSI reference for the shared phase " C " is added to the three modified series

VSI references of (15). The resulting signals are expressed as

$$
\left.\begin{array}{l}
V_{\mathrm{sr}-A}^{*}=V_{\mathrm{sr}-a 1}^{*}+V_{\mathrm{sh}-c 1}^{*} \\
V_{\mathrm{sr}-B}^{*}=V_{\mathrm{sr}-b 1}^{*}+V_{\mathrm{sh}-c 1}^{*} \\
V_{C}^{*}=V_{\mathrm{sr}-c 1}^{*}+V_{\mathrm{sh}-c 1}^{*} \\
V_{\mathrm{sh}-A}^{*}=V_{\mathrm{sh}-a 1}^{*}+V_{\mathrm{sr}-c 1}^{*} \\
V_{\mathrm{sh}-B}^{*}=V_{\mathrm{sh}-b 1}^{*}+V_{\mathrm{sr}-c 1}^{*}
\end{array}\right\} .
$$

In (16), $V^{*} \mathrm{sr}-c 1$ is added to $V^{*} \mathrm{sh}-a 1, V^{*} \mathrm{sh}-b 1$, V^{*} sh $-c 1$, and V^{*} sh $-c 1$ is added to $V^{*} \mathrm{sr}-a 1$, $V^{*} \mathrm{sr}-b 1$, and $V^{*} \mathrm{sr}-c 1$. This addition does not affect the reference modulation signals of shunt and series VSIs as the added signals $V^{*} s r-c 1$ and V^{*} sh-c1 only appear as zero-sequence components and cancel out in line-to-line voltages at the ac terminals of shunt and series VSIs, respectively. Therefore, five modulating signals are generated out of six reference signals at the output of the second stage as shown in Fig. 5. The comparators then generate the required gate signals for the ten switches.
To illustrate the performance of the proposed ten-switch topology, a scenario is considered where linear $R L$ Load is connected to a distorted supply voltage having THD < 5% and the fundamental voltage magnitude of 1 p . u. In this case, the shunt VSI requires the maximum dclink voltage for load reactive power compensation. This infers that the peak magnitudes of the shunt reference modulation indices (V^{*} sh $-A B C$) in (16)
would be very close to unity which is given in Fig. 6(a). The corresponding output voltages at the shunt VSI terminal are shown in Fig. 6(c).

However, as shown in Fig. 6(b), the reference modulation indices for series VSI (V^{*}
$\mathrm{sr}-A B C$) have peak magnitudes of approximately unity due to the addition of common phase " C " modulation index in stage 2. Nevertheless, the effective contribution of these reference signals toward the injected voltage will correspond to only a small voltage as shown in Fig. 6(d) consisting of the voltage required to compensate the harmonics in the PCC voltage. This is due to the fact thatthe added zerosequence signals effectively cancel out in the injected line-line voltages.
When there is a drop in the PCC voltage, the peak amplitude of the voltage at shunt VSI terminals decreases as shown in Fig. 6(g). To compensate the sag, the output voltage amplitude of the series VSI increases. Fig. 6(f) and (h) reflects the transition in series VSI reference and output voltage during sag condition.

VI. CONTROL SCHEME FOR THE PROPOSED TEN-SWITCH UPQC

A. Control for Shunt VSI

The task of the shunt VSI is to compensate the reactive and harmonic components of load current and regulate the dc-link voltage during
normal and sag conditions. To realize these objectives, the control scheme is shown in Fig. 7. The measured load current iLabc is converted to the synchronous reference frame quantitates $i L d$ and $i L q$, which are given as $i L d=. i L d+\sim i L d$

Fig. 6 Representation of modulation indexes and output voltages after second stage for (a),(c) shunt VSI during normal mode (b),(d) series VSI during normal mode (e),(g) shunt VSI during sag mode and (f),(h) series VSI during sag mode.

Fig. 7. Detailed control block diagram for the proposed ten-switch UPQC control for series VSI
$\mathrm{i}_{\mathrm{Lq}}=\overline{\mathrm{i}}_{\mathrm{Lq}}+\tilde{\mathrm{i}}_{\mathrm{Lq}}$
where. $i L d$ and. $i L q$ correspond to the fundamental active and reactive components of load current, respectively. $i L d$ and $i L q$ reflect the harmonic components of $i L$. The reference current of the shunt VSI can be expressed as iref $-\mathrm{sh}=\tilde{\mathrm{i}} \mathrm{Ld}+\mathrm{i} \mathrm{Lq}+\mathrm{i} \operatorname{Loss}$
where $\tilde{\mathrm{i}}_{\mathrm{Ld}}$ is obtained by passing i_{Ld} through a high-pass filter. $\mathrm{i}_{\text {Loss }}$ corresponds to the active component of the source current required to maintain the dc-link voltage at rated value $\mathrm{i}_{\text {ref }}$ -sh is compared with actual shunt current $i_{\text {sh }}$ in the synchronous transformed back to the stationary reference frame giving V^{*}
sha, b, c constituting the reference modulating signals for the shunt VSI.
The objective of the series VSI is to maintain the rated sinusoidal voltage at load terminals regardless of the voltage variation at the PCC. The overall series VSI control block is shown in Fig. 7.

TABLE V
UPQC System Data for Experimental Study

Programmable	Supply voltage: $175 V_{L-L \text { peak }}, 50 \mathrm{~Hz}$ voltage source
	Source Impedance: $R_{g}=0.047 \Omega$ and
UPQC	$L_{g}=160 \mu \mathrm{H}$
	DC-link capacitors, $C_{\text {de }}=1100 \mu \mathrm{~F}$
	Reference ce-link voltage $=230 \mathrm{~V}$
	Series filter, $L_{\mathrm{sr}}=2.5 \mathrm{mH} C_{\mathrm{sr}}=15 \mu \mathrm{~F}$
	Shunt filter, $L_{\mathrm{sh}}=5 \mathrm{mH}$
	Series transformer $=240 / 240 \mathrm{~V}(1: 1$ ratio $)$
Load	Linear: $R=27 \Omega$ and $L=50 \mathrm{mH}$
	Nonlinear $R=57 \Omega$ and $L=5 \mathrm{mH}$
	Nominal Load voltage $V_{L-L \text { peak }}=50 \mathrm{~V}$

The difference between the series VSI reference

$$
\text { voltage }\left(V^{*} \mathrm{sr}-\mathrm{vsi}-d q=V^{*} L-d q\right.
$$

(18广 $\operatorname{lpcc}-d q$) and actual voltage ($\mathrm{Vsr}-\mathrm{vsi}-d q=$
$V L-d q-\lceil p c c-d q$) is processed by a combination of PI and resonant controllers in the synchronous reference frame. For sag detection, the absolute error between PCC reference voltage

International Journal of Research
Available at https://edupediapublications.org/journals
(1 p.u.) and the actual PCC voltage magnitude (p.u.) in the synchronous reference frame is calculated as follows:

$$
\begin{equation*}
V_{\text {error }}=\left|1-\sqrt{V_{\mathrm{pcc}-d}^{2}+V_{\mathrm{pcc}-q}^{2}}\right| \tag{19}
\end{equation*}
$$

The controller continuously monitors Verror , and as soon as it exceeds the threshold of zero p.u., sag is detected. Although $V^{*} \mathrm{sr}-\mathrm{vsi}-d q$ can be directly used to control the series VSI in open loop by converting it into the stationary reference frame, however it will not be able to compensate the drop across VSI switches, interfacing filter and series transformer. It is therefore added as a feed forward signal to the output of PI to compensate for system losses. The resulting signal is converted into the stationary frame giving $V^{*} \mathrm{sr}-a, b, c$, which is the reference modulating signal for series VSI.

VII RESULT

To validate the performance of the proposed tenswitch UPQC, an experimental prototype is developed. A digital signal processor, $d S P A C E$ DS1103, is used to control the shunt and series inverters of the ten-switch UPQC. The developed algo- rithm requires a sampling time of $50 \mu \mathrm{~s}$ to execute the code on $d S P A C E$ DS1103. Both inverters operate at a switching
fre- quency of 10 kHz . To emulate the sag and harmonic distortion in the grid voltage, a threephase programmable source is used. The experimental system parameters are listed in Table V. Note that in all the experimental results, the PCC and load voltages are shown as line-toline voltages, whereas the series-injected voltages are shown as phase voltages across series transformer. Fig. 8 depicts the steady-state performance of the pro- posed ten-switch UPQC system considering a linear $R L$ load ($\left.\mathrm{V}_{\mathrm{pcc}}=1 \mathrm{p} . \mathrm{u}\right)$. Initially, the shunt VSI is maintaining the dc- link voltage by drawing a small current [see Fig. 8(c)], whereas the load reactive power is supplied by the grid. As seen from Fig. 8(e), the grid current lags the grid voltage by 37°. The reac- tive compensation starts at time $\mathrm{t}=\mathrm{T}$. The shunt VSI injects the necessary current causing the grid to supply only the load active power [i.e., grid current being in-phase with the grid voltage as shown in Fig. 8(e)]. On the same system, a sudden sag condition is imposed. An unbalance voltage sag is introduced in the grid voltage as shown in Fig. 9(a). It can be seen from Fig. 9 that the proposed ten switch UPQC effectively maintains the dc link as well as the load voltage at nominal values [see Fig. 9(b) and (c)]. The series controller injects the missing component in-phase with the positivesequence voltage and cancels the negativesequence component of PCC voltage.

Fig. 8. Experimental result: power factor correction during steady-state condition.

Further, the performance of the proposed UPQC configuration is validated under the worst case scenario of maximum three-phase balanced voltage sag depth of 40% with only nonlinear load (diode bridge rectifier with current THD of 28%) connected to the system. As shown in Fig. 10(c), the load voltage are maintained at rated value in this case as well. Additionally, the shunt VSI compensates the harmonics in the load current and maintains the dc-link voltage at
reference value. The source current THD is improved from 28% to 1.8%.Fig. 11 depicts the performance of the proposed ten-switch UPQC when the PCC voltage and load current are distorted. A combination of linear ($R L$) and nonlinear load is considered with the combined load current THD of 18%. The fifth- and seventh harmonic voltages are added in the grid voltage to achieve a THD of 10%. The series part effectively mitigates the harmonics in the grid voltage. The improved load voltage profile can be noticed from Fig. 11(d), wherein the THD is reduced to 3%. Simultaneously,
the shunt controller effectively compensates the load current harmonics achieving sinusoidal grid currents with the THD of 2.1%. Thus, the above experimental study verifies the feasibility of the proposed ten-switch UPQC topology for practical applications to improve the power quality.

VII CONCLUSION

To overcome the limitations of nine-switchbased reduced switch power conditioner, this paper proposes a new structure of UPQC using ten semiconductor switches to reduce the switching losses. The important feature of the proposed topology is its capability of maintaining the same power quality enhancement with less number of switches and without increasing the switch VA rating. A

International Journal of Research
Available at https://edupediapublications.org/journals
comparative study is conducted and the results instruct that the proposed ten switch topology can achieve the same power quality mitigation performance with the least VA loading of the UPQC system. The performance of the proposed topology has been validated experimentally under various operating conditions.

VII REFERENCES

[1] R. C. Dugan, M. F. McGranaghan, and H. W. Beaty, Electrical Power Systems Quality. New York, NY, USA: McGraw-Hill, 1996, p. 265.
[2] B. Han, B. Bae, H. Kim, and S. Baek, "Combined operation of uni- fied powerquality conditioner with distributed generation," IEEE Trans. Power Del., vol. 21, no. 1, pp. 330338, Jan. 2006.
[3] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std 519-1992, Apr. 9, 1993, pp. 1-112.
[4] V. Khadkikar, "Enhancing electric power quality using UPQC: A com- prehensive overview," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2284-2297, May 2012.
[5] H. Fujita and H. Akagi, "The unified power quality conditioner: The inte- gration of seriesand shunt-active filters," IEEE Trans. Power Electron., vol. 13, no. 2, pp. 315-322, Mar. 1998.
[6] H. R. Mohammadi, R. Y. Varjani, and H. Mokhtari, "Multiconverter unified power-quality conditioning system: MC-UPQC," IEEE Trans. Power Del., vol. 24, no. 3, pp. 1679-1686, Jul. 2009.
${ }^{[7]}$ V. Khadkikar and A. Chandra, "UPQC-S: A novel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series
inverter of UPQC," IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2414-2425, Sep. 2011.
${ }^{\text {[8] V. Khadkikar and A. Chandra, "A novel }}$ structure for three-phase four wire distribution system utilizing unified power quality conditioner (UPQC)," IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1897-1902, Sep./Oct. 2009.
[9] M. Basu, S. P. Das, and G. K. Dubey, "Comparative evaluation of two models of UPQC for suitable interface to enhance power quality," Elect. Power Syst. Res., vol. 77, pp. 821-830, 2007.
[10] Y. Li, D. M. Vilathgamuwa, and P. C. Loh, "Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator," IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1707-1719, Nov./Dec. 2005.
[11] M. J. Newman, D. G. Holmes, J. G. Nielsen, and F. Blaabjerg, "A dynamic voltage restorer (DVR) with selective harmonic compensation at medium voltage level," IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1744-1753,
® International Journal of Research

Nov./Dec. 2005.
[12] M. J. Newman and D. G. Holmes, "A universal custom power conditioner (UCPC) with selective harmonic voltage compensation," in Proc. 28th Annul. Conf. IEEE Ind. Electron. Soc., 2002, pp. 1261-1266.
[13] L. Zhang, P. C. Loh, and F. Ago, "An integrated nine-switch power condi- tioner for power quality enhancement and voltage sag mitigation," IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1177-1190, Mar. 2011.
[14] P. Delarue, A. Bouscayrol, and B. Francois, "Control implementation of a five-leg voltage-source-inverter supplying two threephase induction machines," in Proc. IEEE Int. Elect. Mach. Drives Conf., Madison, WI, USA, 2003, pp. 1909-1915.
[15] S. N. Vukosavic, M. Jones, D. Dujic, and E. Levi, "An improved PWM method for a fiveleg inverter supplying two three-phase motors," in Proc. IEEE Int. Symp. Ind. Electron., Cambridge, U.K., 2008, pp. 160-165.
[16] C. B. Jacobina, E. C. D. Santos, Jr., E. R. C. D. Silva, M. B. D. R. Correa,
A. M. N. Lima, and T. M. Oliveira, "Reduced switch count multiple three- phase AC machine drive systems," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 966-976, Mar. 2008.
B. Francois and A. Bouscayrol, "Design and modeling of a five-phase voltage-source
inverter for two induction motors," presented at the EPE Appl. Conf., Lausanne, Switzerland, 1999.
[18] R. Omata, K. Oka, A. Furuya, S. Matsumoto, Y. Nozawa, and K. Matsuse, "An improved performance of five-leg inverter in two induction motor drives," in Proc. CES/IEEE 5th Int. Power Electron. Motion Control Conf., 2006, pp. 1-5.

