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Abstract:  

To assess software reliability, there are many software 

reliability growth models (SRGMs) have been 

proposed in the past four decades. In principle, two 

widely used methods for the parameter estimation of 

SRGMs are the maximum likelihood estimation (MLE) 

and the least squares estimation (LSE).This paper 

presents Burr type III software reliability growth 

model based on Non Homogenous Poisson Process 

(NHPP) with interval domain data. The ML Estimation 

method is used for finding unknown parameters in the 

model. The method of performance analysis of 

developed software with different data software failure 

data. How good does a mathematical model fit to the 

data is also being calculated. To access the 

performance of the considered SRGM, we have carried 

out the parameter estimation on the real software 

failure datasets. 
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1. Introduction 

One of the most difficult problems of software industry 

is to ship a reliable product. Therefore it is necessary to 

have accurate and fast estimation techniques for 

verifying software reliability. Software reliability 

assessment is important to evaluate the quality of 

software system, since it is one of the most important 

attribute of software. For Four decades, many Software 

Reliability Growth Models (SRGMs) have been 

proposed in estimating reliability growth of software 

products. SRGMs can be used to depict the behaviour 

of observed software failures characterized by either 

times of failures (i.e Time domain data) or by the 

number of failures at fixed times (i.e Interval domain 

data) (Lyu, 1996).  
The parameters of SRGMs are generally unknown and 

have to be estimated based on collected failure data. 

Two of the most popular estimation techniques are 

Maximum Likelihood Estimation (MLE) and Least 

Squares Estimation (LSE) (Goel, 1985; Ohba, 1984). 

The method of MLE estimation by solving a set of 

simultaneous equations and is better in deriving 

confidence intervals. The method of LSE minimizes 

the sum of squares of the deviations between what we 

actually observe and what we expect. Nevertheless, 

LSE is suitable for fitting data from small to medium 

sample sizes (Wood, 1996), while MLE is considered 

to be better statistical estimator for large sample sizes. 

In particular, when the formulated model of SRGMs is 

complicated or the sample size of failure data is large, 

these two estimation techniques may not be effective to 

find out the optimal solutions and generally require to 

be solved numerically. Hence, the more effective and 

applicable approaches for the parameter estimation of 

SRGMs may be necessary. The genesis and the 

development of the model with the necessary input 

about a Non Homogenous Poisson Process are 

presented in Section 2. Proposed model description is 

presented in Section 3. Illustrating the Maximum 

likelihood (ML) estimation is given in Section 4. The 

method of performance analysis is given in Section 5 

and Summary and Conclusions are given in Section 6. 

 

2. NHPP Model 

 The Non-Homogenous Poisson Process (NHPP) based 

software reliability growth models (SRGMs) are 

proved to be quite successful in practical software 

reliability engineering (Musa et al., 1987). The main 
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issue in the NHPP model is to determine an 

appropriate mean value function to denote the 

expected number of failures experienced up to a 

certain time point. There are numerous software 

reliability growth models available for use according 

to probabilistic assumptions. Model parameters can be 

estimated by using maximum Likelihood Estimate 

(MLE). NHPP model formulation is described in the 

following lines. 

A software system is subjected to failures at random 

times caused by errors present in the system. Let 

 ( ), 0N t t   be a counting process representing the 

cumulative number of failures by time ‘t’, where t is 

the failure intensity function, which is proportional to 

the residual fault content.  

 Let ( )m t  represent the expected number of software 

failures by time ‘s’.  The mean value function ( )m t   

is finite valued, non-decreasing, non-negative and 

bounded with the boundary conditions. 
 

0, 0
( )

,

t
m t

a t


 


  

 

Where ‘a’ is the expected number of software errors to 

be eventually detected. 

 

Suppose ( )N t  is known to have a Poisson probability 

mass function with parameters ( )m t  i.e., 

 
( )(

!

) .
( ) , 0,1,2...

n m tm t e
P N t n n

n



     

 

Then ( )N t  is called an NHPP. Thus the stochastic 

behaviour of software failure phenomena can be 

described through the ( )N t  process. Various time 

domain models have appeared in the literature that 

describes the stochastic failure process by an NHPP 

which differ in the mean value function ( )m t . 

Then the stochastic behavior of software failure 

phenomenon can be described through the N(t) process. 

In this paper we consider m(t) as given by 

 ( ) 1
b

cm t a t


    

3. Proposed Model Description 

Burr (1942) had introduced twelve different forms of 

cumulative distribution functions for modeling data. 

The task of building a mathematical model is 

incomplete until the unknown parameters i.e. the 

model parameters are estimated and validated on actual 

software failure data sets. In this section we develop 

expressions to estimate the parameters of the Burr type 

III model based on Interval domain data. Parameter 

estimation is given primary importance for software 

reliability prediction. Parameter estimation can be 

achieved by applying a technique of MLE which is the 

most important and widely used estimation technique. 

A set of failure data is usually collected in one of two 

common ways, time domain data and interval domain 

data. Here the failure data is collected through interval 

domain data. The mean value function and intensity 

function of Burr Type III NHPP model are as follows. 

The Cumulative distributive function (CDF) is given 

by 

 ( ) 1
b

cm t a t


     Where t>0 

Let 𝑆𝑘 be the time between (𝑘 − 1)𝑡ℎ and 𝑘𝑡ℎ failure 

of the software product. Let 𝑋𝑘 be the time up to the 

𝑘𝑡ℎ failure. Let us find out the probability that time 

between  (𝑘 − 1)𝑡ℎ and 𝑘𝑡ℎ failures, i.e., 𝑆𝑘 exceeds a 

real number ‘s’ given that the total time up to the 

(𝑘 − 1)𝑡ℎ failure is equal to 𝑥. 

 

i.e.,  𝑃 [𝑆𝑘 >
𝑠

𝑋𝑘−1
= 𝑥] 

𝑅 𝑆𝑘/𝑋𝑘−1(𝑠/𝑥) =  𝑒−[𝑚(𝑥+𝑠)−𝑚(𝑠)] 

 

This Expression is called Software Reliability. 

 

4. Illustrating the ML Estimation 
 

In this section we develop expressions to estimate the 

parameters of the Burr type III model based on interval 

domain data. Parameter estimation is of primary 

importance in software reliability prediction. 
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A set of failure data is usually collected in one of 

two common ways, time domain data and interval 

domain data. In this paper parameters are estimated 

from the interval domain data. 

 

The mean value function of Burr type III model is 

given by 

 

 ( ) 1
b

cm t a t


     (1) 

In order to have an assessment of the software 

reliability, a, b and c are to be known or they are to be 

estimated from software failure data. Expressions are 

now delivered for estimating ‘a’, ‘b’ and ‘c’ for the 

Burr type III model. 

 

Assuming the given data are given for the cumulative 

number of detected errors ni  in a given time interval (0, 

ti) where i=1,2, ….. n and 0 < t1< t2< …tn, then the 

logarithmic likelihood function (LLF) for interval 

domain data is given by 

 

 1 1

1

( )log ( ) ( ) ( )
k

i i i i k

i

LogL n n m t m t m t 



   

(2) 

Substituting m(t) in the above equation, we get 

 

 

    
 

1 1

1

( ) log 1 1

1

k
b b

c c

i i i i

i

b
c

k

LogL n n a t a t

a t

 


 






        
      

  
  


 

Taking the Partial derivative with respect to ‘a’ and 

equating to ‘0’. 

 

0
Log L

a




  

 1

1

( ) 1
k

b
c

i i k

i

a n n t



   
  (3) 

       The parameter ‘b’ is estimated by iterative Newton 
Raphson Method using   

 𝑏𝑛+1 = 𝑏𝑛 −
𝑔(𝑏)

𝑔′(𝑏)
  , Where 𝑔(𝑏)𝑎𝑛𝑑  𝑔′(𝑏) are 

expressed as follows.           
    

𝑔(𝑏) =
𝜕𝐿𝑜𝑔𝐿

𝜕𝑏
= 0    

 

 

 
1 1 1 1

1 1 1 1
1 1 1

1

1

1

1

(1 ) log(1 ) (1 ) log(1 )
log 1 log(1 )

(1 ) (1 )
( ) (n )

1
log

1

b b

i i i i
i i b b

k
i i

i i

i

k

t t t t
t t

t tLog L
g b n

b

t

   
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  









      
      

    
    

   
     



(4) 

 

 

 

Again partial differentiating with respect to ‘b’ and equate to 0 , we get 

2
'

2
( ) 0

LogL
g b

b


 

  
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                (5) 

 

The parameter ‘c’ is estimated by iterative Newton Raphson Method using   

𝑐𝑛+1 = 𝑐𝑛  −
𝑔(𝑐𝑛)

𝑔′(𝑐𝑛)
      

Where 𝑔(𝑐) 𝑎𝑛𝑑 𝑔′(𝑐) are expressed as follows. 

( ) 0
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5. Data Analysis  
 A set of failure data phase 1 and phase 2 taken from 

Pham (2005) and  Release #1, #2, #3 and #4 datasets 
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taken from Wood (1996) consists of the observation 

time (week), CPU hours and the number of failures 

detected per week : defects found. 

 

Table 1: Parameters estimated through MLE 

Solving equations by Newton Raphson method (N-R) 

method for all the data sets, the iterative solutions for 

MLE’s of a,b,c of given software failure datasets are 

shown in Table 1. 

 

 

Dataset 

Number 

of 

samples 

Estimated Parameters 

a b c 

Phase 1 21 5.306901 15.901524 0.748596 

Phase 2 21 41.590454 0.978993 1.083119 

Release #1 20 48.185326 8.123505 0.883849 

Release #2 19 54.32094 9.180969 0.872395 

Release #3 12 29.529605 8.548219 1.039893 

Release #4 19 21.402067 8.849993 0.87423 

 

6. Method of Performance Analysis 
 

The performance of SRGM is judged by its ability to 

fit the software failure data. The term goodness of fit 

denotes the question of “How good does a 

mathematical model fit to the data?”. In order to 

validate the model under study and to assess its 

performance, experiments on a set of actual software 

failure data have been performed. The performance 

evaluation of software reliability growth model is 

generally measured with sum of square errors (SSE) 

and correlation index of regression curve equation (R-

square). Among them, the model performance is better 

when SSE is smaller and R-square is close to 1. 

SSE is used to describe the distance between actual and 

estimated number of faults detected totally, which is 

defined as  

 

 
2

1

( )
n

i i

i

SSE y m t


 
   (8) 

Where n denotes the number of failure samples in 

failure data set, 
iy   denotes the number of faults 

observed to the moment 
it
 , and ( )im t  denotes the 

estimated number of faults detected to the time 
it
 

according to the proposed model. The model can 

provide a better goodness-of-fit when the value of SSE 

is smaller. 
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The equation of calculating the value R-square is 

written as:

2

1

2

1

( )
n

i

i

n

i

i

y m t

R square

y y









 
 

 
 

 
 

 





  

 

Where 

y


 denotes the mean value of faults detected. 

The model can provide a better goodness-of-fit when 

the value of R-square is close to 1. The reliabilities and 

performance of the different data sets are presented in 

Table 2. 

Table 2. The results on different data sets 

Data Set 
Reliability 

(tn+50) 
SSE R-Square 

Phase 1 0.999482209 

 
3014.670654 0.901763 

Phase 2 0.999983394 

 
11473.490234 1.787145 

Release #1 0.999499609 

 
25268.214844 0.573556 

Release #2 0.999335306 

 
35381.207031 0.434404 

Release #3 0.999638401 

 
5863.499023 0.174560 

Release #4 0.999791949 

 
3816.680176 0.111832 

 

From the Table -2 it can be seen that the value of SSE is 

smaller and the value of R-square is more close to 1. 

The results indicate that our NHPP Burr type III 

distribution  model based on fault detection rate fits the 

data in the given datasets,  best and predicts the number 

of residual faults in software most accurately. 

 

 

 

7. Conclusion 
 

In this paper the fault detection rate is calculated with 

the number of faults remaining in the software. 

Considering the two factors jointly the fault detection 

rate is more realistic and accurate. Moreover, we have 

discussed the performances of 6 datasets by using our 

new Burr type III SRGM. The experiment result shows 

that the Phase 1 data set can provide a better goodness-

of-fit compared with other datasets. The reliability of 

the model over Release #4 data is high among the data 

sets which were considered. 
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