

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 281

Spread, Parallel and Autonomous Access to Encrypted

Cloud Database

1
P Laxmi Prasanna,

2
Dr. P Venkateswarlu,

3
N. Sreehari Raju

1M.Tech (CSE), Department of Computer Science & Engineering Nagole Institute of

Technology & Science, Kuntloor (V), Hayathnagar (M), RR District, Hyderabad, India.
E-mail id: prasanna5a2@gmail.com

2Professor & HOD, Department of Computer Science & Engineering.
E-mail id: venkat123.pedakolmi@gmail.com

3Assistant Professor, Department of Computer Science & Engineering.

E-mail id: rvs2raju@gmail.com

Abstract:

Cloud database environments are extremely

fascinating for the distribution of massive

application extent because of their exceedingly

adaptable and accessible framework. The

fundamental explanation behind the clients

conveying diverse sorts of uses in the cloud is

its pay-for-utilization expense model. This

evaluation contains the most unmistakable

concurrency control conventions that can be

utilized as a part of the encoded cloud

database. The level of information consistency

and expense necessities changes as indicated

by the concurrency control c protocols.

 Index Terms- Cloud; database; data

consistency; concurrency control

I. INTRODUCTION

Cutting in recent innovations, with Rapid

development of information technologies and

Network technologies, demand of information

systems in government departments and

organizations has increased to improve their

business efficiency. However, in reality, it is

common that establishing systems without a

combined planning, mainly in medium and

small organizations, so data sharing and

integration among the independent systems has

become a difficult[1][10]. But Businesses and

organizations benefit through greater

productivity and efficiency when big data is

shared or exchanged with business partners

around the world using Cloud technology. How

to protect and make full use of data resources

of the existing systems, in other words, how to

realize data exchange and sharing, has become

a determining factor in the success of

establishing a new system[1][2]. Cloud is a

large scale pool of computing service. The

Cloud helps organizations are dynamically

scalable abstracted computing infrastructure

that is available on-demand and on a pay-per-

use basis. Although the cloud Infrastructures

are much more efficient and reliable, [4][8] .

 Most cloud computing providers offer a

distributed data store/database. These

distributed databases represent a data modeling

standard that their consumers can use to

cooperate with the cloud system. For example,

Amazon Web Services offers DB Applications

mailto:prasanna5a2@gmail.com
mailto:venkat123.pedakolmi@gmail.com

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 282

wishing to store their data in the cloud, can

then define their tables, items and attributes as

required by the distributed databases.

Certainly, the sharing of the data is enabled

through the use of common data models and

common data protocols .Therefore, the use of a

distributed database data modelling concepts, ,

e.g. Tables, Attributes, and Items is typically

not sufficient for the sharing of data[3][7][9].

To make sure of the correctness of storage

without the users possessing their own data, it

is difficult to address all data security threats in

cloud storage as all concentrated in single

server scenario and not consider dynamically

changing data and its operation. By using

distributed protocols for maintaining storage

correctness in the multiple server or peers . We

use erasure- correcting code in the distribution

of the file in the cloud to avoid redundancies

which increases the data dependencies.

 It overcomes the communication overheads of

the traditional replication based techniques of

file distribution. [3][7][13] In distributed

computing, data is the likelihood of business

enterprises and private users, especially data

stored in mixed and independent data sources.

The data sharing approaches such as

Transaction Processing Monitor (TPM) [1] and

Resource Description Frameworks (RDF) [2]

attempt to achieve this type of data sharing in

different ways. . These approaches differ in the

way they deal with the challenges that face

users and companies during the development of

data sharing systems. However, data sharing

approach is realize data locked into various

data sources and make them available for users

In a cloud context, where critical information is

placed in

2. SECUREDBaaS

 SecureDBaaS (Secure database as a service)

architecture proposed by Luca Ferretti et al

supports multiple clients and clients which are

geographically distributed to execute the

independent and concurrent operation on

encrypted data in the remote database [1].

SecureDBaaS also guarantees data

confidentiality and cloud level consistency.

This architecture eliminates the intermediate

server between the cloud database and client in

order to provide availability and scalability [7].

SecureDBaaS is the architecture that supports

the concurrent execution of operations in the

encrypted cloud database. The existing proxy

based architecture constraints the multiple and

distributed clients to access data concurrently

from the same database. The data consistency

during the concurrent access of data and

metadata can be assured by using some

isolation mechanisms or the concurrency

control protocols in the cloud database.

SecureDBaaS allows the execution of

concurrent SQL operations (INSERT,

DELETE, SELECT, UPDATE) from multiple

and distributed clients. In order to provide data

confidentiality the tenant data and metadata

should be in an encrypted format. For this

reason, clients convert plaintext SQL

statements into SQL statements that support

transactions and isolation mechanisms allowed

in cloud databases [8]. The solutions for the

consistency issues lies in the five contexts: (1)

data manipulation (2) modification of

structures (3) altering table (4) modification of

secure type (5) unrestricted operations.

2.1. Architecture design

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 283

The architecture design of SecureDBaaS

consists of one or more client machines with

SecureDBaaS installed and cloud database.

This client is responsible for the connection of

a user to the cloud DBaaS to perform SQL

operations. The SecureDBaaS manages

plaintext data, metadata, encrypted data and

encrypted metadata. The plaintext data includes

the data user wants to save in cloud DBaaS [9].

In order to avoid the confidentiality issues,

multiple cryptographic approaches are used to

convert plaintext data to encrypted form for

storing in cloud database. The metadata

includes information needed to encrypt or

decrypt data. Moreover, metadata is also stored

in an encrypted format [10]. Encryption

Schemes: The encryption schemes supported

by SecureDBaaS [11] are: (1) Plain: it supports

the storage of unencrypted data in the cloud

and allows all types of SQL operations. (2)

OPE: order preserving encryption permits the

execution of inequality and range queries on

encrypted data. (3) Det: it permits the

execution of equality and aggregation operators

on encrypted data. (4) Random: it assures

highest confidentiality level. But it restricts all

SQL operators.

2.2. Implementation

SecureDBaaS client consists of five

components: Operation parser software: Is

responsible for the conversion of receiving

plain text SQL command into intermediate

form which is processed later by other

modules. Encryption engine: Is responsible for

all kinds of encryption and decryption

operations specified in the metadata of

SecureDBaaS. Metadata manager: it manages

metadata local copies and assures its

consistency. Query writer: it translates the

query in intermediate form from the operation

parser into SQL statements that can be

executed by the cloud database over encrypted

data. Database connector: it acts as an interface

between client and remote DBMS.

3.CONCURRENCY CONTROL

PROTOCOLS

 In what follows, we briefly present the most

prominent concurrency control protocols that

can be used in cloud database.

3.1.Self-optimizing :One Copy

Serializability (SO- 1SR) 1SR is the strongest

and well known correctness criterion for

applications that are newly deployed in the

cloud. It assures the serializable execution of

concurrent transactions and a one copy view of

the data. The most commonly used approaches

to implement 1SR is to use lock based

protocols such as strict two-phase locking

(S2PL) for providing serializable transaction

execution and two-phase commit (2PC) for

synchronous updating all replicas.

3.1.1. Transaction model: In a system

providing 1SR, each transaction which writes

to a data object must update all copies of the

data object. In case of update transactions the

replicated data increases the response time and

thus decreases the overall scalability of the

system. In order to exploit the merits of the

cloud, it is essential to provide scalability,

availability, low cost and strongly consistent

data management. Under distributed systems, it

is not possible to provide consistency and

availability. The stronger consistency level

decreases the availability and scalability. In

cloud environments, the cost of guaranteeing a

certain consistency level on top of replicated

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 284

data is to be considered. Strong consistency is

costly; on the other hand, weak consistency is

cheaper, but may lead to high operational costs

of compensating the effects of anomalies and

access to stale data.

The first generation cloud DBMS’s provide on

the weak consistency in order to provide

maximum scalability and availability. It is

sufficient for satisfying requirements related to

consistency of simple cloud applications.

However, more sophisticated like web shops,

online stores and credit card services requires

strong consistency levels. The advantages of

cloud such as availability and scalability are

not yet exploited by existing commercial and

open source DBMS’s which provide strong

consistency [12]. SO-1SR (self-optimizing

1SR) is a novel protocol for replicated data in a

cloud that dynamically optimize all phases of

transaction executions. System model of SO-

1SR assumes that applications are built on the

top of a cloud data environment.

 3.1.2. Implementation: The SO-1SR

middleware should be present at each replica

node. The transactions that are submitted by

the client to the application servers are

forwarded to the SO-1SR middleware for

optimal execution. The SO-1SR is based on a

fully replicated system and flat transaction

model. Protocols like 2PC or Paxos are needed

to provide strong consistency guarantees. The

main goal of SO-1SR is to decrease latency by

using dynamic optimization technique at

different phases of transaction life cycle, not to

replace protocols like 2PC or Paxos.

3.2. Snapshot Isolation:

 The transactional guarantees of SI are weaker

than 1SR, such that the database system can

achieve increased concurrency by relaxing

isolation requirements on transaction. In SI, the

transaction attempting read is never blocked.

The tradeoff between transaction isolation and

performance is that higher degrees of

transaction isolation assure fewer anomalies.

Anomalies avoided by 1SR are also avoided in

SI. Under SI, write skew anomaly is possible if

two transactions concurrently update one or

more common data item. For example,

consider two transactions Tm and Tn.

Transaction Tm reads data items p and q and

then updates concurrently with other

transaction Tn that reads data item p and q and

then updates q. Here transaction Tm and Tn do

not have a write-write conflict because none of

the transaction updates a common data item.

Different variations of SI exist for replicated

systems like cloud which provide different

consistency guarantees. In a lazily

synchronized replicated database system; if

two transactions Ts and Tv do not have a

write–write conflict under SI, then their

updates may be committed in the order Ts

followed by Tv at a site S1 but in reverse order

at another site S2 in which each site

individually guarantees SI.

In this case, consider a transaction Tk that

reads x and y at site S1 and view database state

from the commit of Ts will not view this same

database state if it were to be executed on the

database replica at site S2.But this kind of

replica in consistency will not occur in a

centralized database system that guarantees SI.

SI was introduced by Berenson et al [13]. SI is

defined as; it does not allow dirty reads, dirty

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 285

writes, non-repeatable reads, phantoms or lost

updates. Write skew anomalies are possible in

SI. By the definition of SI, when the

transaction starts the system assigns a

transaction Ta start timestamp called start (T).

The database state seen by T is determined by

start (T). The system can choose any time less

than or equal to the actual start time of T to

start (T). The update transactions made by Tl

that commit after start (T) will not be visible to

T. Only update transaction that commits before

start (T) will be visible to T. Each transaction T

is able to see its own updates are also a

requirement in SI. Thus, if T updates a

database item and reads that item, then T will

see the updating even though the update

occurred after the start (T).

3.2.1. Transaction model: Commit timestamp,

commit (T) is assigned to a transaction when a

transaction is to commit. The time commit (T)

is more recent than any other start or commit

timestamp assigned to any transaction. If no

other committed transaction Tk with lifespan

[start (Tk), commit (Tk)] that overlaps with a

T’s lifespan of [start (T), commit (T)] write

data that T has also written then only T

commits. Otherwise, to prevent lost updates T

is getting aborted. This technique of preventing

lost updates is called the first-committer wins

(FCW) rule. Transaction inversions are

possible in SI, i.e. for every pair of transactions

T1 and T2, if T2 executes after T1 then T1 will

view T1’s updates. This is because the actual

start time of T2 can be larger than that of a start

(T2). In particular, if T2 starts after T1 has

finished, then T2 will see a database state that

does not contain the effects of T1. In order to

prevent these kinds of transaction inversions,

strong SI is introduced. In the definition of

strong SI (SSI), if for every pair of committed

transactions Tp and Tq in transaction history

TH such that Tp’s commit precedes the first

operation of Tq, start (Tq) > commit (Tp) and it

is SI then we can say that the transaction

execution history TH is strong SI.

3.2.2. Implementation: The decentralized

model of SI based transactions consists of

some mechanisms such as: (a) Keeping a

consistent, committed snapshot for reading (b)

a global sequencer is used for arranging the

transactions by allocating commit timestamps

(c) detection of write-write anomalies in

concurrent transactions and (d) atomically

commit the updates and make them durable. In

the model, each transaction goes through a

sequence of phases during execution. The main

phase is the active phase in which all read/write

on data item is performed in this phase. The

remaining phases are part of the commit of the

transaction. Validation phase is required for

detecting the conflicts among transactions that

are executed concurrently.

3.3. Session Consistency: Session

Consistency is considered to be the minimum

consistency level in a distributed environment

that does not result in complexities for

application developers. Under Session

Consistency, the application will not see its

own updates and may get inconsistent data

from successive accesses. The key idea is that,

all data does not need the same level of

consistency. There is a term called consistency

rationing i.e. the data is divided into three

categories A, B, C and each type of data is

treated differently depending on the

consistency level provided. The category A

contains data in which consistency violations

may result in large penalty costs. The category

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 286

B includes data where the consistency

requirements change over time. Category C

comprises data in which inconsistency is

acceptable. Session consistency considers data

under category C. C category is always a

preferred category for placing data in the cloud

database [14]. By considering a transaction

cost and response time the session consistency

is very cheap; because only few messages are

needed as compared to strong consistency

guarantees. The performance level can be

increased by providing extensive caching

mechanisms which in turn lowers the cost.

 3.3.1. Transaction model: By sessions, the

client connects to the system. The system

assures read your own writes monotonicity as

the session ends. A new session cannot view

the writes of the last executed session,

immediately. The updates in sessions of

different clients are not always visible to each

other. As the time passes, the system converges

and acquires consistency called eventual

consistency. The conflicts for concurrent

updates in the C category data depends upon

the type of update. In case of commutative and

non-commutative updates, the former is solved

by the last update wins and the latter is solved

by performing the updates one after the other.

But the inconsistencies are possible in both

cases.

 3.3.2. Implementation: The implementation

is done on top of the Amazon’s simple storage

service (S3). The key idea is, each page’s

highest commit timestamp is recorded that is

cached by the server in the past. The server can

check if a server receives an outdated copy of

the page from S3 and can update the page from

S3. The session consistency can be guaranteed

by forwarding all requests from the same client

to the same server under a session. The session

ID is used for the routing mechanism and the

request is redirected accordingly.

 3.3. Cost-Based Adaptive

Concurrency Control (C3):

Cost plays an important role in the cloud

environment along with the performance [15].

The strong consistency leads to high cost,

whereas weak consistency leads to high

operational costs [16]. In C3 approach, a

consistency rationing model is used which

categorized the data into three: the first

category contains data which require ISR, the

second category data require SC and the third

category data handled with adaptive

consistency. At the data level, specific policy

will be defined based on that policy

consistency level is selected between 1SR and

SC at the time of running. Moreover, C3 is

implemented on the top of 1SR, SC and SSI

concurrency protocols by utilizing the

resources provided by the cloud providers.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 287

4. CONCLUSION

In this paper, the different concurrency

controls in the encrypted cloud database

such as SO-ISR, SI, SC and C 3 is

discussed. These protocols provide different

data consistency levels at different costs.

The concurrency and performance varies

according to the concurrency protocols used

in the cloud environment. The architecture

which supports the distributed, concurrent

and independent access to the encrypted

cloud database is SecureDBaaS.

SecureDBaaS uses the isolation mechanisms

for providing concurrent access to its

geographically distributed clients.

REFERENCES

 [1] L. Ferretti, M. Colajanni, and M.

Marchetti, “Distributed, Concurrent, and

Independent Access to Encrypted Cloud

Databases,” IEEE Trans. Parallel Distrib.

Syst., vol. 25, no. 2, pp. 437–446, Feb.

2014.

 [2] I. Fetai and H. Schuldt, “SO-1SR:

towards a selfoptimizing one-copy

serializability protocol for data management

in the cloud,” in Proceedings of the fifth

international workshop on Cloud data

management, 2013, pp. 11–18.

[3] C. Curino, E. P. Jones, R. A. Popa, N.

Malviya, E. Wu, S. Madden, H.

Balakrishnan, and N. Zeldovich, “Relational

cloud: A database-as-aservice for the cloud,”

2011.

[4] K. Daudjee and K. Salem, “Lazy

database replication with snapshot

isolation,” in Proceedings of the 32nd

international conference on Very large data

bases, 2006, pp. 715–726.

[5] T. Kraska, M. Hentschel, G. Alonso, and

D. Kossmann, “Consistency Rationing in the

Cloud: Pay only when it matters,” Proc.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 3, March 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 288

VLDB Endow., vol. 2, no. 1, pp. 253–264,

2009.

[6] I. Fetai and H. Schuldt, “Cost-based data

consistency in a data-as-a-service cloud

environment,” in Cloud Computing

(CLOUD), 2012 IEEE 5th International

Conference on, 2012, pp. 526–533.

 [7] Y. Lu and G. Tsudik, “Enhancing data

privacy in the cloud,” in Trust Management

V, Springer, 2011, pp. 117–132.

 [8] L. Ferretti, M. Colajanni, and M.

Marchetti, “Supporting security and

consistency for cloud database,” in

Cyberspace Safety and Security, Springer,

2012, pp. 179–193.

 [9] H. Hacigumus, B. Iyer, and S. Mehrotra,

“Providing database as a service,” in Data

Engineering, 2002. Proceedings. 18th

International Conference on, 2002, pp. 29–

38.

 [10]K. P. Puttaswamy, C. Kruegel, and B.

Y. Zhao, “Silverline: toward data

confidentiality in storage- intensive cloud

applications,” in Proceedings of the 2nd

ACM Symposium on Cloud Computing,

2011, p. 10.

 [11]L. Ferretti, F. Pierazzi, M. Colajanni,

and M. Marchetti, “Security and

confidentiality solutions for public cloud

database services,” in SECURWARE 2013,

The Seventh International Conference on

Emerging Security Information, Systems

and Technologies, 2013, pp. 36–42.

[12]L. Ferretti, M. Colajanni, M. Marchetti,

and A. E. Scaruffi, “Transparent Access on

Encrypted Data Distributed over Multiple

Cloud Infrastructures,” in CLOUD

COMPUTING 2013, The Fourth

International Conference on Cloud

Computing, GRIDs, and Virtualization,

2013, pp. 201–207.

ABOUT AUTHOR

 P Laxmi Prasanna, pursuing

M.Tech in Computer

Science and Engineering

from Nagole Institute of

Technology and Science

under Jawaharlal Nehru Technological

University, Hyderabad. Received B.Tech

degree in Computer Science and

Engineering from JNTUH in 2012.

