

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 20

September 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 818

A New Approach for Selecting Pivot Element in Quick Sort

to Reduce Execution Time
K Jhansi & Sumayya Afreen

1Student, Dept. of CSE, Stanley College of Engineering & Technology for Women
2Assistant Professor, Dept. of CSE, Stanley College of Engineering & Technology for

Women

Abstract:

The Pivot element is the element which is selected

first in the array in the quick sort, and based on

which array is partitioned. Any element can be

selected as pivot element but first or last element of

the array is usually selected as Pivot element. In this

paper, an approach to select pivot element is

discussed with examples which reduces the execution

time. This approach can be applied to almost sorted

arrays.

Keywords: Pivot element

1. Introduction

An algorithm is a detailed series of instructions for

carrying out an operation or solving a problem. They

lay a foundation for creating a code for the given

problem. We also use algorithms in our day to day

life in solving our real life problems knowingly or

unknowingly. Technically, computers use algorithms

to list the detailed instructions for carrying out an

operation [1].

 In general, we model an algorithm according to the

given problem. Like we have algorithms on sorting,

searching etc. These sorting and searching

algorithms provide steps in getting the work done of

sorting or searching.

In a non-technical approach, we use algorithms in

everyday tasks, such as a recipe to bake a cake or a

do-it-yourself handbook.

Technically, computers use algorithms to list the

detailed instructions for carrying out an operation.

For example, to compute an employee’s paycheck,

the computer uses an algorithm. To accomplish this

task, appropriate data must be entered into the

system. In terms of efficiency, various algorithms are

able to accomplish operations or problem solving

easily and quickly.[9]

2. Algorithm Strategies

we have different approaches in creating an

algorithm and how the problem can be tackled. Like

one may like to break the given huge problem into

small manageable parts, where one can work on

those small parts and later join those parts back and

give the solution to the problem. Some algorithm

strategies are divide and conquer, dynamic

programming, greedy approach, brute force, branch

and bound etc [2] . By knowing the strengths and

weakness of different algorithms we can pick the

best suitable one for the task at hand [3].

2.1. Brute Force

Brute force is a type of algorithm that tries a large

number of patterns to solve a problem. In some

cases, they are extremely simple and rely on raw

computing power to achieve results.

A common example of a brute force algorithm is a

security threat that attempts to guess a password

using known common passwords. Such an algorithm

might also try dictionary words or even every

combination of ASCII strings of a certain length.

[13] Brute forcing Solves a problem in the most

simple, direct, or obvious way but May do more

work than necessary[12].

Brute forcing is just like an exhaustive search.

2.2. Branch and Bound

A branch-and-bound algorithm consists of a

systematic enumeration of candidate solutions by

means of state space search: the set of candidate

solutions is thought of as forming a rooted tree with

the full set at the root. The algorithm

explores branches of this tree, which represent

subsets of the solution set. Before enumerating the

candidate solutions of a branch, the branch is

checked against upper and lower

estimated bounds on the optimal solution, and is

discarded if it cannot produce a better solution than

the best one found so far by the algorithm. The

algorithm depends on efficient estimation of the

lower and upper bounds of regions/branches of the

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/
https://simplicable.com/new/algorithm-definition
https://en.wikipedia.org/wiki/State_space_search
https://en.wikipedia.org/wiki/Tree_(graph_theory)

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 20

September 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 819

search space. If no bounds are available, the

algorithm degenerates to an exhaustive search.[14].

2.3. Dynamic Programming

 The idea is very simple, If you have solved a

problem with the given input, then save the result for

future reference, so as to avoid solving the same

problem again. If the given problem can be broken

up in to smaller sub-problems and these smaller

subproblems are in turn divided in to still-smaller

ones, and in this process, if you observe some over-

lapping subproblems, then its a big hint for Dynamic

Programming. Also, the optimal solutions to the

subproblems contribute to the optimal solution of the

given problem[15].

2.4. Greedy Algorithm

A greedy algorithm, as the name suggests, always

makes the choice that seems to be the best at that

moment. This means that it makes a locally-optimal

choice in the hope that this choice will lead to a

globally-optimal solution.in this approach we will be

greedy about some particular thing that may be the

cost of executing the algorithm etc.

How do you decide which choice is optimal?

Assume that you have an objective function that

needs to be optimized (either maximized or

minimized) at a given point. A Greedy algorithm

makes greedy choices at each step to ensure that the

objective function is optimized. The Greedy

algorithm has only one shot to compute the optimal

solution so that it never goes back and reverses the

decision.[16].

2.5. Divide and conquer approach

Divide problem into several smaller subproblems.

Normally, the subproblems are similar to the original

problem.

Conquer the subproblems by solving them

recursively.

Base case: solve small enough problems by brute

force.

Combine the solutions to get a solution to the

subproblems.

And finally a solution to the orginal problem

Divide and Conquer algorithms are normally

recursive[17].

3. Applications of Algorithms in Day-to-

Day Life

We can have many examples like below where we

unknowingly use or apply the algorithmic strategy to

our day-to-day life .

Let's say that you have a friend arriving at

the airport, and your friend needs to get from the

airport to your house. Here are four different

algorithms that you might give your friend for

getting to your home:

3.1. The Taxi Algorithm:

1. Go to the taxi stand.

2. Get in a taxi.

3. Give the driver my address.

3.2. The Call-me Algorithm:

1. When your plane arrives, call my cell phone.

2. Meet me outside baggage claim.

3.3. The Rent-a-car Algorithm:

1. Take the shuttle to the rental car place.

2. Follow the directions to get to my house.

3.4. The Bus algorithm:

1. Outside baggage claim, catch bus number 70.

2. Transfer to bus 14 on Main Street.

3. Get off on Elm street.

4. Walk two blocks north to my house.

All four of these algorithms accomplish exactly the

same goal, but each algorithm does it in completely

different way. Each algorithm also has a different

cost and a different travel time. Taking a taxi, for

example, is probably the fastest way, but also the

most expensive. Taking the bus is definitely less

expensive, but a whole lot slower. You choose the

algorithm based on the circumstances.[8].

4. Analysis of Algorithms

The basic notations for run time analyses are worst-

case run time, average case run time, expected run

time, amortized run time, and the analysis of

competitiveness and they area represented by the

symbols (O,Ω,Ω∞,Θ,o,ω)

We say af function f:

 • is constant, if f(n) = Θ(1)

• grows logarithmically, if f(n) = O(logn)

• grows polylogarithmically, if f(n) = O(logk (n)) for

a k ∈ N.

 • grows linearly, if f(n) = O(n)

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/
http://www.thelearningpoint.net/computer-science/dynamic-programming
http://www.thelearningpoint.net/computer-science/dynamic-programming
https://computer.howstuffworks.com/airport.htm
https://computer.howstuffworks.com/airplane.htm
https://electronics.howstuffworks.com/cell-phone.htm
https://computer.howstuffworks.com/baggage-handling.htm

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 20

September 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 820

• grows quadraticly, if f(n) = O(n 2) [10]

There are many different kinds of algorithms used

everywhere.we use algorithms in signal processing,

in allocation and deallocation of memory,in

cryptography, in encryption,in networks, in graph

theory, in bioinformatics, in geoscience ,in

astronomy and many more .[11]

5. Sorting

Sorting is arranging the given elements into

ascending order or descending order. We also have

many sorting algorithms like merge sort, quick sort

etc. Both merge sort and quick sort come under same

strategy of algorithms. They both come under the

category of divide and conquer.

Merge sort divide the array at the middle and work

on the other 2 halves, it goes on dividing until it

reaches minimum number of elements and then after

it starts combining back. Where as in quick sort it

selects a pivot element, depending upon the pivot

element it divides the array in such a way that the

elements left to it are lesser than it and the elements

right to it are greater than it. Again, in the divided

parts it again selects the pivot and the procedure goes

on until we get the sorted array.

5.1. Quick Sort

The key process in quicksort is partition(), Target of

partitions is, given an array and an element x of array

as pivot, put x at its correct position in sorted array

and put all smaller elements (smaller than x) before

x, and put all greater elements (greater than x) after

x, all this should be done in linear time [4]. Quick

sort (sometimes called partition exchange sort) is an

efficient algorithm, serving as a systematic method

for placing the elements of an array in order,

Developed by Tony Hoare in 1959 and published in

1961 it is still a commonly used algorithm for sorting

[5].

Among sorting algorithms with O(N log N) average

computing time, median-of-3 quicksort is considered

to be a good choice in most contexts,it sorts in place,

and is usually faster than other in-place algorithms

such as heapsort [6].

5.2. Bubble sort

Is based on the idea of repeatedly comparing pairs of

adjacent elements and then swapping their positions

if they exist in the wrong order.[18]

6. Problem with Quicksort

During the selection of the pivot element, the

element may sometimes be the largest or the smallest

of all the elements or may also be the middle

element. If the pivot element is the extreme element

then the time complexity of the quick sort algorithm

increases to O(n^2).

6.1. Approach to Select Pivot Element

The problem in quicksort is only due to selecting a

random element as the pivot element. Here is an

algorithm for selecting the pivot element for almost

sorted list.

Algorithm pivot (high, low)

{

 h :=0;

 for k := 1 to n do

{

if(k=0) then

{

if(a[k]>low and

a[k]<high) then

{

b[h]

:=a[k];

h++;

}

}

else

{

if(a[k]>low and a[k]<high

and a[k]>a[k-1])

{

b[h] :=a[k];

h++;

}

}

}

Mid :=h/2;

pivot_element :=b[mid];

}

Algorithm Explanation

For proceeding with this algorithm, we need to have

the highest and the least element of the given list.

These highest and least elements are passed as

arguments to this algorithm.Here a[] is the array of

elements which has to be sorted and b[] is the

temporary array into which we insert the elements

only if those are greater than the least element and

lesser than the highest element of a[] and should be

greater than the element in b[]. At lastthe pivot

element is at the middle of array b[].

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 20

September 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 821

Example
Consider array a[]={19,15,4,1,3,16}

Here highest and least elements are 19 and 1

respectively.

Step 1:b[] will be empty

a[]

19 15 4 1 3 16

b[]

Step2:

19>1 and 19<19 // condition failed

15>1 and 15<19 // so insert into b[]

15

4>1 and 4<19 and 4>15 // condition failed

1>1 and 1<19 and 1>15 // condition failed

3>1 and 3<19 and 3>15 // condition failed

16>1 and16<19 and 16>15 //so insert into b[]

15 16

Step 3:

Now the middle element of b[]=3/1

So b[1] ie..., 15 will the pivot element using which

the quick sort algorithm can be proceeded.

Limitations of the algorithm

Algorithm can only work for almost sorted list.

Sometimes the algorithm does not exactly selects the

middle element as thepivot.

Example

consider array a[]={3,6,4,2,5}

here the highest and the least elements are 6 and 2

respectively.

Step 1:

a[]

3 6 5 2 4

b[]

Step 2:

3>2 and 3>6 // insert into b[]

6>2 and 6<6 and 6>3 //condition failed

5>2 and 5<6 and 5>3 //insert into b[]

2>2 and 2<6 and 2>5 // condition failed

4>2 and 4<6 and 4>5 // condition failed

3 5

Step 3:

Middle element of b[]=3/2

So b[1]=3 will be the pivot element which is not

middle one.

7. References

1. https://www.techopedia.com/definition/373

9/algori thm

2. Algorithm Strategies, Department of

Computer Science University of Maryland,

College Park

3. https://www.geeksforgeeks.org/quick-sort/

4. https://en.wikipedia.org/wiki/Quicksort

5. David R. Musser: Introspective Sorting and

Selection Algorithms, Computer Science

Department Rensselaer Polytechnic

Institute, Troy, NY 12180

musser@cs.rpi.edu

6. https://www.geeksforgeeks.org/heap-sort/

7. https://www.geeksforgeeks.org/bubble-sort/

8. https://computer.howstuffworks.com/what-is-a-

computer-algorithm.html
9. https://www.techopedia.com/definition/3739/alg

orithm

10. http://www.mi.fuberlin.de/wiki/pub/ABI/Discret

MathWS10/runtime.pdf

11. https://en.wikipedia.org/wiki/List_of_algorithms

#Astronomy

12. https://www.eecs.umich.edu/courses/eecs281/f04

/lecnotes/25-greedybrute.pdf

13. https://simplicable.com/new/brute-force

14. https://en.wikipedia.org/wiki/Branch_and_bound

15. https://www.codechef.com/wiki/tutorial-

dynamic-programming#Introduction

16. https://www.hackerearth.com/practice/algorithms

/greedy/basics-of-greedy-algorithms/tutorial/

17. https://www.radford.edu/~nokie/classes/360/divc

on.html

18. https://www.hackerearth.com/practice/algor

ithms/sorting/bubble-sort/tutorial/

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/
https://www.techopedia.com/definition/3739/algori%20%20%20thm
https://www.techopedia.com/definition/3739/algori%20%20%20thm
https://www.geeksforgeeks.org/quick-sort/
https://en.wikipedia.org/wiki/Quicksort
mailto:musser@cs.rpi.edu
https://www.geeksforgeeks.org/bubble-sort/
https://computer.howstuffworks.com/what-is-a-computer-algorithm.html
https://computer.howstuffworks.com/what-is-a-computer-algorithm.html
https://en.wikipedia.org/wiki/Branch_and_bound

