

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 339

A Novel Algorithm to Improve the Performance of the Decoder

Without Affecting the Compression Ratio to Increase the

Instruction Match Rates
B. Ritu Kothari & M. Kalpana Bai

1M.Tech scholar, Dept of ECE, SVIT College, Affiliated to JNTUA, AP, India .
2Associate Professor, Dept of ECE, SVIT College, Affiliated to JNTUA, AP, India

.

ABSTRACT: A larger memory can accommodate more

and large applications but increases cost, area, as well as

energy requirements. Code-compression techniques

address this issue by reducing the code size of application

programs. It is a major challenge to develop an efficient

code-compression technique that can generate substantial

reduction in code size without affecting the overall system

performance. In this paper, various steps in the code

compression process were combined into a new algorithm

to improve the compression performance (including the

CR) with a smaller hardware overhead. Based on the

Bitmask code compression (BCC) algorithm, a small

separated dictionary is proposed to restrict the codeword

length of high-frequency instructions, and a novel

dictionary selection algorithm is proposed to achieve more

satisfactory instruction selection, which in turn may reduce

the average CR. Furthermore, the fully separated

dictionary architecture is proposed to improve the

performance of the dictionary-based decompression

engine.

KEYWORDS: Bitmasks, code compression,

decompression, embedded systems, memory, compression

ratio, code density, run length encoding.

I. INTRODUCTION

MEMORY is one of the key driving factors in

embedded-system design because a larger memory

indicates an increased chip area, more power dissipation,

and higher cost. As a result, memory imposes constraints

on the size of the application programs. Code-compression

techniques address the problem by reducing the program

size. Fig. 1 shows the traditional code-compression and

decompression flow where the compression is done offline

(prior to execution) and the compressed program is loaded

into the memory.

Dictionary-based code-compression techniques are popular

because they provide both good CR and fast

decompression mechanism. The basic idea is to take

advantage of commonly occurring instruction sequences by

using a dictionary. Recently proposed techniques improve

the dictionary-based compression by considering

mismatches. The basic idea is to create instruction matches

by remembering a few bit positions. The efficiencies of

these techniques are limited by the number of bit changes

used during compression. It is obvious that if more bit

changes are allowed, more matching sequences will be

generated. However, the cost of storing the information for

more bit positions offsets the advantage of generating more

repeating instruction sequences. Studies have shown that it

is not profitable to consider more than three bit changes

when 32-b vectors are used for compression. There are

various complex compression algorithms that can generate

major reduction in code size. However, such compression

scheme requires a complex decompression mechanism and

thereby reduces overall system performance. It is a major

challenge to develop an efficient code-compression

technique that can generate Substantial code-size reduction

without introducing any decompression penalty (and

thereby reducing performance).

Fig. 1. Code-compression methodology.

Various challenges in bitmask-based compression by

developing efficient techniques for application-specific

bitmask selection and bitmask-aware dictionary selection

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 340

to further improve the CR. In dictionary-based schemes,

entire sequences of common instructions are selected and

replaced by a single new codeword which is then used as

an index to a dictionary that contains the original sequence

of instructions. In both cases, lookup tables (LUTs) are

used to store the original instructions. The encoded

instructions serve as indices to those tables. One of the

major problems is that the tables can become large in size,

thus diminishing the advantages that could be obtained by

compressing the code.

II. RELATED WORK

The first code-compression technique for embedded

processors was proposed by Wolfe and Chanin. Their

technique uses Huffman coding, and the compressed

program is stored in the main memory. The decompression

unit is placed between the main memory and the instruction

cache. They used a Line Address Table (LAT) to map

original code addresses to compressed block addresses.

Lekatsas and Wolf proposed a statistical method for code

compression using arithmetic coding and Markov model.

Lekatsas et al. proposed a dictionary-based decompression

prototype that is capable of decoding one instruction per

cycle. The idea of using dictionary to store the frequently

occurring instruction sequences has been explored by

various researchersFig. 2 shows an example of the standard

dictionary-based code compression.

The techniques discussed so far target reduced

instruction set computer (RISC) processors. There has been

a significant amount of research in the area of code

compression for very long instruction word (VLIW) and

explicitly parallel instruction computing (EPIC) processors.

The technique proposed by Ishiura and Yamaguchi splits a

VLIW instruction into multiple fields, and each field is

compressed by using a dictionary-based scheme. Nam et al.

also use dictionary-based scheme to compress fixed-format

VLIW instructions. Various researchers have developed

code-compression techniques for VLIW architectures with

flexible instruction formats. Larin and Conte applied

Huffman coding for code compression. used Tunstall

coding to perform variable-to-fixed compression. Lin et al.

proposed a Lempel–Ziv–Welch (LZW)-based code

compression for VLIW processors using a variable-sized-

block method. Ros and Sutton have used a post compilation

register reassignment technique to generate compression-

friendly code. Das et al. applied code compression on

variable-length instruction-set processors.

III. EXISTING SYSTEM

BIT COMPRESSION ALGORITHM

Field-programmable gate array are widely used in

reconfigurable systems. Since the configuration

information for FPGA has to be stored in internal or

external memory as bit streams, the limited memory size,

and access bandwidth become the key factors in

determining the different functionalities that a system can

be configured and how quickly the configuration can be

performed. While it is quite costly to employ memory with

more capacity and access bandwidth, bit stream

compression technique alleviates the memory constraint by

reducing the size of the bit streams. With compressed bit

streams, more configuration information can be stored

using the same memory. The access delay is also reduced,

because less bits need to be transferred through the memory

interface. To measure the efficiency of bit stream

compression, compression ratio (CR) is widely used as a

metric. It is defined as the ratio between the compressed bit

stream size (CS) and the original bit stream size (OS). Bit

stream compression is important in reconfigurable system

design since it reduces the bit stream size and the memory

requirement. It also improves the communication

bandwidth and thereby decreases the reconfiguration time.

Existing research in this field has explored two directions:

efficient compression with slow decompression or fast

decompression at the cost of compression efficiency. This

paper proposes a novel decode-aware compression

technique to improve both compression and decompression

efficiencies. The three major contributions of this paper

are: 1) smart placement of compressed bitstreams that can

significantly decrease the overhead of decompression

engine; 2) selection of profitable parameters for bitstream

compression; and 3) efficient combination of bitmask-

based compression and run length encoding of repetitive

patterns.

BITMASK TECHNIQUE:

Bitmask-based compression is an enhancement on

the dictionary-based compression scheme, which helps us

to get more matching patterns. In dictionary-based

compression, each vector is compressed only if it

completely matches with a dictionary entry.

Three possible cases in bitmask are

The vectors that match directly are compressed with 3

bits. The first bit represents whether it is compressed

(using 0) or not (using 1). The second bit indicates

whether it is compressed using bitmask (using 0) or not

(using 1). The last bit indicates the dictionary index.

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 341

Data that are compressed using bitmask requires 7 bits.

The first two bits, as before, represent if the data is

compressed, and whether the data is compressed using

bitmasks. The next two bits indicate the bitmask position

and followed by two bits that indicate the bitmask pattern.

The data which is different for more than 1 bit is left

uncompressed.

Fig 2 Bit mask Technique

IV. PROPOSED SYSTEM

COMPRESSION METHOD

ALGORITHM

Our compression method is based on the technique

introduced in [Bird96][Chen97a]. A dictionary

compression algorithm is applied after the compiler has

generated the program. We search the program object

modules to find common sequences of instructions to place

in the dictionary.

Our algorithm has 3 parts:

1. Building the dictionary

2. Replacing instruction sequences with code words

3. Encoding code words

IV. OUR ALGORITHMS

DICTIONARY-BASED CODE COMPRESSION

This section describes the existing dictionary-

based approaches and analyzes their limitations. First, we

describe the standard dictionary-based approach. Next, we

describe the existing techniques that improve the standard

approach by considering mismatches (hamming distance).

Finally, we perform a detailed cost–benefit analysis of the

recent approaches in terms of how many repeating patterns

they can generate from the mismatches. This analysis

forms the basis of our technique to maximize the repeating

patterns using bitmasks.

Fig 3 Different Dictionary Selection Methods

DICTIONARY-BASED APPROACH

Dictionary-based code-compression techniques

provide compression efficiency as well as fast

decompression mechanism. The basic idea is to take

advantage of commonly occurring instruction sequences by

using a dictionary. The repeating occurrences are replaced

with a code word that points to the index of the dictionary

that contains the pattern. The compressed program consists

of both code words and uncompressed instructions. Fig. 2

shows an example of dictionary based code compression

using a simple program binary. The binary consists of ten

8-b patterns, i.e., a total of 80 b. The

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 342

dictionary has two 8-b entries. The compressed program

requires 62 b, and the dictionary requires 16 b. In this case,

the CR is 97.5% [using (1)]. This example shows a

variable-length encoding. As a result, there are several

factors that may need to be included in the computation of

the CR, such as byte alignments for branch targets and the

address-mapping table.

Fig 4 Bit-Saving Dictionary Selection Method

MIXED BIT SAVING ALGORITHM

FDS cannot achieve an optimal CR in BCC,

because it cannot guarantee that the matched rate of high-

frequency instructions is maximized. The proposed

dictionary selection algorithm is based on the Graph

representation. The instructions are transformed into nodes,

and an edge between two nodes indicates that these two

instructions have been matched to each other using the

BitMask approach. In general, the nodes are classified into

five cases according to the frequency and connection

pattern.

Fig 5 MBSDS

The new algorithm first transforms every unique

instruction into a single node. Two directional edges

between two nodes indicate that these two instructions

were matched to each other using the Bitmask

compression approach. The proposed algorithm then

calculates the bit saving of all nodes, and inserts the most

profitable node into the dictionary. The most profitable

node is then removed from the graph. Since all the

neighboring nodes of the most profitable node can be

covered by the most profitable node, the node saving of

each neighboring node should subtract the edge saving

from the edge with the most profitable node.

Furthermore, all the edges of the neighboring

nodes are removed. These steps are repeated until the

dictionary is full. The most profitable node achieves the

savings from the combination of its own node saving and

the edge savings of other nodes. However, connected

instructions cannot be easily inserted into the dictionary.

Whether these connected instructions should be selected

into the dictionary in the following rounds is solely

determined by their frequency values.

This method offers an advantage. When only the edges

connected with the most profitable node are removed after

the most profitable node is selected and inserted into the

dictionary, the algorithm is likely to choose one of the

neighbors of the most profitable node as the new profitable

node. This, however, would likely result in many incorrect

or Case 3 nodes being selected and inserted into the

dictionary. All symbols in this example are 32-bit wide, the

dictionary contained 1024 entries, only one 2-bit mask was

used, and the overhead of the identification tag is 2-bit.

After each symbol was transferred into the nodes, every

node contained its frequency value. When two nodes were

matched to each other using the Bitmask, the algorithm will

create two-directional edges to connect them; the direction

pointed to the instruction, and the weight corresponding to

the actual edge saving when the connected node was

compressed by the matched node. Suppose a threshold

value of 10 is used, Nodes A and B were selected and

inserted into the dictionary, and Nodes C and E were

deleted from the graph. The rest of candidate nodes D and

F, were then selected in the following round. Nodes C and

E (if G was not selected) were more efficient than B, D, or

F. As this result demonstrated, an unsatisfactory threshold

value reduced the efficiency of the BSDS algorithm

compared with the FDS algorithm. The proposed dictionary

selection algorithm is compared with some prior arts.

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 343

DECOMPRESSION ENGINE

The proposed decompression engine was

implemented [23] using the Verilog hardware description

language and synthesized using a Synopsys’ Design

Compiler [24] and a TSMC 0.13-μm cell library. The

decompression engine, the logic diagram of which is shown

in Fig. 9 consisted of a control unit, a demultiplexer, shift

buffers, LUTs, and the BitMask unit. The control unit

controls other units and assigns tasks to other units

according to the control signals. The input queue initializes

itself, collects compressed instructions from the storage

space, and shifts the contents of the buffer after the

decoding process is completed. The output queue stores the

decompressed instructions and delivered them to the

processor or cache. The large LUT and small LUT store the

original binary instructions and synthesized using a flip-

flop logic.

Fig 6 CLCBCC with MBSDS.

The small LUT stores high-frequency instructions

enabling them to be quickly decoded with a shorter

codeword length. The BitMask unit executes the shifting of

masks and XOR operations based on the instructions from

the large LUT to obtain the original instructions. The

BitMask unit also accesses the dictionary and executes shift

operations in parallel during decompression. The proposed

decompression engine has a decompression bandwidth of

32 bits/cycle. As mentioned in Section IV-A, even though

the instructions with an extremely high execution

frequency were placed in the small LUT to

improve the compression efficiency, a longer LUT latency

in the large LUT(s) constrained the performance of the

decompression engine. Certain researchers have restricted

the LUT size in their research to avoid this problem.

However, restricting the LUT size is not an optimal

solution in all the cases.

Fig 7 Logic diagram of decompression engine.

This number is multiplied by the number of saved bits

by the BitMask method, and then it is divided by the

original program size. The algorithm only achieves a more

efficient DSCR when the program size is small and the

number of uncompressed instructions is high. For a large

benchmark containing 40 000 instructions, and for which

2048 entries were used to develop the large LUT, the

uncompressed instruction rate, created using the CLCBCC

with FDS, was 10%. Within the uncompressed instructions,

60% were matched by a more satisfactory dictionary

selection algorithm (40% of instructions were not matched

because of their Hamming distance mismatch with a

limited number of LUT entries using the BitMask method).

A total of 50% of the instructions were matched using

one mask, and 50% using two masks. According to

Amdahl’s law, the CR saving is ideally 10% multiplied by

12/32 (assuming every instructions can be matched using

only one mask) equals to 3.75%. In practice, the algorithm

only achieved CR savings of 1.59%. This indicates that no

dictionary selection algorithm can produce a substantial

improvement in larger benchmarks.

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 344

V. SIMULATION RESULTS

RTL view

Simulation wave form

Synthesis report

Power report

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 21

October 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 345

VI. CONCLUSION

An improved BCC algorithm is proposed in this paper.

The encoding format was modified to enable the

decompression engine to support multi-LUT access and use

variable mask numbers to operate with the referenced

instructions. Although the tag overhead to identify the

codeword type is increased by 1 bit, the proposed method

improves CR by over 7.5% with a slight hardware

overhead. A new dictionary selection algorithm was also

proposed to improve the CR. The fully separated dictionary

architecture was used to improve the performance of the

decoder, and this architecture is better suitable to

decompress instruction in parallel to increase the

decompression bandwidth per cycle.

Multicore architecture has been a trend in modern

embedded products. However, multicore systems require

higher communication bandwidths either between the

processors and the cache or between the cache and the

memory, than single core systems. The design of a

decompression engine is a new challenge for multicore

systems. In the future studies, the design and

implementation of a general multilevel separated dictionary

decompression engine fully separated LUTs method and a

parallel decompression engine will be investigated, for

applying code compression to architectures with high

bandwidth requirements, such as multicore architectures.

Not only the CR, but also performance, power

consumption, and communication bandwidth between the

memory and the caches should be analyzed.

REFERENCES

[1]. Wei Jhih Wang and Chang Hong Lin ,Code
Compression for Embedded Systems Using Separated
Dictionaries”, in IEEE Transactions on very large scale
integration (VLSI) systems 1063-8210 © 2015 IEEE
[2]. C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge,
“Improving code density using compression techniques,”
in Proc. 30th Annu. ACM/IEEE Int. Symp. MICRO, Dec.
1997, pp. 194–203.
[3]. S.-W. Seong and P. Mishra, “A bitmask-based
code compression technique for embedded systems,” in
Proc. IEEE/ACM ICCAD, Nov. 2006, pp. 251–254.
[4]. S.-W. Seong and P. Mishra, “An efficient code
compression technique using application-aware bitmask
and dictionary selection methods,” in Proc. DATE, 2007,
pp. 1–6.

[5]. H. Lekatsas and W. Wolf, “SAMC: A code
compression algorithm for embedded processors,” IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol.
18, no. 12, pp. 1689–1701, Dec. 1999.
[6]. S. Y. Larin and T. M. Conte, “Compiler-driven
cached code compression schemes for embedded ILP
processors,” in Proc. 32nd Annu. Int. Symp.
Microarchitecture, Nov. 1999, pp. 82–91.
[7]. C. H. Lin, Y. Xie, and W. Wolf, “Code
compression for VLIWembedded systems using a self-
generating table,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 15, no. 10, pp. 1160–1171, Oct. 2007.
[8]. C.-W. Lin, C. H. Lin, and W. J. Wang, “A Power-
aware codecompression design for RISC/VLIW
architecture,” J. Zhejiang Univ.-Sci. C (Comput.
Electron.), vol. 12, no. 8, pp. 629–637, Aug. 2011.
[9]. T. Bonny and J. Henkel, “FBT: Filled buffer
technique to reduce code size for VLIW processors,” in
Proc. IEEE/ACM Int. Conf. CAD (ICCAD), Nov. 2008,
pp. 549–554.
[10]. M. Ros and P. Sutton, “A hamming distance based
VLIW/EPIC code compression technique,” in Proc.
Compilers, Arch., Synth. Embed.Syst., 2004, pp. 132–139.

[11]. J. Ranjith, N. J. R. Muniraj, and G. Renganayahi,
“VLSI implementation of single bit control system
processor with efficient code density,” in
[12]. Proc. IEEE Int. Conf. Commun. Control Comput.
Technol. (ICCCCT), Oct. 2010, pp. 103–108.
[13]. W. R. Azevedo Dias, E. D. Moreno, and I. Nattan
Palmeira, “A new code compression algorithm and its
decompressor in FPGA-based
[14]. hardware,” in Proc 26th Symp. Integr Circuits
Syst.Design.

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

