
 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 458    

Framework to Software Testing and Types 

Ayesha Nuzha & H Meenal 
1Student, Stanley College of Engineering and Technology for Women 

2Assistant Professor, Stanley College of Engineering and Technology for Women 

 
 

Abstract 

 

In this paper we discuss the different 

aspects, and type of testing as the SRE and 

Testing run along side by side either by 

static testing and reviews or running the 

system/SW to confirm the compliance of 

requirements/functionalities. Testing types 

including different common major types of 

testing Black Box, White Box and there 

relative advantages, and disadvantages and 

techniques used in the software/system 

testing. 

 

 Keywords: Software Testing, White Box Testing, 

Black Box Testing. 

 

 

 

I.CONTRACTIONS AND  

ABBREVIATIONS: 
 1. ISTQB: International Software Testing 

Qualification Board 

 2. CAT: Certified Agile Tester 

 3. ROI : Return on investment 

 4. SWEBOK :Software Engineering Body 

of Knowledge standard 

 5. SDLC: Software Development Life 

Cycle 

 6. SLA: Service Level Agreement 

 7. SW: Software 

 8. BVR : Business Value Earned 

 

II. INTRODUCTION OF 

SOFTWARE TESTING: 
 

Software testing is an investigation 

conducted to provide stakeholders with 

information about the quality of 

the software product or service under 

test[1]. Software testing can also provide an 

objective, independent view of the software 

to allow the business to appreciate and 

understand the risks of software 

implementation. Test techniques include the 

process of executing a program or 

application with the intent of 

finding software bugs (errors or other 

defects), and verifying that the software 

product is fit for use. 

 

Testing can be performed either by static 

review (that is reviewing the documents like 

requirements, user stories, test Cases/scripts, 

reviews or dynamically (that is running the 

code/application and explore the application 

for the defects and issues) 

 

 

 

III. WHAT ARE THE 

OBJECTIVES OF THE 

SOFTWARE TESTING?  
The major objectives of the software testing 

is responds correctly to all kinds of inputs 

(handle properly valid and invalid input), its 

Performs its functions within an acceptable 

time based on the SLA (service level 

agreement) or generally acceptance criteria 

set, Software is sufficiently usable Software 

can be installed and run in its intended 

environment for which it was designed, and 

Achieved the expected result 

desired/required it means it serve the 

functional purpose and fit for the end user 

use[2]. 

 

 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_bug


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 459    

IV. WHY TESTING IS 

OBLIGATORY:  
Software Testing is obligatory because we 

all make mistakes. Some of those mistakes 

are unimportant, but some of them are 

expensive or even dangerous and 

catastrophic. We need to check everything 

and anything we produce because things can 

always go wrong and as a humans we all 

make mistakes most of the times. Since we 

assume that our work may have mistaken, 

hence we all need to check our own 

work[2]. 

 However some mistakes come from bad 

assumptions and blind spots, so we might 

make the same mistakes when we check our 

own work as we made when we did it[3]. So 

we may not notice the flaws in what we 

have done. Ideally, we should get someone 

else to check and our work because another 

person is more likely to spot the flaws.  

Sometimes defects may be caused be biased 

judgment and over confidence which is also 

a major source of errors and defects in one’s 

works[3]. Ideally, we should get someone 

else to check our work whom has no 

emotional attachment to our work and has 

an unbiased opinion is more likely to spot 

the flaws. These are several reasons which 

clearly tells us as why Software Testing is 

important and what are the major things that 

we should consider while testing of any 

product or application[4]. 

 

V. WHY TESTING IS VITAL:  
Software testing is really required to point 

out the defects and errors that were made 

during the different phases of the SDLC. It 

is essential since testing makes sure of the 

Customer’s reliability and their satisfaction 

in the application. It is very important to 

ensure the Quality of the product[5]. Quality 

product delivered to the customers helps in 

gaining their confidence by knowing more 

about received product Testing is necessary 

in order to provide the facilities to the 

customers like the delivery of high quality 

product or software application which 

requires lower maintenance cost and hence 

results into more accurate, consistent and 

reliable results and less down 

time/maintenance time which in turn 

increases the BVR (Business Value Earned) 

by customer. Testing is required for an 

effective performance of software 

application or product. It’s important to 

ensure that the application should not result 

into any failures because it can be very 

expensive in the future or in the later stages 

of the development and last but not least it 

is important to stay in the business and grow 

the business! 

 

VI. CLASSIFICATIONS OF 

TESTING:  
There are two major methods of testing 

Black box testing, and white box testing.  

a. Black Box Testing:- Black 

Box Testing, also known as 

Behavioral Testing, is a software 

testing method in which the internal 

structure/ design/ implementation of 

the system being tested is not known 

to the tester. These tests can be 

functional or non-functional, most of 

the time are usually functional. This 

method is named “Black Box” 

because the software program, in the 

eyes of the tester, is like a black box; 

inside which one cannot see[6]. This 

method attempts to find errors in the 

categories of Incorrect or missing 

functions, Interface errors, errors in 

data structures or external database 

access, behaviour or performance 

errors, Initialization and termination 

errors. 

 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 460    

                                                 

 
 

                                                      Figure a) 

Black Box Testing Overview. 

 

    b.  White-box Testing :-White Box 

Testing (also synonyms as Clear Box 

Testing, Open Box Testing, Glass Box 

Testing, Transparent Box Testing, Code-

Based Testing or Structural Testing) is a 

software testing method in which the 

internal structure/ design/ implementation of 

the item being tested is known to the tester. 

The tester chooses inputs to exercise paths 

through the code and determines the 

appropriate outputs. Programming know-

how and the implementation knowledge is 

essential. White box testing is testing 

beyond the user interface and into the nitty-

gritty of a system. This method is named so 

because the software program, in the eyes of 

the tester, is like a white/ transparent box; 

inside which one clearly sees White box test 

design technique: Procedure to derive 

and/or select test cases based on an analysis 

of the internal structure of a component or 

system, Tests internal structure White box 

test design technique: Procedure to derive 

and/or select test cases based on an analysis 

of the internal structure of a component or 

system, Tests internal structure Inputs 

chosen to test specific paths of the code. 

                      

 
                                       Figure b) White 

Box Testing Approach 

 

 

VII. LEVEL OF TESTING:  
Tests grouped by where they are added in 

the development process and/or by level of 

specificity Software Engineering Body of 

Knowledge (SWEBOK) standard divided 

and categorized them as below[7]. 

 

Unit testing: 

 Unit tests are basically written and 

executed by software developers to make 

sure that code meets its design and 

requirements and behaves as expected. The 

goal of unit testing is to segregate each part 

of the program and test that the individual 

parts are working correctly. 

 Integration testing: 

 Integration testing tests integration or 

interfaces between components, interactions 

to different parts of the system such as an 

operating system, file system and hardware 

or interfaces between systems. 

 System testing:  

In system testing the behaviour of the whole 

system/product is tested as defined by the 

scope of the development project or 

product. 

 User Acceptance Testing (UAT):  

The User Acceptance test: focuses mainly 

on the functionality thereby validating the 

fitness-for-use of the system by the business 

user. The user acceptance test is performed 

by the users and application managers to 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 461    

determine the system is serving the purpose 

and fit for the user of end user/business. 

 

VIII. TEST TECHNIQUES: 
 a. Black Box testing techniques  

b. White box testing techniques 

 

 a. Black Box Testing Technique  
Below are the major and famous in industry 

black box testing techniques including the 

basic definitions and explanations. 

 Decision table testing: A decision table is 

a good way to deal with combinations of 

things (e.g. inputs). This technique is 

sometimes also referred to as a cause-effect’ 

table. The reason for this is that there is an 

associated logic diagramming technique 

called cause-effect graphing’ which was 

sometimes used to help derive the decision 

table this as a combinatorial logic network, 

however, most people find it more useful 

just to use the table 

 All-pairs testing: All-pairs testing or 

pairwise testing is a combinatorial method 

of software testing that, for each pair of 

input parameters to a system (typically, a 

software algorithm), tests all possible 

discrete combinations of those parameters. 

Using carefully chosen test vectors, this can 

be done much faster than an exhaustive 

search of all combinations of all parameters, 

by "parallelizing" the tests of parameter 

pairs Equivalence partitioning. 

 Equivalence/Class Partitioning: 

Equivalence partitioning or equivalence 

class partitioning (ECP) is a software testing 

technique that divides the input data of a 

software unit into partitions of equivalent 

data from which test cases can be derived. 

In principle, test cases are designed to cover 

each partition at least once. This technique 

tries to define test cases that uncover classes 

of errors, thereby reducing the total number 

of test cases that must be developed. An 

advantage of this approach is reduction in 

the time required for testing a software due 

to lesser number of test cases. Equivalence 

partitioning is typically applied to the inputs 

of a tested component, but may be applied 

to the outputs in rare cases. The equivalence 

partitions are usually derived from the 

requirements specification for input 

attributes that influence the processing of 

the test object. 

 Boundary Value Analysis: Boundary 

value analysis (BVA) is based on testing at 

the boundaries between partitions. Here we 

have both valid boundaries (in the valid 

partitions) and invalid boundaries (in the 

invalid partitions). 

 Cause–effect Graph: Cause–effect graph 

is a directed graph that maps a set of causes 

to a set of effects. The causes may be 

thought of as the input to the program, and 

the effects may be thought of as the output. 

Usually the graph shows the nodes 

representing the causes on the left side and 

the nodes representing the effects on the 

right side. There may be intermediate nodes 

in between that combine inputs using 

logical operators such as AND and OR. 

 Error Guessing: Technique that makes use 

of a tester's skill, intuition and experience in 

testing similar applications to identify 

defects that may not be easy to capture by 

the more formal techniques. It is usually 

done after more formal techniques are 

completed. 

State Transition Testing: State transition 

Testing is outputs are triggered by changes 

to the input conditions or changes to 'state' 

of the system. In other words, tests are 

designed to execute valid and invalid state 

transitions[8]. 

 Use case testing: Use case testing is to 

identify test scenarios that exercise the 

whole system on each transaction basis 

from start to finish. User story testing: It is a 

part of agile delivery method in which a 

user story/requirements are transformed to 

test scenario and further to test case and 

then the test case is executed and user story 

is tested. 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 462    

 Exploratory Testing: Exploratory 

software testing is a powerful and fun 

approach to testing. In some situations, it 

can be orders of magnitude more productive 

than scripted testing. Exploratory testing is 

perform in session with define time slot 

mostly by experienced tester or user for 

each session around 30 to 60 minutes. 

 Domain analysis: Domain analysis is the 

process by which a software engineer learns 

background information. He or she has to 

learn sufficient information so as to be able 

to understand the problem and make good 

decisions during requirements analysis and 

other stages of the software engineering 

process. 

 Combining technique: Testing two or 

more variables in combination with each 

other. We discuss this in the Addendum on 

Techniques later in this chapter. 

Combination testing is important, but many 

testers don’t study enough of it. Most 

benefits provided by the program are based 

on the interaction of many variables. If we 

don’t vary them jointly in our tests to not to 

miss errors that are triggered by difficult 

combinations, rather than difficult 

individual values. 

 

b. White Box Testing 

Techniques 
 White-box test design techniques 

include the following code coverage 

criteria.  

Control Flow Testing: Control-flow 

testing techniques are based on 

judiciously selecting a set of test 

paths through the program. The set 

of paths chosen is used to achieve a 

certain measure of testing 

thoroughness e.g., pick enough paths 

to assure that every source statement 

is executed as least once.  

 

Data Flow Testing: Data flow 

testing is a family of test strategies 

based on selecting paths through the 

program's control flow in order to 

explore sequences of events related 

to the status of variables or data 

objects. Dataflow Testing focuses on 

the points at which variables receive 

values and the points at which these 

values are used. 

 

 Branch testing: Branch testing is 

used to ensure that each one of the 

possible branch from each decision 

point is executed at least once and 

thereby ensuring that all reachable 

code is executed 

 

 Statement coverage:  Statement 

coverage is a white box testing 

technique, which involves the 

execution of all the statements at 

least once in the source code. It is a 

metric, which is used to calculate 

and measure the number of 

statements in the source code which 

have been executed. Using this 

technique we can check what the 

source code is expected to do and 

what it should not. It can also be 

used to check the quality of the code 

and the flow of different paths in the 

program. The main drawback of this 

technique is that we cannot test the 

false condition in it as given by 

below formula. (Statement coverage 

= No of statements Executed/Total 

no of statements in the source code * 

100) 

 

 Decision/Branch coverage: 

Decision coverage or Branch 

coverage is a testing method, which 

aims to ensure that each one of the 

possible branch from each decision 

point is executed at least once and 

thereby ensuring that all reachable 

code is executed. That is, every 

decision is taken each way, true and 

false. It helps in validating all the 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 463    

branches in the code making sure 

that no branch leads to abnormal 

behaviour of the application. 

 

 Modified Condition/Decision 

Coverage: In software testing, the 

modified condition/decision 

coverage (MC/DC) is a code 

coverage criterion that requires all of 

the below during testing. Each entry 

and exit point is invoked, each 

decision takes every possible 

outcome, each condition in a 

decision takes every possible 

outcome each condition in a decision 

is shown to independently affect the 

outcome of the decision[9].  

 

Path /Prime Path testing: The 

method analyzes the control flow 

graph of a program to find a set of 

linearly independent paths of 

execution as shown by below 

formula. Branch Testing = (Number 

of decisions outcomes tested / Total 

Number of decision Outcomes) x 

100 % 

IX. MERITS AND DEMERITS OF 

THE BLACK BOX TESTING 
1) Merits of Black Box Testing  

 

Black box is more efficient when 

applied on large systems, the tester is 

does not inevitably required to be a 

more technical person. Since the tester 

and developer are independent of each 

other’s in black box testing so it is 

balanced and unprejudiced.  

 

The testers are not necessarily required 

to have the deep functional knowledge 

of the system. 

 

 The test shall be done from the end 

user's and business owners’ point of 

view, as at the end user should accept 

and use the system/SW.  

 

Black box testing additionally 

contribute to identify vagueness and 

contradictions in functional design and 

specifications as the black box testing is 

proceeded, test scenarios and test case 

is designed as soon as the functional 

design and specification are completed 

and tester do not need to wait to start 

testing activity test can work in parallel 

while development team is designing 

the system and tester are preparing the 

acceptance criteria/test cases. 

 

 

 

 

2) Demerits of Black Box 

Testing 

 

Test cases may be challenging to be 

designed without having clear 

functional specifications. Also it is 

difficult to identify tricky and invalid 

inputs if the test cases are not developed 

based on specifications.  

 

Black box testing has a charter and time 

boxing because of this constrain and it 

is difficult to identify all possible inputs 

in limited time chartered this may cause 

a delay in writing test cases which in 

turn may results some undefined 

scenarios and negative scenarios are not 

been designed and tested at all, which 

may pose a risk to the system/SW. 

 

X. ADVANTAGES AND 

TRADEOF THE WHITE BOX 

TESTING 
 

1) Advantages of White Box 

Testing 

 

 White-box testing is one of the two 

biggest testing methodologies used 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 464    

today. White box testing has several 

major advantages which are 

summarized as below. Side effects 

of having the knowledge of the 

source code is beneficial to 

thorough testing. Optimization of 

code by revealing hidden errors and 

being able to remove these possible 

defects. Gives the programmer 

introspection because developers 

carefully describe any new 

implementation provides 

traceability of tests from the source, 

allowing future changes to the 

software to be easily captured in 

changes to the tests. White box tests 

are easy to automate, white box 

testing give clear, engineering-

based, rules for when to stop 

testing. 

 

 

2) Disadvantages of White Box 

Testing 

 

 

 Although white-box testing has 

great advantages, it is not perfect 

and contains some disadvantages 

which are summarized as below. 

White-box testing brings 

complexity to testing because the 

tester must have knowledge of the 

program in which the code is 

written and the tester most be well 

versed with the standards and 

should know the refactoring in that 

language, including being a 

programmer, white-box testing 

requires a programmer with a high 

level of knowledge due to the 

complexity of the level of testing 

that needs to be done.  

 

On some occasions, it is not 

realistic to be able to test every 

single existing condition of the 

application and some conditions 

will be untested. The tests focus on 

the software as it exists, and 

missing functionality may not be 

discovered as we also aware that 

100 % testing is not possible so due 

to time resection the sometime the 

critical area of the 

code/functionality is not thoroughly 

tested while the allocated time for 

testing is wasted in trivial part of 

the code. 

 

 

 

 

XI. CONCLUSION:  
 

Both white and black-box testing 

are necessary for the successful 

software/system delivery. In many 

cases black box testing is done by 

dedicated testers/testing team while 

white-box testing is performed by 

developers or the one whom has 

good knowledge of the 

development. 

 

Both types of testing has its 

advantages, and disadvantages 

including trade of whoever black 

box testing is extensively used in 

industry as compare to white box 

testing. Most of the organization 

also prefer Black box testing in 

order to protect their system/SW to 

minimize the internal code, design 

and architecture of their system/SW 

to as few people as possible. 

 

 

 

XII. EPILOGUE, AND 

REVOLUTIONARY 

RESEARCH:  

 

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://pen2print.org/index.php/ijr/  

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 05 Issue 21 

October 2018 

 

Available online:  https://pen2print.org/index.php/ijr/  P a g e  | 465    

It is clear that we can use different 

approaches for different projects 

based on the testing scoop and the 

complexity of the system under test, 

however it is recommended to use 

the black box testing techniques for 

the bigger system which has a lot of 

integration point as white box 

testing is implied and suitable for 

mostly the small project 

additionally the ROI on white box 

for bigger project is not suitable as 

it requires a lots of efforts and drill 

down in the code, which may be 

another issues as many organization 

do not want to open up the code to 

anyone other than developer. 

 

 The anticipated research approach 

is to use black box with the 

applicable combination of white 

box to have a hybrid which 

sometimes may referred as gray 

box which is indeed a hybrid of 

White box and black box. Selecting 

gray box testing after completing 

the recommended comparative 

study and analysis of both the white 

and black box testing and to get the 

both possible unique advantages of 

black box and white box with 

higher ROI and greater 

products/systems/SW quality with 

market competitive cost as the 

defects detected in last phase or 

when product is released to the 

customers are 10X expensive to fix 

if detected in initial phase of SDLC 

and mitigated. 

 

 

XIII. LIST OF FIGURES:  
                 1. Figure(a): Black Box testing Over view 

2. Figure(b): White Box testing Over view 

 

XIV. REFERENCES:  

1. Black-box Testing”, John Wiley 

& Sons, 1995, ISBN 0-471-120944 

2. The Art of Software Testing - 

Glenford J. Myers, Corey Sandler, 

Tom Badgett 

3. Software Engineering 8e by Ian 

Sommerville 

4. Exploratory Testing by Kaner, 

Cem 

5. The Mythical man month 

6.istqb_foundation_level_syllabus_

2011 

7.Advanced_syllabus_2012_technic

al_test_analyst_ga_release_201210

19 

8.Advanced_syllabus_2012_test_an

alyst_ga_release_20121019 

             9. Software Testing, a Craftsman’s  

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

