

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 22

November 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1498

Phase Level Scheduler for Map Reduce Using Grained

Resource

Ch.Sireesha1,K.Sreehari 2

1 PG Scholar, Dept of CSE, Prakasam Engineering College, Prakasam(Dt), AP, India.

2 Asst Professor , Dept of CSE, Prakasam Engineering College, Prakasam(Dt), AP,

India.

Abstract:

 MapReduce is one of the

important concepts of Hadoop that is

used for data handling used by big

companies today such as Google and

Facebook. Here we divide each job

into the map and reduce phases and try

to complete the execution of the

assigned task in a parallel form. In this

paper, we suggest that it would be

more efficient if we make the

scheduler to work at the phase-level

instead of the task-level. The reason is

because the task demands a lot of

requirements during its lifetime. For

this very purpose, we introduce the

concept called PRISM, which is

aphase and information-aware

scheduler for MapReduce and in this

concept we divide the tasks into

unequal parts called as phases and

apply phase-level scheduling to these

phases and achieve efficient resource

usage

1. INTRODUCTION

 Today, companies depend

entirely on large-scale data analysis, so

they can make critical business

decisions day by day. This is directed

to the development of Map-Reduce,

i.e.a parallel programming model that

has become equivalent with large-scale

and data-intensive calculations. Map-

Reduce consists of a job, which is a

collection of Map and Minimize

activities. These activities can be

synchronously programmed on several

machines, with a substantial reduction

in work time.An essential component

of a Map-Reduce system is your task

planner. The main role of the activity

planning program is to create a

mapping and reduction planning

activity that includes one or more jobs,

minimizes job completion time and

maximizes resource utilization. In

many situations, the containment of

heavy resources and the time of

completion of long processes take

place due to a planning with too many

tasks performed simultaneously on a

single machine. On the contrary,

hunger occurs because of the improper

use of resources and also because of a

planning with very few simultaneous

activities in a single machine.

 The problem of job scheduling

becomes significantly simpler to solve,

assuming that all map activities (and

all reduction activities) have consistent

resource requirements, such as CPU,

memory, disk, and network bandwidth.

However, this hypothesis is used to

simplify the programming problem

with current systems of Map

Reduction, such as Hadoop Map-

Reduce Version 1.x. This system uses

a simple slot-based resource allocation

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 22

November 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1499

scheme, in which the physical

resources of each machine take on the

amount of indistinguishable slots that

can be allocated to activities.

This document offers PRISM, which is

a fine-stage programmer and resource

information for map reduction clusters.

PRISM realizes the conscious planning

of resources at the level of the phases.

Specifically, this document shows that,

for Map-Reduce applications, the

consumption of resources of the

activity during the execution time can

vary considerably from one phase to

another. Therefore, it is possible that

the planner has a greater degree of

parallelism even if it avoids the

containment of resources, only when it

comes to the demand for resources at

the phase level. Therefore, in the end,

this document has developed a phase-

level programming algorithm with the

aim of obtaining high work

performance together with the

appropriate use of resources.

2. Existing System

2.1 Hadoop MapReduce

MapReduce [10] is a parallel

computing model for large-scale data -

intensive computations. A MapReduce

job consists of two types of tasks, i.e.

the map task and the reduce task. A

map task takes a keyvalue block as the

input that is stored in the underlying

distributed file system and runs a user-

specified map function to of key-value

output. Subsequently, a reduce task is

responsible for collecting and applying

specified reduce function on the

collected key value pairs to produce

the final output. Currently, the most

popular implementation of MapReduce

is Apache Hadoop MapReduce [1]. A

Hadoop cluster consists of a collection

of machines where one node will act as

a master node and all the remaining n-

1 nodes act as the slave node. The

slave nodes execute the tasks assigned

by the master node. The master node

runs a resource manager (also known

as a job tracker) that is responsible for

scheduling tasks on slave nodes. Each

slave node runs a local node manager

(also known as a task tracker) that is

responsible for launching and

allocating resources for each task. To

do so, the task tracker launches a Java

Virtual Machine (JVM) that executes

the corresponding map or reduce task.

The original Hadoop MapReduce (i.e.

version 1.x and earlier) adopts a slot-

based resource allocation scheme. The

scheduler assigns tasks to be executed

to each machine based on the

availability of the resources on each

machine. The number of map and

educe slots determine how the data are

divided and allocated to each machine.

As a Hadoop cluster is usually a multi-

user system, many users can

simultaneously submit jobs to the

cluster. The job scheduling is

performed by the resource manager in

the master node, which maintains a list

of jobs in the system. Here each slave

node performs a small job and informs

its completion via a heartbeat message

(usually between 1-3 seconds) to the

master node. The resource scheduler

will use the provided information to

make scheduling decisions. Today

there are two commonly used

schedulers that are: Capacity scheduler

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 22

November 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1500

[2] and Fair scheduler [3]. These

schedulers function on at task level.

2.2 MapReduce Job Phases

Current Hadoop job schedulers

perform as task-level scheduling where

initially a task given by the user to

execute is divided into blocks or

chunks which are of unequal size this

is the map phase. In particular, a map

task can be divided into 2 main phases:

map and merge2. The Hadoop

Distributed File System (HDFS) [4],

where data blocks are stored across

multiple slave nodes. In the map phase,

a mapper fetches an input data block

from the Hadoop Distributed File

System (HDFS) [4] and applies the

user - as with the Hadoop

implementation, defined a map

function on each record. The map

function generates records that are

serialized and collected into a buffer.

When the buffer becomes full (i.e.,

content size exceeds a pre-specified

threshold), the content of the buffer

will be written to the local disk. Lastly,

the mapper executors a merge phase to

group the output records based on the

intermediary keys, and store the

records in multiple files so that each

file can be fetched a corresponding

reducer. Similarly, the execution of a

reduce task can be divided into 3

phases: shuffle, sort, and reduce. In the

shuffle phase, the reducer fetches the

output file from the local storage of

each map task and then places it in a

storage buffer that can be either in

memory or on disk depending on the

size of the content. At the same time,

the reducer also launches one or more

threads to perform local merge sort in

order to reduce the running time of the

subsequent sort phase. Once all the

map output records have been

collected, the sort phase will perform

one final sorting procedure to ensure

all collected records are in order.

Finally, in 1. Other resources such as

disk and network I/O are yet to be

supported by Hadoop Yarn.

2. We use the same phase names

3. PRISM

3.1 Prism Architecture
As it is cleared from the definition that,

PRISM is a resource information-

aware Map Reduce scheduler that

distributes tasks into phases in a fine-

grained manner, where each phase has

a persistent resource usage profile and

implements scheduling at the level of

phases. During the execution time of a

task, resource usage analysis may lead

to ineffective scheduling decisions.

Because of this, at run-time, if the

resource allotted to a task is higher

than the existing resource usage, then

the idle resources are wasted. On the

other hand, if the resources allotted to

the task is much less than the actual

resource demand, then the resource can

suffer from a situation called,

bottleneck, which may slow down task

execution.

Therefore, a fine-grained, phase-level
scheduling mechanism has been
introduced. This allocates the
resources according to the demand of
the phase that each task is currently
executing. Due to this fine-grained
resource allocation, not a single task

suffers from either bottleneck or
starvation problem.

An overview of the PRISM

architecture is shown in Fig. 1. PRISM

comprises of four main modules:

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 22

November 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1501

resource manager, local node

managers, a job progress monitor and a

phase-based scheduler. Initially,

Resource Manager (also known as a

job tracker), is responsible for

scheduling tasks on each local node.

Then, Local Node Manager, (also

known as a task tracker) that

coordinate phase transitions with the

scheduler. Next is Job Progress

Monitor, which is responsible to

capture phase-level progress

information. Finally, Phase-Based

Scheduler, i.e., a fine-grained, phase-

level scheduling mechanism that

allocates resources according to the

demand of executing phase (neither

overflow nor underflow).

3.2 Phase-Level Scheduling

Mechanism
In this mechanism, there are some
steps which are followed during the
execution of PRISM. These steps are:

(Step 1): Each local node manager
sends a heartbeat message to
the phase-based scheduler
periodically. As soon as a
task requests to be scheduled,

then the scheduler
immediately responses to the
heartbeat message with a task

scheduling request.

(Step 2): Then, the local node

manager initiates the task.

(Step 3): As and when a task
completes implementing a

particular phase (shuffle
phase), then the task requests
the local node manager for
permission to start the next
phase (e.g. reduce phase).

(Step 4): The local node manager

then forwards this permission
request to the phase-based
scheduler.

(Step 5): Finally, once the task is

permitted to execute the next

phase (reduce phase), the
local node manager grants
permission to process that
task and once the task is
completed; the task status is
received by the local node

manager and then dispatched
to the phase-based scheduler.

PRISM requires constant phase-level
resource information for each job to
perform phase-level scheduling. In this
way, the entire task is implemented.

Each phase travels through all the
above steps and finally get completed
successfully.

4. CONCLUSION

In this Paper, Map-Reduce is used as a

popular programming model to

calculate data-intensive jobs. PRISM,

which is a fine-grained resource

allocation / reduction planner, divides

tasks into phases and also performs

phase-level programming. Due to the

use of this phase-level programming,

there is an improvement in the use of

resources.The planning algorithm used

by PRISM contributes to minimizing

work execution time compared to

current Hadoop programmers. In

general, PRISM achieves high work

performance. Finally, the future

purpose of this document will be to

improve the scalability of PRISM

through the use of distributed

programmers.

REFERENCES

[1] Hadoop Map Reduce

distribution [Online]. Available:

http://hadoop.apache.org, 2015.

[2] Hadoop Fair Scheduler

[Online]. Available:

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 22

November 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1502

http://hadoopapache.org/docs/r0.20.

2/fair_scheduler.html, 2015.

[3] Hadoop Distributed File

System [Online]. Available:

hadoop.apache.org/docs/hdfs/current

/, 2015.

[4] The Next Generation of

Apache Hadoop MapReduce [Online].

Available:

http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-

site/YARN.html, 2015.

[5] R. Boutaba, L. Cheng, and Q.

Zhang, “On cloud computational

models and the heterogeneity

challenge,” J. Internet Serv. Appl., vol.

3, no. 1, pp. 1–10, 2012.

[6] T. Condie, N. Conway, P.

Alvaro, J. Hellerstein, K. Elmeleegy,

and R. Sears, “MapReduce online,” in

Proc. USENIX Symp. Netw. Syst.

Des. Implementation, 2010, p. 21.

[7] J. Dean and S. Ghemawat,

“Mapreduce: Simplified data

processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp.

107–113, 2008.

[8] A. Ghodsi, M. Zaharia, B.

Hindman, A. Konwinski, S. Shenker,

and I. Stoica, “Dominant resource

fairness: Fair allocation of multiple

resource types,” in Proc. USENIX

Symp. Netw. Syst. Des.

Implementation, 2011, pp. 323–336.

[9] H. Herodotou, H. Lim, G. Luo,

N. Borisov, L. Dong, F. Cetin, and S.

Babu, ”Starfish: A self-tuning system

for big data analytics,” in Proc. Conf.

Innovative Data Syst. Res., 2011, pp.

261–272.

[10] M. Isard, V. Prabhakaran, J.

Currey, U. Wieder, and K. Talwar,

“Quincy: Fair scheduling for

distributed computing clusters,” in

Proc. ACMSIGOPS Symp. Oper. Syst.

Principles, 2009, pp. 261–276.

[11] C. Joe-Wong, S. Sen, T. Lan,

and M. Chiang. “Multi-resource

allocation: Flexible tradeoffs in a

unifying framework,” in Proc. IEEE

Int. Conf. Comput.Commun., 2012,

pp. 1206–1214.

[12] J. Polo, C. Castillo, D. Carrera,

Y. Becerra, I. Whalley, M. Steinder, J.

Torres, and E. Ayguad_e, “Resource-

aware adaptive scheduling for

MapReduce clusters,” in Proc.

ACM/IFIP/USENIX Int. Conf.

Middleware, 2011, pp. 187–207.

[13] A. Rasmussen, M. Conley, R.

Kapoor, V. T. Lam, G. Porter, and A.

Vahdat, “ThemisMR: An I/O-Efficient

MapReduce,” in Proc. ACM Symp.

Cloud Compute. 2012, p. 13.

[14] A. Verma, L. Cherkasova, and

R. Campbell, “Resource

provisioningframework for

MapReduce jobs with performance

goals,” in Proc. ACM/IFIP/USENIX

Int. Conf. Middleware, 2011, pp. 165–

186.

[15] D. Xie, N. Ding, Y. Hu, and R.

Kompella, “The only constant is

change: Incorporating time-varying

network reservations in data centers,”

in Proc. ACM SIGCOMM, 2012, pp.

199–210.

[16] Y. Yu, M. Isard, D. Fetterly,

M. Budiu, _ U. Erlingsson, P. Gunda,

and J. Currey, “DryadLINQ: A system

for general-purpose distributed data-

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 22

November 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1503

parallel computing using a high-level

language,” in Proc. USENIX Symp.

Oper. Syst. Des. Implementation,

2008, pp. 1–14.

[17] M. Zaharia, D. Borthakur, J.

SenSarma, K. Elmeleegy, S. Shenker,

and I. Stoica, “Delay scheduling: A

simple technique for achieving locality

and fairness in cluster scheduling,” in

Proc. Eur. Conf. Comput. Syst., 2010,

pp. 265–278.

[18] M. Zaharia, A. Konwinski, A.

D. Joseph, R. H. Katz, and I. Stoica,

“Improving MapReduce performance

in heterogeneous environments,” in

Proc. USENIX Symp. Oper. Syst. Des.

Implementation, 2008, vol. 8, pp. 29–

42.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

