

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 23

December 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 37

Phase Level Scheduler for Map Reduce Using Grained Resource
Ch.Sireesha & K.Sreehari

1 PG Scholar, Dept of CSE, Prakasam Engineering College, Prakasam(Dt), AP, India.

2 Asst Professor , Dept of CSE, Prakasam Engineering College, Prakasam(Dt), AP, India.

Abstract:

 MapReduce is one of the important

concepts of Hadoop that is used for data

handling used by big companies today such as

Google and Facebook. Here we divide each job

into the map and reduce phases and try to

complete the execution of the assigned task in a

parallel form. In this paper, we suggest that it

would be more efficient if we make the

scheduler to work at the phase-level instead of

the task-level. The reason is because the task

demands a lot of requirements during its

lifetime. For this very purpose, we introduce the

concept called PRISM, which is aphase and

information-aware scheduler for MapReduce

and in this concept we divide the tasks into

unequal parts called as phases and apply

phase-level scheduling to these phases and

achieve efficient resource usage.

1. INTRODUCTION

 Today, companies depend entirely on

large-scale data analysis, so they can make

critical business decisions day by day. This is

directed to the development of Map-Reduce,

i.e.a parallel programming model that has

become equivalent with large-scale and data-

intensive calculations. Map-Reduce consists of

a job, which is a collection of Map and

Minimize

activities. These activities can be synchronously

programmed on several machines, with a

substantial reduction in work time.An essential

component of a Map-Reduce system is your

task

planner. The main role of the activity planning

program is to create a mapping and reduction

planning activity that includes one or more

jobs, minimizes job completion time and

maximizes resource utilization. In many

situations, the containment of heavy resources

and the time of completion of long processes

take place due to a planning with too many

tasks performed simultaneously on a single

machine. On the contrary, hunger occurs

because of the improper use of resources and

also because of a planning with very few

simultaneous activities in a single machine.

 The problem of job scheduling becomes

significantly simpler to solve, assuming that all

map activities (and all reduction activities) have

consistent resource requirements, such as CPU,

memory, disk, and network bandwidth.

However, this hypothesis is used to simplify the

programming problem with current systems of

Map Reduction, such as Hadoop Map-Reduce

Version 1.x. This system uses a simple slot-

based resource allocation scheme, in which the

physical resources of each machine take on the

amount of indistinguishable slots that can be

allocated to activities.

This document offers PRISM, which is a fine-

stage programmer and resource information for

map reduction clusters. PRISM realizes the

conscious planning of resources at the level of

the phases. Specifically, this document shows

that, for Map-Reduce applications, the

consumption of resources of the activity during

the execution time can vary considerably from

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 23

December 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 38

one phase to another. Therefore, it is possible

that the planner has a greater degree of

parallelism even if it avoids the containment of

resources, only when it comes to the demand

for resources at the phase level. Therefore, in

the end, this document has developed a phase-

level programming algorithm with the aim of

obtaining high work performance together with

the appropriate use of resources.

2. Existing System

2.1 Hadoop MapReduce

MapReduce [10] is a parallel computing model

for large-scale data -intensive computations. A

MapReduce job consists of two types of tasks,

i.e. the map task and the reduce task. A map

task takes a keyvalue block as the input that is

stored in the underlying distributed file system

and runs a user-specified map function to of

key-value output. Subsequently, a reduce task is

responsible for collecting and applying

specified reduce function on the collected key

value pairs to produce the final output.

Currently, the most popular implementation of

MapReduce is Apache Hadoop MapReduce [1].

A Hadoop cluster consists of a collection of

machines where one node will act as a master

node and all the remaining n-1 nodes act as the

slave node. The slave nodes execute the tasks

assigned by the master node. The master node

runs a resource manager (also known as a job

tracker) that is responsible for scheduling tasks

on slave nodes. Each slave node runs a local

node manager (also known as a task tracker)

that is responsible for launching and allocating

resources for each task. To do so, the task

tracker launches a Java Virtual Machine (JVM)

that executes the corresponding map or reduce

task. The original Hadoop MapReduce (i.e.

version 1.x and earlier) adopts a slot-based

resource allocation scheme. The scheduler

assigns tasks to be executed to each machine

based on the availability of the resources on

each machine. The number of map and educe

slots determine how the data are divided and

allocated to each machine. As a Hadoop cluster

is usually a multi-user system, many users can

simultaneously submit jobs to the cluster. The

job scheduling is performed by the resource

manager in the master node, which maintains a

list of jobs in the system. Here each slave node

performs a small job and informs its completion

via a heartbeat message (usually between 1-3

seconds) to the master node. The resource

scheduler will use the provided information to

make scheduling decisions. Today there are two

commonly used schedulers that are: Capacity

scheduler [2] and Fair scheduler [3]. These

schedulers function on at task level.

2.2 MapReduce Job Phases

Current Hadoop job schedulers perform as task-

level scheduling where initially a task given by

the user to execute is divided into blocks or

chunks which are of unequal size this is the

map phase. In particular, a map task can be

divided into 2 main phases: map and merge2.

The Hadoop Distributed File System (HDFS)

[4], where data blocks are stored across

multiple slave nodes. In the map phase, a

mapper fetches an input data block from the

Hadoop Distributed File System (HDFS) [4]

and applies the user - as with the Hadoop

implementation, defined a map function on

each record. The map function generates

records that are serialized and collected into a

buffer. When the buffer becomes full (i.e.,

content size exceeds a pre-specified threshold),

the content of the buffer will be written to the

local disk. Lastly, the mapper executors a

merge phase to group the output records based

on the intermediary keys, and store the records

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 23

December 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 39

in multiple files so that each file can be fetched

a corresponding reducer. Similarly, the

execution of a reduce task can be divided into 3

phases: shuffle, sort, and reduce. In the shuffle

phase, the reducer fetches the output file from

the local storage of each map task and then

places it in a storage buffer that can be either in

memory or on disk depending on the size of the

content. At the same time, the reducer also

launches one or more threads to perform local

merge sort in order to reduce the running time

of the subsequent sort phase. Once all the map

output records have been collected, the sort

phase will perform one final sorting procedure

to ensure all collected records are in order.

Finally, in 1. Other resources such as disk and

network I/O are yet to be supported by Hadoop

Yarn.

2. We use the same phase names

3. PRISM

3.1 Prism Architecture
As it is cleared from the definition that, PRISM

is a resource information-aware Map Reduce

scheduler that distributes tasks into phases in a

fine-grained manner, where each phase has a

persistent resource usage profile and

implements scheduling at the level of phases.

During the execution time of a task, resource

usage analysis may lead to ineffective

scheduling decisions. Because of this, at run-

time, if the resource allotted to a task is higher

than the existing resource usage, then the idle

resources are wasted. On the other hand, if the

resources allotted to the task is much less than

the actual resource demand, then the resource

can suffer from a situation called, bottleneck,

which may slow down task execution.

Therefore, a fine-grained, phase-level

scheduling mechanism has been introduced.
This allocates the resources according to the

demand of the phase that each task is currently
executing. Due to this fine-grained resource

allocation, not a single task suffers from either

bottleneck or starvation problem.

An overview of the PRISM architecture is

shown in Fig. 1. PRISM comprises of four main

modules: resource manager, local node

managers, a job progress monitor and a phase-

based scheduler. Initially, Resource Manager

(also known as a job tracker), is responsible for

scheduling tasks on each local node. Then,

Local Node Manager, (also known as a task

tracker) that coordinate phase transitions with

the scheduler. Next is Job Progress Monitor,

which is responsible to capture phase-level

progress information. Finally, Phase-Based

Scheduler, i.e., a fine-grained, phase-level

scheduling mechanism that allocates resources

according to the demand of executing phase

(neither overflow nor underflow).

3.2 Phase-Level Scheduling Mechanism
In this mechanism, there are some steps which
are followed during the execution of PRISM.
These steps are:

(Step 1): Each local node manager sends a

heartbeat message to the phase-based
scheduler periodically. As soon as a

task requests to be scheduled, then the
scheduler immediately responses to

the heartbeat message with a task
scheduling request.

(Step 2): Then, the local node manager

initiates the task.

(Step 3): As and when a task completes
implementing a particular phase

(shuffle phase), then the task requests
the local node manager for permission

to start the next phase (e.g. reduce
phase).

(Step 4): The local node manager then

forwards this permission request to
the phase-based scheduler.

(Step 5): Finally, once the task is permitted to

execute the next phase (reduce phase),

the local node manager grants
permission to process that task and

once the task is completed; the task

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 23

December 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 40

status is received by the local node

manager and then dispatched to the
phase-based scheduler.

PRISM requires constant phase-level resource
information for each job to perform phase-level

scheduling. In this way, the entire task is
implemented. Each phase travels through all the

above steps and finally get completed

successfully.

4. CONCLUSION

In this Paper, Map-Reduce is used as a popular

programming model to calculate data-intensive

jobs. PRISM, which is a fine-grained resource

allocation / reduction planner, divides tasks into

phases and also performs phase-level

programming. Due to the use of this phase-level

programming, there is an improvement in the

use of resources.The planning algorithm used

by PRISM contributes to minimizing work

execution time compared to current Hadoop

programmers. In general, PRISM achieves high

work performance. Finally, the future purpose

of this document will be to improve the

scalability of PRISM through the use of

distributed programmers.

REFERENCES

[1] Hadoop Map Reduce distribution

[Online]. Available:

http://hadoop.apache.org, 2015.

[2] Hadoop Fair Scheduler [Online].

Available:

http://hadoopapache.org/docs/r0.20.2/fair_sc

heduler.html, 2015.

[3] Hadoop Distributed File System

[Online]. Available:

hadoop.apache.org/docs/hdfs/current/, 2015.

[4] The Next Generation of Apache Hadoop

MapReduce [Online]. Available:

http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html, 2015.

[5] R. Boutaba, L. Cheng, and Q. Zhang,

“On cloud computational models and the

heterogeneity challenge,” J. Internet Serv.

Appl., vol. 3, no. 1, pp. 1–10, 2012.

[6] T. Condie, N. Conway, P. Alvaro, J.

Hellerstein, K. Elmeleegy, and R. Sears,

“MapReduce online,” in Proc. USENIX Symp.

Netw. Syst. Des. Implementation, 2010, p. 21.

[7] J. Dean and S. Ghemawat, “Mapreduce:

Simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113,

2008.

[8] A. Ghodsi, M. Zaharia, B. Hindman, A.

Konwinski, S. Shenker, and I. Stoica,

“Dominant resource fairness: Fair allocation of

multiple resource types,” in Proc. USENIX

Symp. Netw. Syst. Des. Implementation, 2011,

pp. 323–336.

[9] H. Herodotou, H. Lim, G. Luo, N.

Borisov, L. Dong, F. Cetin, and S. Babu,

”Starfish: A self-tuning system for big data

analytics,” in Proc. Conf. Innovative Data Syst.

Res., 2011, pp. 261–272.

[10] M. Isard, V. Prabhakaran, J. Currey, U.

Wieder, and K. Talwar, “Quincy: Fair

scheduling for distributed computing clusters,”

in Proc. ACMSIGOPS Symp. Oper. Syst.

Principles, 2009, pp. 261–276.

[11] C. Joe-Wong, S. Sen, T. Lan, and M.

Chiang. “Multi-resource allocation: Flexible

tradeoffs in a unifying framework,” in Proc.

IEEE Int. Conf. Comput.Commun., 2012, pp.

1206–1214.

[12] J. Polo, C. Castillo, D. Carrera, Y.

Becerra, I. Whalley, M. Steinder, J. Torres, and

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 23

December 2018

Available online: https://pen2print.org/index.php/ijr/ P a g e | 41

E. Ayguad_e, “Resource-aware adaptive

scheduling for MapReduce clusters,” in Proc.

ACM/IFIP/USENIX Int. Conf. Middleware,

2011, pp. 187–207.

[13] A. Rasmussen, M. Conley, R. Kapoor,

V. T. Lam, G. Porter, and A. Vahdat,

“ThemisMR: An I/O-Efficient MapReduce,” in

Proc. ACM Symp. Cloud Compute. 2012, p.

13.

[14] A. Verma, L. Cherkasova, and R.

Campbell, “Resource provisioningframework

for MapReduce jobs with performance goals,”

in Proc. ACM/IFIP/USENIX Int. Conf.

Middleware, 2011, pp. 165–186.

[15] D. Xie, N. Ding, Y. Hu, and R.

Kompella, “The only constant is change:

Incorporating time-varying network

reservations in data centers,” in Proc. ACM

SIGCOMM, 2012, pp. 199–210.

[16] Y. Yu, M. Isard, D. Fetterly, M. Budiu,

_ U. Erlingsson, P. Gunda, and J. Currey,

“DryadLINQ: A system for general-purpose

distributed data-parallel computing using a

high-level language,” in Proc. USENIX Symp.

Oper. Syst. Des. Implementation, 2008, pp. 1–

14.

[17] M. Zaharia, D. Borthakur, J. SenSarma,

K. Elmeleegy, S. Shenker, and I. Stoica, “Delay

scheduling: A simple technique for achieving

locality and fairness in cluster scheduling,” in

Proc. Eur. Conf. Comput. Syst., 2010, pp. 265–

278.

[18] M. Zaharia, A. Konwinski, A. D.

Joseph, R. H. Katz, and I. Stoica, “Improving

MapReduce performance in heterogeneous

environments,” in Proc. USENIX Symp. Oper.

Syst. Des. Implementation, 2008, vol. 8, pp.

29–42.

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

