

Design Evolution of a Diesel Engine Piston

Pedireddla Srinu^{#1} & Mr.V.Tirupathi Rao^{#2} ^{#1} M.Tech Scholar(CAD/CAM), Department Of Mechanical Engineering, Gonna Institute Of Information Technology and Sciences, Visakhapatnam, AP, India. ^{#2} Assistant Professor, Department Of Mechanical Engineering, Gonna Institute Of Information Technology and Sciences, Visakhapatnam, AP, India. **ABSTRACT**

A piston is a major component of to and fro motion engines. It transfers the power form expanding gases in the cylinder to the crank shaft through the con rod. Now a three dimensional solid model of piston along with different dimensions is designed with the help of AutoCAD software. By applying the same pressures and temperatures for different Piston head diameter with the help of AutoCAD and Ansys 16.0 Software, we can get the evaluated results of von-misses stresses, thermal flux, and thermal gradient and directional deformations for that piston design. General materials for the piston is Structural steel, cast steel, forged steel, Aluminum alloys, and Nickel alloys. In our project Cast Aluminum allov is used as piston material. It is an excellent material in thermal conductivity and also light in weight. The stress analysis results also help us to improve component design and also have given us the knowledge on the deformation and thermal handling sections on the piston.

Key Words: Diesel Engine, Piston, Piston head, Heat Transfer, Simulation, Structural and Thermal analysis.

A diesel engine is an internal combustion engine. Here, the fuel is burned inside the cylinders where power is produced. Internal combustion wastes very less energy as compared to external combustion engine because the heat doesn't have to flow out from where it's produced in the cylinder. That is the reason we use internal combustion engines (they produce more energy from the same volume of fuel). Piston is subjected to very high mechanical and thermal stresses. As there is very large temperature difference between the piston head and cooling parts induces much thermal stresses in the piston. Thus, it has become very important to discuss the thermal and mechanical stresses to improve the quality and performance of the piston. In spite of all the improvements and advancements in the manufacturing process there exists large number of defective or damaged pistons. Thermal and mechanical stresses plays a prominent role in the designing of pistons. Thus finite element analysis is done for stresses, temperature, and deformation. Structural, thermal and thermo-mechanical stresses and temperature gradient are obtained from the analysis. A detailed stress analysis of piston is done under various thermal and structural boundary conditions with different piston head dimensions which are applied to the finite element model of the piston.

1. INTRODUCTION

2. RELATED WORK

In the recent past, the demand for diesel engines has increased rapidly. This is mainly because of their higher thermal performance efficiency, better and reliability. In the earlier days, diesel engines were considered aspollutants compared to petrol/gasoline engines. Later, with the continuous improvements in the technology, there is a considerable reduction in the emission levels in diesel engines. The efforts are continuing in the direction of improving the overall engine performance. Here we have emphasized on the design of the Piston where all the process of conversion of chemical energy to heat energy and then to mechanical energy takes place. The study of the effect of different Piston diameters on the Thermal loads and the Mechanical stresses are studied. We have chosen the piston head diameter randomly from the previous studies so that a study could be done on the specific area.

3. MATERIAL PROPERTIES

As compared with the previous materials used for the manufacturing of a Piston, we can choose cast aluminium alloy for the current material. We can see that the tensile yield strength and the compressive yield strength are good and it is a very light weight and corrosion resistant. It has a very good life as a Piston material.

Cast Aluminum Alloy	
Physical Properties	Metric
Density	2650kg/m3
Mechanical Properties	Metric
Tensile strength,Ultimate	850Mpa
Tensile Strength, Yield	530 MPa
CTE, linear	18µm/m- °C
Specific Heat Capacity	0.461kJ/kg- °C
Thermal Conductivity	228 W/m- K
Melting Point	1370- 1630°C

4. GEOMETRY

The image below shows the geometry of the piston as described in the Literature. The piston created in AutoCAD is imported to Ansys software for further analysis. The following types of boundary conditions re-applied. In this geometry, the pressures are applied on the top of the piston and the temperatures are applied on the whole body. In this section ANSYS 16.0 was

used for making 2D geometry with twoextreme head diameters. Here we have chosen these limits for the purpose of domestic use of the engine so higher limit is taken as 110mm for piston head diameter and lower limit is taken as 70mm piston head diameter. Smooth mesh can be created taking mesh size of 0.005 m. But in case of smooth mesh the iterations per time step increases, hence a coarse grid mesh is

preferred. The mesh generated is shown in Fig. 2.

TABLE 1 Model (B4) > Geometry

Properties				
Volume	1254 mm ³			
Mass	0.46059 kg			
Scale Factor Value	1.			
Statistics				
Active Bodies	1			
Nodes	130931			
Elements	74604			
Analysis Type	3-D			

4.1 FINITE ELEMENT MODEL

This is performed by using computer aided design software. The main objective is to analyze the thermal stress distribution of piston at the combustion process. The analysis is performed to reduce the stress on

the head of the piston. With the help of aided design software the computer structural model of a piston is designed. The finite element analysis is done using ANSYS software.

TABLE 2Model (B4) > Mesh

Object Name	Mesh			
State	Solved			
Display				
Initial Size Seed	Active Assembly			
Smoothing	Medium			
Transition	Fast			
Minimum Edge Length	6.62690 mm			
Inflation				
Maximum Layers	5			
Growth Rate	1.2			
Inflation Algorithm	Pre			
View Advanced Options	No			
Patch Conforming Options				
Triangle Surface Mesher	Program Controlled			

Advanced		Rigid Body Behavior	Dimensionally Reduced	
Number of CPUs for	Program Controlled	Mesh Morphing	Disabled	
		Defeat	aturing	
Snape Checking	Standard Mechanical	Statistics		
Element Midside Nodes	Program Controlled	Statistics		
Straight Sided Elements	No	Nodes	130931	
Number of Detries	Default (4)	Elements	74604	
	Default (4)	Mesh Metric	None	
Extra Retries For	Yes			
Assembly				

TABLE 3Model (B4) > Mesh > Mesh Controls				
Object Name	Face Sizing			
State	Fully Defined			
Scope				
Scoping Method	Geometry Selection			
Geometry	24 Faces			
Definition				
Suppressed	No			
Туре	Element Size			
Element Size	1.5 mm			
Behavior	Soft			

 TABLE 4

 Model> Static Structural> Loads

Object Name	Fix Supp	xed port	Pressure		
State		Fully	Defined		
	Sco	ре			
Scoping Method	Ge	ometr	y Selection		
Geometry	2 Fa	aces	3 Faces		
Туре	Fixed Support		Pressure		
Suppressed		I	No		
Define By			Normal To		
Magnitude			7. MPa (ramped)		
Magnitude Line Thic	kness		7. MPa (ramped) Single		

5. CALCULATIONS

The initial volume is 1200cc of air at about 1 atm pressure and 30°C (303.15K), and the compression ratio is 15:1 (i.e., you'll compress the air down to 80 cc, which is 1/16-th of the original volume), let's find out what the resulting temperature and pressure will be.1200cc of air is 0.0012 cubic meter. At room temperature and 1 Atm pressure it is roughly .048 moles.

5.1 CALCULATIONS FOR THE 70MM PISTON HEAD DIA

Thermal Calculation: Piston diameter D = 70 mmBarrel length L = 79 mmPressure $P_1 = 1.0$ bar, Initial Temperature $T_1 = 27 + 273 = 300 \text{ K}$ Cut-off ratio $\rho = 8 / 100 V_{S}$ In -Diesel Cycle. Pressures and Temperatures at Salient Points Now, Cylinder swept volume (V_s) , $=\pi/4 D^{2}.L$ Vs $= (\pi / 4) \ge 0.070^2 \ge 0.079$ = 0.0003040276 m3. Vs $= V_{S} + V_{C} = V_{S} + [V_{S} / (r-1)]$ V_1 $= [r/(r-1)] \times V_S$ $= [18 / (18-1)] \times 0.0003040276$ = 0.0003219115 m3. **V**1 From the Ideal Gas Law, $= mRT_1$ \mathbf{P}_1 [R= Gas constant JK⁻¹mol⁻¹] $= p_1 V_1 / RT_1$ m $= \left[\left(1 \times 10^5 \times 0.0003219115 \right) / \left(8.3144 \times 300 \right) \right]$ = 0.0003079620 Kg / cycle m For the Adiabatic (Isentropic) Process 1-2 $\mathbf{P}_1 \mathbf{V}_1^{\mathbf{Y}}$ $= p_2 V_2^{Y}$ $= (V_1 / V_2)^{\Upsilon} = r^{\Upsilon}$ [r = Compression ratio for diesel engine=10 - (P_2 / p_1) = (1 x 18^{1.4}) $P_2 = p_1. r^{\Upsilon}$ \mathbf{P}_2 = 57.198 bar. $= (V_1 / V_2)^{\Upsilon - 1}$ (T_2 / T_1) = (18)^{1.4-1} (r) $^{\gamma - 1}$ (r) ^{Y-1} = 3.1776. T_2 (T₁x 3.1776) =

18]

 T_2 = 953.301 K. $V_2 = V_C$ $= [V_S / (r-1)]$ = [(0.0003040276/(18-1))]= 0.00001884 m3. V_2 % Cut-off ratio = $[(\rho-1)/(r-1)]$ $= [(\rho-1)/(18-1)]$ 8/100 = (0.08 x 17) + 1 ρ = 2.36. ρ V_3 $= \rho. V_2$ = 2.36 x 0.000017884 V_3 = 0.000042206 m3. For the Constant Pressure Process 2-3 (V_3 / T_3) $= (V_2/T_2)$ $= (T_2 x V_3) / V_2$ T_3 = (953.30145 x 0.000042206) / 0.000017884 T_3 = 2249.7914 K. For the Isentropic Process 3-4 $= p_4 V_4^{\Upsilon}$ $P_3V_3^{\Upsilon}$ $= P_3 x (V_3 / V_4)^{\gamma - 1}$ \mathbf{P}_4 $P_3 \ge 1 / (7.627)^{1.4}$ = = 3.327 bar. \mathbf{P}_4 $= (V_3 / V_4)^{\Upsilon - 1}$ T_4 / T_3 $(1 / 7.627)^{1.4-1}$ = 0.44366. T_4 $= T_3 \times 0.44366$ = 998.1556 K T_4 $V_4 = V_1$ 0.0003219115 m3. = Mean Effective Pressure $P_{m} = [p_{1}(r)^{\Upsilon} [\Upsilon(\rho-1) - r^{1-\Upsilon}(\rho \times \Upsilon)] / [(\Upsilon-1)(r-1)]$ $= \{57.1981 \times (18)^{1.4} [1.4 (2.36-1) - (18)^{1-1.4} (2.36 \times 1.4)] \} / [(1.4-1) (18-1)]$ = 57.198 x 1.904 - [0.3146 x (3.327 - 1)] / (0.4 x 17)= 8.411 x (1.904 - 0.732) $P_{\rm m} = 9.8498 \, \rm bar$ Power of the Engine, P Work done per cycle $= p_m X V_S$ $= (9.849 \text{ x } 0.0003040276 \text{ x } 10^5) / 10^3$ = 0.002994 KJ / cycle. Work done per second = Work done per cycle x no. of cycles per second

= (0.002994 x 380) / 60Power of the engine = 1.869 KW.

Design Calculation.

Thickness of the Piston Head According to Grashoff's formula the thickness of the piston head is given by

 $t_{h} = D\sqrt{(3p_{max}/16\sigma_{t})}$ Where, $\sigma_{t} = 1200 \text{ M Pa} \quad [\sigma_{t}= \text{Tensile Strength for Cast Aluminum}]$ $t_{h} = 70 \text{ x } \sqrt{(3 \text{ x } 57.198)/(16 \text{ x } 1200)}$ $t_{h} = 6.61 \text{ mm.}$

The maximum thickness from the above formula is t_h is 6.61 mm. Thickness of the piston head by heat transfer, considering piston as a circular plate.

 $H/(12.56 \text{ k x } (\text{T}_{\text{c}} - \text{T}_{\text{e}}))$ $[(T_c - T_e) = 220^{\circ} c]$ th _ [K = Heat conductivity Factor = $49 \text{ w/m/}^{\circ}\text{C}$] $[T_c = Temperature at the skirt Centre]$ [T_e =Temperature at the skirt Edge] [H = Heat flow through the head] Η = C x HCV x m x B.P. $[m = fuel mass = 162.8970 \times 10^{6} \text{ Kg}/\text{B.P/sec}]$ [C = Constant value = 0.05][HCV = Higher calorific Value = 45×10^3 kj/kg] 0.05 x 45 x 10³ x 162.8970 x 10⁶ x 1.869 Η = Н 0.692 KW. = 692 W.= 692/(12.56 x 49 x 220) = th 0.00511090 m. = 5.110 mm. = th Taking the larger of the two values, we shall adopt $t_{h} = 6.61$ mm. Radial thickness of the ring (t_1) $D \sqrt{(3p_w / \sigma_t)}$ t₁ = $70\sqrt{(3 \ge 0.742)}/(1200)$ = [pw = Pressure at cylinder wall = 0.742] t_1 N/MM^2 3.027 mm. t1 == 0.85 x 3.027 Axial thickness of the ring (t_2) $t_2 = 2.57 \text{ mm.}$ $t_2 = 0.85t_1$ to t_1

International Journal of Research

Available at https://pen2print.org/index.php/ijr/

0.65 x 70

=

Width of the Top Land (b₁) **b**₁ $= 1.2 \times 6.61$ $b_1 = 7.932 \text{mm} \approx 7.9 \text{ mm}.$ Width of the Ring (b₂) $b_2 = 0.75 t_2$ $b_2 = 0.75 \text{ x } 2.57$ $b_2 = 1.925 \text{ mm} \approx 2 \text{ mm}.$ Piston barrel thickness (b) 0.03D + b + 4.5 mmt₃ = b $t_1 + 0.4$ b 3.027 + 0.4= b 3.427 mm. = 0.03(70) + 3.427 + 4.5t3 =mm $10.027 \text{ mm} \approx$ t3 =10.1mm. Piston Wall Thickness (t₄) 0.33 x t3 t₄ 0.33 x 10.1 t4 = 3.333 mm. t4 = Skirt Length (1) 1 (0.6 D to 0.8 D)

1 49mm. =Total Length of the Piston (L) L Skirt Length + ring section Length + Top Land L 49 + 10.1 + 7.9= L 67mm. = Centre of the skirt above the Centre of the skirt 0.04 x D 0.04 x 70 = 2.8 mm. = Gudgeon pin length in the con-rod bushing (l_1) 45% of the piston l_1 = diameter 0.45 x 70 = h 31.5mm. = Gudgeon pin diameter (d_o) (0.28 D to 0.38 D) d_0 = $=>0.34 \text{ x } 70 =>d_0=23.8 \text{ mm}.$

5.2 CALCULATIONS FOR THE 110MM PISTON DIAMETER

Thermal Calculation:

Piston dia	D = 110 mm
Barrel length	S = 110 mm,
Pressure	$P_1 = 1.0 \text{ bar},$
Initial Temperature	$T_1 = 27 + 273 = 300 \text{ K}$
Cut-off ratio	$\rho = 8 / 100 V_S$

In -Diesel Cycle.

Pressures and Temperatures at Salient Points Now, Stroke volume, $V_S = \pi / 4 D^2 L$

$= (\pi / 4) \ge 0.110^{2} \ge 0.110$	
$V_{\rm S}$ = 0.00104536495548 m3.	
$V_1 = V_S + V_C = V_S + [V_S / (r-1)]$	
$= [r / (r-1)] \times V_S$	
= [18 / (18-1)] x 0.00104536495548	
V1 = 0.00110685701168 m3.	
From the Ideal Gas Law	
$P_1 = mRT_1$	
$m = p_1 V_1 / RT_1$	
$= [(1 \times 10^5 \times 0.00110685701168) / (287 \times 300)]$	
m = 115.699 Kg / cycle	
For the Adiabatic (Isentropic) Process 1-2	
$\mathbf{P}_1 \mathbf{V}_1^{\Upsilon} \qquad = \mathbf{p}_2 \mathbf{V}_2^{\Upsilon}$	
$(P_2 / p_1) = (V_1 / V_2)^{\Upsilon} = r^{\Upsilon}$	
$P_2 = p_1. r^{\Upsilon} = (1 \times 18^{1.4})$	
$P_2 = 57.198 \text{ bar.}$	
$(T_2/T_1) = (V_1/V_2)^{Y-1}$	
$(r) \stackrel{Y-1}{=} = (18)^{1.4-1}$	
(r) $r^{-1} = 3.1776.$	
$T_2 = (T_1 x \ 3.1776)$	
$T_2 = 953.301 \text{ K}.$	
$V_2 = V_C$ = $[V_S / (r-1)]$	
= [(0.00104536495548 / (18-1)]	
$V_2 = 0.00002597792748 \text{ m3.}$	
% Cut-off ratio = $[(\rho-1)/(r-1)]$	
8/100 = [(p-1)/(18-1)]	
$\rho = (0.08 \times 17) + 1$	
$\rho = 2.50.$	
$v_3 = \rho. v_2$ - 2.26 x0 00002507702748	
$= 2.50 \times 0.00002397792748$	
$V_3 = 0.00000150790885 \text{ IIIS.}$	
$\frac{1}{(V_2/T_2)} = \frac{1}{(V_2/T_2)}$	
$(v_3/1_3) = (v_2/1_2)$ T ₂ = (T ₂ x V ₂) / V ₂	
$= (953 \ 30145 \ x \ 0 \ 000061 \ 30790 \ 885) \ /0 \ 00002597$	797748
$T_3 = 22497914 \text{ K}$, , , , , , , , , , , , , , , , , , , ,
For the Isentropic Process 3-4	

$\mathbf{P}_{3}\mathbf{V}_{3}^{\Upsilon}$	$= p_4 V_4^{\Upsilon}$	
P ₄	=	P ₃ x (V ₃ / V ₄) ^{Y-1}
	=	$P_3 \ge 1 / (7.627)^{1.4}$
P ₄	=	3.327 bar.
T_4 / T_3	$= (V_3 / V_3)$	γ ₄) ^{Υ-1}
(1 / 7.627) 1	.4-1	= 0.44366.
T_4	=	T ₃ x 0.44366
T_4	=	998.1556 K
$\mathbf{V}_4 = \mathbf{V}_1$	=	0.00079492458112 m3.
Theoretical	l Air Stan	dard Efficiency
η diesel	=	$1 - \{1 / \Upsilon(\mathbf{r}) \Upsilon(\mathbf{r}) \Upsilon(\mathbf{r}) \Upsilon(\mathbf{r}) / \rho - 1]\}$
	=	$1 - \{1 / {}^{1.4} (18)^{1.4-1} [(2.36^{1.4-1}) / (2.36-1)]\}$
	=	1 - [(0.22478 x 2.327) / 1.36] = 0.6153.
	=	0.6153 x 100 %
η diesel	=	61.53%

Mean Effective Pressure

$$\begin{split} P_{m} &= [p_{1}(r)^{\Upsilon} [\Upsilon (\rho - 1) - r^{1-\Upsilon} (\rho \times \Upsilon)] / [(\Upsilon - 1) (r - 1)] \\ &= \{57.198 \ 1 \ x (18)^{1.4} [1.4 (2.36 - 1) - (18)^{1-1.4} (2.36 \ x \ 1.4)]\} / [(1.4 - 1) (18 - 1)] \\ &= 57.198 \ x \ 1.904 - [0.3146 \ x (3.327 - 1)] / (0.4 \ x \ 17) \\ &= 8.411 \ x (1.904 - 0.732) \\ P_{m} &= 9.8498 \ bar \\ \hline Power \ of \ the \ Engine, P \\ \\ Work \ done \ per \ cycle &= p_{m} \ X \ V_{S} \\ &= (9.849 \ x \ 0.0003040276 \ x \ 10^{5}) / \ 10^{3} \\ &= 0.002994 \ KJ / \ cycle. \\ \\ Work \ done \ per \ second &= Work \ done \ per \ cycle \ x \ no. \ of \ cycles \ per \ second \\ &= (0.002994 \ x \ 380) / \ 60 \\ \\ \hline Power \ of \ the \ engine &= 1.869 \ KW. \end{split}$$

Design Calculation.

Thickness of the Piston Head According to Grashoff's formula the thickness of the piston head is given by

 $t_{h} = D\sqrt{(3p_{max}/16\sigma_{t})}$ Where, $\sigma_{t} = 1200 \text{ M Pa}$ [σ_{t} = Tensile Strength for Cast Aluminum] $t_{h} = 110 \text{ x } \sqrt{(3 \text{ x } 57.198)}/(16 \text{ x } 1200)$ $t_{h} = 10.339 \text{ mm}$

The maximum thickness from the above formula is t_h is 10.339mm. Thickness of the piston head by heat transfer, considering piston as a circular plate.

t _h	=	$H/(12.56 \text{ k x } (T_c - T_e))$ [(T _c - T _e) = 220° c]
		$[K = Heat conductivity Factor = 49 \text{ w/m/}^{\circ}C]$
		$[T_c = Temperature at the Centre of the skirt]$
		$[T_e = Temperature at the Edge of the skirt]$
		[H = Heat flow through the head]
Η	=	C x HCV x m x B.P.
		$[m = Fuel Mass = 162.8970 \times 10^6 Kg / B.P/sec]$
		[C = Constant = 0.05]
		[HCV = Higher calorific Value =45 x 10 ³ kj/kg]
Н	=	0.05 x 45 x 10 ³ x 162.8970 x 10 ⁶ x 1.869
Η	=	0.692 KW. = 692 W.
t _h	=	692/(12.56 x 49 x 220)
	=	0.00511090 m.
t _h	=	5.110 mm.

Taking the larger of the two values, we shall adopt $t_h = 10.339$ mm.

```
Radial thickness of the ring
```

 $D \sqrt{(3p_w / \sigma_t)}$ [pw = Pressure on the gas cylinder wall = 0.742 N/MM²] t1 = $110\sqrt{(3 \times 0.742)/(1200)}$ = t_1 4.7376 mm t₁ = Axial thickness of the ring $t_2 = 0.85t_1$ to t_1 = 0.85 x 4.7376 $t_2 = 4.026 \text{ mm.}$ Width of the Top Land(b₁) $b_1 = 1.2 \times 10.7376$ $b_1 = 12.88512 \text{ mm} \approx 12.9 \text{ mm}.$ Width of Second Ring (b₂) $b_2 = 0.74 t_2$ $b_2 = 0.74 \text{ x } 4.026$ $b_2 = 3.019 \text{ mm} \approx 3.1 \text{ mm}.$ Piston barrel Max thickness (t₃) 0.03D + b + 4.5 mmt3 = b $t_1 + 0.4$

b = 4.7376 + 0.4

b 5.1376 mm. = t3 0.03(110) + 3.427 + 4.5 mm=9.9676 mm \approx 10 mm. t3 = Piston Wall Thickness t₄ t4 = 0.33 x t3 t4 = 0.33 x 10 3.289 mm. t4 = Length of the skirt 1 (0.6 D to 0.8 D) = 0.65 x 110 = 1 71.5 mm = Total Length of the Piston Skirt Length + Ring Section Length + Top Land L = L = 74.5+10+12.9 L 97.3676 mm. = Centre of the skirt above the Centre of the skirt 0.04 x D =

Gudgeon pin length in the con-rod bushing

45% of the piston diameter l_1 = 0.45 x 110 = h 49.5 mm = Gudgeon pin diameter (d_0) (0.28 D to 0.38 D) do = 0.34 x 110 = d_0 37.4 mm. =

Based on these calculations, the piston has been designed and the calculated temperatures has been applied. Therefore, the highest temperature reached in the combustion chamber is nearly 700°C.

We have given the reference temperature as 303.15 K as it is usual on the roads taken as an average of all the seasons. The highest temperature that is reached after compression in an

engine is about 700°C so the working boundary conditions are applied at 700°C. After the combustion, the temperatures may reach up to 2000°C. Let us check for solution using the boundary conditions.

6. RESULTS

After applying the Pressures, the following effects have been resulted.

6.1 Let us look at the figures for various factorson a 70mm piston dia.

Total deformation

Strain Energy

Directional deformation

Equivalent stress

Equivalent Elastic Strain

TABLE 5 Model > Static Structural > Solution > Results

Model > Static Structural > Solution > Results					
Object Nome	Total	Equivalent	Equivalent	Strain	Directional
Object Name	Deformation	Elastic Strain	Stress	Energy	Deformation
		Resu	ılts		
Minimum	0. mm	2.6415e-006 mm/mm	0.51115 MPa	2.6043e- 006 mJ	-0.26595 mm
Maximum	4.5098 e-003 mm	3.1112e-003 mm/mm	619.57 MPa	2.3706 mJ	4.1571e-004 mm
		Minimum Valu	ie Over Time		
Minimum	0. mm	2.6415e-006 mm/mm	0.51115 MPa	2.6043e- 006 mJ	-0.26595 mm
Maximum	0. mm	2.6415e-006 mm/mm	0.51115 MPa	2.6043e- 006 mJ	-0.26595 mm
		Maximum Valu	ue Over Time		
Minimum	4.5098 e-003 mm	3.1112e-003 mm/mm	619.57 MPa	2.3706 mJ	4.1571e-004 mm
Maximum	4.5098 e-003 mm	3.1112e-003 mm/mm	619.57 MPa	2.3706 mJ	4.1571e-004 mm
Information					
Time	25. s				
Load Step	25				
Sub-step	1				
Iteration Number	25				

6.2 Results for the effect of temperature on the 70mm dia Piston.

Reaction Probe 2

Total heat flux

 TABLE 6

 Model> Steady-State Thermal > Solution> Results

Object Name	Temperature	Total Heat Flux			
State	Solved				
	Scope				
Scoping Method	Geometry	y Selection			
Geometry	All E	Bodies			
	Definition				
Туре	Temperature	Total Heat Flux			
By	Time Of Maximum	Time			
Identifier					
Suppressed	ľ	No			
Display Time		Last			
Calculate Time History		Yes			
Results					
Minimum	1. s	1.5922e-014 W/mm ²			
Maximum	1. s	1.6864e-011 W/mm ²			
Integration Point Results					
Display Option		Averaged			
Average Across Bodies	3 No				
Minir	num Value Over Ti	me			
Minimum		9.696e-015 W/mm ²			
Maximum		2.3555e-014 W/mm ²			
Maximum Value Over Time					
Minimum		1.6864e-011 W/mm ²			
Maximum	n 1.6864e-011 W/m				
Information					
Time		25. s			
Load Step		25			
Sub-step		1			
Iteration Number		25			

Model> Steady-State Thermal > Solution> Probes

Object Name	Reaction Probe	Reaction Probe 2		
State	Solved			
Definition				
Туре	Reaction			
Location Method	Boundary Condition			
Boundary Condition	Condition Temperature Convection			
Suppressed	No			

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 06 Issue 2 February 2019

Options					
Display Time	End Time				
Results					
Heat	1.5349e-002 W	-1.5349e-002 W			
Maximum Value Over Time					
Heat	1.5349e-002 W	-1.5349e-002 W			
Minimum Value Over Time					
Heat	1.5349e-002 W	-1.5349e-002 W			

6.3 LET US LOOK AT THE FIGURES FOR VARIOUS FACTORS LIKE TOTAL DEFORMATION, STRESSES ETC ON A 110MM PISTON DIAMETER.

Equivalent stress

Available online: <u>https://pen2print.org/index.php/ijr/</u>

International Journal of Research

Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 06 Issue 2 February 2019

Total deformation

Directional deformation

Equivalent Elastic Strain

TABLE 7Model > Static Structural > Solution > Results

Object Name	Total	Equivalent	Equivalent	Strain	Directional		
	Deformation	Elastic Strain	Stress	Energy	Deformation		
	Results						
Minimum	0. mm	1.4272e-006 mm/mm	0.23675 MPa	7.0451e- 007 mJ	-0.42205 mm		
Maximum	5.098 e-003 mm	3.4461e-003 mm/mm	688.09 MPa	3.5185 mJ	6.6003e-004 mm		
Minimum Value Over Time							
Minimum	0. mm	1.4272e-006 mm/mm	0.23675 MPa	7.0451e- 007 mJ	-0.42205 mm		
Maximum	0. mm	1.4272e-006 mm/mm	0.23675 MPa	7.0451e- 007 mJ	-0.42205 mm		
Maximum Value Over Time							
Minimum	5.098 e-003 mm	3.4461e-003 mm/mm	688.09 MPa	3.5185 mJ	6.6003e-004 mm		
Maximum	5.098 e-003 mm	3.4461e-003 mm/mm	688.09 MPa	3.5185 mJ	6.6003e-004 mm		
Information							
Time	25. s						
Load Step	25						
Sub-step	1						
Iteration	25						

Directional Heat flux

 TABLE 8

 Model > Steady-State Thermal > Solution > Results

Object Name	Temperature	Total Heat Flux	Directional Heat Flux	Thermal Error		
Results						
Minimum	950. K	9.5696e-015 W/mm ²	-2.6573e-011 W/mm ²	9.6623e-023		
Maximum	950. K	3.5375e-011 W/mm ²	2.6389e-011 W/mm ²	3.2103e-018		
Minimum Value Over Time						
Minimum	950. K	9.117e-015 W/mm ²	-2.6573e-011 W/mm ²	6.2327e-023		
Maximum	950. K	1.1645e-014 W/mm ²	-2.6573e-011 W/mm ²	9.7432e-023		
Maximum Value Over Time						
Minimum	950. K	3.5375e-011 W/mm ²	2.6381e-011 W/mm ²	3.208e-018		
Maximum	950. K	3.5375e-011 W/mm ²	2.6389e-011 W/mm ²	3.2105e-018		
Information						
Time	25. s					
Load Step	25					
Sub-step	1					
Iteration Number		25				

7. CONCLUSION

This study, has been conducted using Ansys 16.0 software. The effect of temperature and pressure have been observed on a Piston material made of cast aluminum alloy. As per the simulations done above and the results obtained have given us a clear statistical data about the calculated pressure and temperatures after being applied on the 70 mm and the 110 mm diameter piston heads. The resulted deformations, stresses and fluxes have been studied and the results

looks quite promising. Comparatively, a change in piston design has been made. Here, the excess material of the piston aiding in higher weight has been removed. The stresses and temperatures applied on both of the configurations are under allowed limits. It was found that the design parameter of the piston with these modifications gives us the improvements as expected in the existing results.

8. **REFERENCES**

[1]. Alloy data: http://11.tcdcinc.com/media/2009_NADCA_Alloy_Data.pdf

[2]. Dr. Ahmed A, Dr. Basim., "Thermal effects on diesel engine piston and piston compressionring", Engineering and technology Journal, Vol. 27, No. 8, 2009.

- [3]. Piotrszurgott, TadeuszNiezgoda "Thermo Mechanical FE Analysis Of The Engine Piston Made Of Composite Material With Low Hysteresis", Journal of KONESpower trains and transport, Vol 18, No 1, 2011.
- [4]. http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/diesel.html
- [5]. <u>https://www.dieselnet.com/tginfo/abstracts.html</u>

9.ABOUT THE AUTHORS

PEDIREDDLA SRINU is currently pursuing his 2 Years M.Tech in Department Of Mechanical Engineering, Gonna Institute Of Information Technology and Sciences, Visakhapatnam, AP, India. His area of interest includes CAD/CAM.

MR.V.TIRUPATHI RAO is currently working as Assistant Professor in Department of Department Of Mechanical Engineering, Gonna Institute Of Information Technology and Sciences, Visakhapatnam, AP, India. He has more than 3 years of teaching experience in engineering colleges. His area of interest includes CAD/CAM.