

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 361

NLP ALGORITHMS IN OOP FOR PROCESSING THE TEXT

BASED DOCUMENTS IN RUSSIAN LANGUAGE IN MACHINE

LEARNING.
N. Urmanov1, Bektemyssova G.U2, Kouros Basiri3

1International University of Informational Technology, 050040,Almaty, Kazakhstan
urmnurbolat@gmail.com

2International University of Informational Technology, 050040,Almaty, Kazakhstan

k.basiri@iitu.kz
3International University of Informational Technology, 050040,Almaty, Kazakhstan

g.bektemysova@iitu.kz

ABSTRACT

The purpose of this article is to guide in natural

language processing algorithms in Object-

Oriented Programming for processing Russian

text documents in machine learning. In this

work, we describe some NLP algorithms and

tools, and how to apply and use best practice

Object-Oriented Programming for refine

Russian text in machine learning.

KEYWORDS

Natural language processing; sentiment

analysis; machine learning; tokenization; word

frequency; tf-idf; Word2Vec; stemming;

lemmatization.

1. INTRODUCTION

In every second the volume of data in

worldwide increase significantly, which

consist information such as photos, videos,

comments in social networks, reviews in

internet shops, articles, books and etc.

Human physically cannot process and

monitor such capacity of information. For

example, nowadays in Facebook work

around 7 500 content moderators, to review

information which is located in one social

network. In addition, some kind of

information consist forbidden content,

which can be harmful to psychology of the

person.

Therefore was developed set of algorithms

which applied by computer which allows to

process large volume of information.

Natural language processing (Natural

Language Processing, NLP) - the general

direction of an artificial intelligence,

mathematical linguistics and machine

learning. It studies problems of the

computer analysis and synthesis of natural

languages.

The purpose of NLP is processing and

"understanding" of a natural language for

the translation of the text to machine

language and the response to questions.

The quality of understanding depends on a

set of factors: from language, from national

culture, from the interlocutor etc.

The main directions of natural language

processing include such as extraction of the

facts, sentiment analysis, responses to

questions, information search, generation of

the text, translation, etc. In this article, we

will cover algorithms in Object-oriented

language, which applied in sentiment

analysis in Russian language.

2. Natural language processing –

algorithms and tools

Semantic analysis - extremely heavy

operation from the point of view of use by

developers: most often the deep

understanding of the algorithm and methods

of its implementation and also knowledge

of the language on which the text is written

is required.

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/
mailto:urmnurbolat@gmail.com
mailto:g.bektemysova@iitu.kz

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 362

NLP in semantic analysis include next

algorithms, which covered in this work:

• Tokenization

• Word frequency in text

• Stemming

• Stop-listing

• Lemmatization

• TF-IDF matrix

• Word2Vec

Those algorithms of NLP is common and

widely used in semantic analysis.

2.1. Tokenization

Token - the object which is created from a

lexeme in the course of lexical analysis.

Token in lexeme is the minimum unit of

language making independent sense. There

are following types of lexemes. In other

words, in semantic analysis token can be

single word, sentences or paragraph. In this

work we will use token as a single word.

The first step in NLP is to identify tokens,

or those basic units which need not be

decomposed in a subsequent processing.

The entity word is one kind of token for

NLP, the most basic one. Our concern,

however, is with using the computer to

recognize those tokens without distinct

delimiters, such as Chinese words, English

idioms and fixed expressions [4]

2.2. Word frequency in text

In semantic analysis often use word counter

algorithm, to find frequency of each word

in given text. Why this technique need? It

need if your task is find keywords or unique

terms, to classify large documents corpus,

to find corpus similarity and etc.

The distribution of word frequencies is a

fundamental phenotype of a language.

Statisticians and linguists have studied

Word frequency distributions since the

statistics of word usage yield valuable

insights into the language, its construction,

and its evolution. These distributions have

been long-studied outside of statistics and

linguistics as well. [3]

2.3. Transformed Term-Frequency

Matrix

The entries in the term-document matrix are

often transformed to weight them by their

estimated importance in order to better

mimic the human comprehension process.

For language simulation, the best

performance is observed when frequencies

are cumulated in a sublinear fashion within

cells (typically log(freqij+1), where freqij is

the frequency of term i in document j), and

inversely with the overall occurrence of the

term in the

collection (typically using inverse

document frequency or entropy measures).

(Figure 1) [1]

Figure 1 Term-by-document matrix.

2.4. Stop-listing and stemming

In stemming, conversion of morphological

forms of a word to its stem is done

assuming each one is semantically related.

The stem need not be an existing word in

the dictionary but all its variants should

map to this form after the stemming has

been completed. There are two points to be

considered while using a stemmer:

• Morphological forms of a word are

assumed to have the same base meaning

and hence should be mapped to the same

stem

• Words that do not have the same

meaning should be kept separate

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 363

These two rules are good enough as long as

the resultant stems are useful for our text

mining or language processing applications.

Stemming is generally considered as a

recall-enhancing device. For languages with

relatively simple morphology, the influence

of stemming is less than for those with a

more complex morphology. Most of the

stemming experiments done so far are for

English and other west European

languages.[2]

Stop-listing is applied to delete stop words

and single symbols which is appear in text

document, and probably frequency of stop

words can be more than other key words in

this text. That’s why this step is necessary

to use for get more clear result in machine

learning.

2.5. Lemmatization

Lemmatization is transformation of words

into a lemma, that is, into their original

vocabulary form. First of all, lemmatization

is used by search engines. It helps them to

accelerate indexing and request processing

and also to increase relevance of the

delivery. This is exact process with use of a

lexicon and morphological analysis of

words as a result of which only the

inflectional terminations are removed and

returns the main, or dictionary, the word

form called by a lemma. For example, in

“saw” lexeme during stemming can turn

into letter “s” while lemmatization will

return either the word “see”, or the word

“saw “depending on whether the lexeme is

a verb or a noun. The important distinction

consists that usually stemming "sticks

together" derivative cognate words, and

lemmatization "sticks together" only

inflected forms of one lemma. Stemming

and lemmatization are often carried out by

means of the additional program

components which are built in indexing

process.

As proposed in, each word is labeled by a

class label, that represents the

transformation that should be applied to get

the normalized form of the word. To

determine this class, a stem should be found

first. It is the part the two words (the word

and its normalized form) have in common.

The words property and properties have

both the stem “propert” in common. Or in

Slovene, the words “BRESKEV” and

“BRESKVAH” have “BRESK” in

common. Then we can see that we should

remove the suffix “VAH” from

“BRESKVAH” and add the suffix “EV” to

get the normalized form “BRESKEV”.

Thus we assign the class label “VAHtoEV”

to the word “BRESKVAH” [5]

2.6. Word2Vec

Word2Vec is a tool (a set of algorithms) for

calculation of vector representations of

words, implements two main architecture

— Continuous Bag of Words (CBOW) and

Skip-gram. As a input define text corpus or

word, and output will be represent as vector

variables (coordinators in vector space).

Continuous Bag of Words (CBOW) and

Skip-gram illustrated in Figure 2.

The skip-gram model’s objective function

is to maximize the likelihood of the

prediction of contextual words given the

center word. More formally, given a

document of T words, we wish to maximize

(1)

 (1)

Where c is a hyperparameter defining the

window of context words. [6]

The CBOW model predicts the center word

wo given a representation of the surrounding

words w−c, ..., w−1, w1, wc. Thus, the output

vector ow−c,...,w−1,w1,wc is obtained from

the product of the matrix O ∈ R|V|*d
w with

the sum of the embeddings of the context

words (2) [6]

 (2)

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 364

Figure 2. Skip-gram and Continuous Bag-

of-Word (CBOW) models illustration

The principle of set of algorithms is finding

of relations between contexts of words

according to the assumption that the words

that are in similar contexts tend to mean

similar things, i.e. to be semantic close.

More formally: maximizing cosine

proximity between vectors of words (a

scalar product of vectors) which appear

next to each other, and minimization of

cosine proximity between vectors of words

which do not appear the friend near the

friend. Next to each other in this case

means in familiar contexts.

Word2Vec can be applied perfectly to

different problems of natural language

processing, somehow:

 Word clustering by the principle of

their semantic similarity

 Identification of semantic similarity

of words (for example to what a

word the cat — is semantic closer

to food or space pirates)

 For the analysis of tonality,

however, not successfully. That is,

quite successfully, but after all not

really.

3. Experimental part

In this part we will describe how to apply

mentioned above algorism for Russian

language. It will include some description,

pseudocode and examples in object-

oriented programming.

3.1. Applying Tokenization

In object oriented programming many

example of how to apply tokenization in

text input. In this work, we will use

technique that is applicable for machine

learning and can be reusable.

The basic of tokenization is to use

Iterator<Template> object, which is

available in java.util library.In text-based

document Template should be as a String.

In machine learning generally, take as input

whole file, which is text-based document,

which converted to streamed object. For

example, in java language input file

converted to BufferReader.

To convert file to Iterator, which can be

reusable in program, you should apply next

algorithm:

1. Read text line by line. In each OOP

language document can be read line by line

by function readline().

2. Divide each object in line by

whitespacing.

Each object as string should be saved in

Iterator<Template> object, where store

each word, symbol or a single char. After

this we can apply different algorithms, like

stemming, word counting, lemmatization to

each single object, which stored in

Iterator<Template> object. Tokenization

pseudocode in Algorithm 1.

Algorithm 1: Tokenization Algorithm

1. t:=f(u,X)∣∣[X¯]n2

2. c:=E(K,t)

3. if (c¯mod2n)≥10ℓ, then t:=c and go back to step 2

4. token:=[c¯mod2n]ℓ10

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 365

5. if check(token)=True, then u:=u+1 and go back to step 1

6. return token

3.2. Applying stop listing

This technique very easy to apply, but very

important step in natural language

processing. This step important, because it

delete noises in machine learning and

improve result of learning or analysis.

One if example of using stop listing is to

download stop words list file which is

available in internet for free and for every

language and compare each word in text to

each word in stop words list. If they are

equal, just ignore these noises. Each word

can be retrieved from tokenization, which is

described above. Example of usage in OOP

code in Example 1.

Example 1: Stop listing usage example

If (Stop Words List.contains(token))

 Skip;

3.3. Applying stemming

The problem of text analysis, is that there

are appear one word with different affix.

For example in English: user – 3 times,

users – 4 times. In other word NLP will

consider this word as a different. To obtain

this situation we use stemming algorithms.

To write own stemming algorithm very

hard. It needs full morphological analysis of

language. The easiest way is to use

available tools. In Russian language

available very strong tool Snowball

stemming. It include methods and

algorithms, which will cut Russian endings.

For you it only need declare Snowball

Russian stemmer object and send as

argument each token, which means each

word. Example of usage in OOP code in

Example 2.

Example 2: Stemming algorithm example

RussianStemmer stemmer = new RussianStemmer();

stemmer.setCurrent(token);

stemmer.stem();

Pseudocode for stemming “word” string in Algorithm 2.

Algorithm 2: Stemming Algorithm

Input: a text token and a dictionary

Rules:

If token length < 4 return token

If token is number return token

If token is acronym return token

If token in dictionary return the stored stem

If token ends in s’

 strip the ’ and return stripped token

If token ends in ’s

 strip the ’s and return stripped token

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 366

If token ends in “is”, “us”, or “ss” return token

If token ends in s

 strip s, check in dictionary, and return stripped token if there

If token ends with es

 strip es, check in dictionary, and return stripped token if there

If token ends in ies

 replace ies by y and return changed token

If token ends in s

 strip s and return stripped token

If token doesn’t end with ed or ing return token

If token ends with ed

 strip ed, check in dictionary and return stripped token if there

If token ends in ied

 replace ied by y and return changed token

If token ends in eed

remove d and return stripped token if in dictionary

If token ends with ing

 strip ing (if length > 5) and return stripped token if in dictionary

If token ends with ing and length ≤ 5 return token

// Now we have SS, the stripped stem, without ed or ing and it’s

// not in the dictionary (otherwise algorithm would terminate)

If SS ends in doubling consonant

 strip final consonant and return the changed SS if in dictionary

If doubling consonant was l return original SS

If no doubled consonants in SS

 add e and return changed SS if in dictionary

If SS ends in c or z, or there is a g or l before the final doubling consonant

 add e and return changed SS

If SS ends in any consonant that is preceded by a single vowel

 add e and return changed SS

return SS

Note that in Russian language uses UTF-8 encoding for cutting endings.

Disadvantages of stemming algorithm is not

all the words can be stemmed to their right

root word, which leads to not properly

natural language processing and less

accurate machine learning result.

3.3. Applying lemmatization

Lemmatization is moderate form of

stemming. This algorithm can find right

roots of word than stemming algorithm. For

example: am, are and is after lemmatization

converts to be.

To write own lemmatization algorithm will

be very hard, harder than stemming.

Because lemmatization need some lexical

database, which need large of time to create

own database. In other word for use

lemmatization in machine learning and not

spent time, is to use available API. In

Russian language there are available SpaCy

tools or info.semanticanalyzer library. To

use this tools is similar to stemming, send

as argument each token. Example of OOP

code in Example 3.

Example 3: Lemmatization algorithm use example

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 367

MorphAnalyzer analyzer = MorphAnalyzerLoader.load(new MorphAnalyzerConfig(New

Properties()));

MorphDesc morphDescription =analyzer.analyzeBest(token);

morphDescription.getLemma();

Pseudocode of lemmatization in Algorithm 3.

Algorithm 3: Lemmatization Algorithm

1. check the presence of X in the list of lemmas;

 if “yes” then return X itself and stop

2. check the presence of X in the list of guides;

 if “yes” then return the lemma of guide X and stop

3. repeat the following:

 3.1. look for a guide Y with the same ending as the ending of X (as long as it can be)

 3.2. derive the (probably) lemma X′′ of X by comparing with the (known)

 lemma of Y (details beneath)

 3.3. check the presence of X′′ in the list of lemmas;

 if “yes” then return X′′ and stop

3.3. Applying word frequency in text

Word frequency is just counting how many

times word appears in text. It seems quite

easy, but in NLP, which applied in

machine, should be complex and reusable.

In other word frequency number of each

word should stored in object for further

processing.

Word counting should be represented as

Map variable, which stored as a key String

word, and value as Integer – number of

frequency, in Example 4.

Example 4: Word frequency object example

Map<String, Integer>

OOP code example in Example 5.

Example 5: Word frequency usage example

 public int count(T obj, int count) {

 if (count < 1)

 throw new IllegalArgumentException("Count must be positive: " + count);

 int objIndex = (allowNewIndices)

 ? objectIndices.index(obj)

 : objectIndices.find(obj);

 if (objIndex < 0)

 return 0;

 int curCount = indexToCount.get(objIndex);

 indexToCount.put(objIndex, curCount + count);

 sum += count;

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 368

 return curCount + count;

 }

Pseudocode in Algorithm 4.

Algorithm 4: Word frequency counting Algorithm

void Map (key, value){

//key – word

//value – word frequency

 get key index;

 if index not find

 create index;

 value+1;

}

3.3. Applying TF-IDF

TF-IDF is statistics which are used mainly

for estimation of importance (weightiness)

of a concrete word (term) in the context of

all document entering the general collection

(base)

There are 2 method should be applied:

Term-Frequency(TF) - the relation of

number of occurrence of the concrete term

to a total mere verbiage in the studied text

(document). To show this reflects

importance (weightiness) of a word within

certain article / publication - tf(t,d) = word

frequency/total number of word in

document

Inverse document frequency (IDF) - it is

inversion of rate with which a certain word

appears in a collection of texts (documents).

Thanks to this indicator it is possible to

reduce weightiness of the most widely used

words (pretexts, the unions, the general

terms and concepts). For each term within a

certain base of texts only the unique IDF

value is provided - idf(t,d) = log(word

frequency/total number of document

containing word)

For computing TF, we need word frequency

and number of words in documents. This

information can retrieve from word

frequency, which described above.

Pseudocode of algorithm is in Algorithm 5.

Algorithm 5: Term-frequency Algorithm

ComputeTF(Map<key, Value>){

 tf = value/Map.length;

 return tf;

}

Example of code in OOP in Example 6.

Example 6: Term-frequency example

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 369

ComputeTF (MAP[key, value] of Object.entries(TFVals)){

 TFVals = TFVals[value] / Map.length;

 }

IDF computing additional need number if documents which contain key (word). Pseudocode in

Algorithm 6.

 Algorithm 6: Inverse document frequency Algorithm

document count = 0;

ComputeIDF(Map<key, Value>){

 idf = log(value/ ComputeDocuments());

Return idf;

}

ComputeDocuments(Map<key, Value>,documents){

 For each document:

 if documents contain key

 count++;

 return count;

}

Finally, to get tf-idf information, we just multiply them. Algorithm 7 is pseudocode.

Algorithm 7:TF-IDF Algorithm

ComputeTFIDF(Map<key, value>, documents){

 Foreach term:

 termTF = ComputeTF(Map<key, value>);

 termIDF = ComputeIDF(Map<key, value>, documents);

 tf-idf = termTF*termIDF;

 retrun tf-idf;

}

3.3. Applying Word2Vec

Word2Vec also include two main algorithms, which described in theory part. Word2Vec

algorithm described in Algorithm 8.

Algorithm 8:Word2Vec Algorithm

Input: data /* the input document*/

windows /*windows size*/

vDim /* dimensionality of the word vector */

nSample /* samples that selected randomly */

Output: updated sync /* word vectors */

repeat until data run out

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 370

 // read a sentence from train data

 senE] = ReadWords(data);

 foreach tWord e sen

 // feed forward

 foreach wWord e sideWords(tWord, windows)

 for d=0 to vDim

 neu1[d] = neu1[d] + syn0[wWo:d][d];

 // negative sampling

 foreach sample e (nSample || tWOrd)

 if sample == tWord then label = true

 else // sample 6 negative samples

 label = false

 for d=0 to vDim do f += neu1[d] *syn1[samp1e][d];

 g = getGradient(f, label);

 for d=0 to vDim do neu1e[d] += 9*syn1[samp1e][d];

 for d=0 to vDim do syn1[samp1e][d] += 9 * neu1[d];

 // backpzopagation

 foreach wWord e sideWords(tWord, windows)

 for d=0 to vDim do syno[wWord][d] += neu1e[d];

Example in object oriented code in Example 7.

Example 6: Term-frequency example

 Word2Vec vec = new Word2Vec.Builder()

 .minWordFrequency(5)

 .iterations(1)

 .batchSize(250)

 .layerSize(100)

 .lookupTable(table)

 .stopWords(new ArrayList<String>())

 .vocabCache(cache)

 .seed(42)

 .learningRate(0.025)

 .minLearningRate(0.001)

 .sampling(0)

 .windowSize(5)

 .modelUtils(newBasicModelUtils<VocabWord>())

 .iterate(iter)

 .tokenizerFactory(t)

 .build();

 assertEquals(new ArrayList<String>(),vec.getStopWords());

 vec.fit();

 // WordVectorSerializer.writeWordVectors(vec,

pathToWriteto);

 File tempFile = File.createTempFile("temp", "temp");

 tempFile.deleteOnExit(); WordVectorSerializer.writeFullModel(vec,

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

International Journal of Research
Available at https://pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 2

February 2019

Available online: https://pen2print.org/index.php/ijr/ P a g e | 371

tempFile.getAbsolutePath());

 Collection<String> lst = vec.wordsNearest("day", 10);

3. CONCLUSIONS

The work presented in this paper give

information about NLP techniques, which

can be applied to Russian language based

text documents. Given algorithms and

examples described for object-oriented

programming. This techniques can be used

for different goal, but common way is to

use this techniques to semantic analysis in

machine learning.

ACKNOWLEDGEMENTS

I would like to thank all my teachers from

International University of Information

Technology for giving a lot of experience

and knowledge in master degree courses.

REFERENCES

[1] [1] Scholarpedia, Latent Semantic

Analysis, Available:

http://www.scholarpedia.org/article/Latent_se

mantic_analysis [Accessed: 4 March. 2017]

[2] Ms. Anjali Ganesh Jivani (2011), «A

Comparative Study of Stemming Algorithms.»,

IJCTA (2011), pp. 1930-1938

[3] Flavio Chierichetti, Ravi Kumar, Bo

Pang (2017), «On the Power Laws of

Language: Word Frequency Distributions.»,

SIGIR’17 (August 7-11, 2017,), pp. 385-394

[4] Jonathan J. Webster, Chunyu Kit

(1992), « TOKENIZATION AS THE INITIAL

PHASE IN NLP», COLING '92 Proceedings

of the 14th conference on Computational

linguistics - Volume 4, pp. 1106-1110

[5] Joël Plisson, Nada Lavrac, Dunja

Mladenic (2004) « A Rule based Approach to

Word Lemmatization», Plisson et al., 2004

[6] Wang Ling, Chris Dyer, Alan Black,

Isabel Trancoso (2015) « Two/Too Simple

Adaptations of Word2Vec for Syntax

Problems», Human Language Technologies:

The 2015 Annual Conference of the North

American Chapter of the ACL, pp. 1299–1304

https://pen2print.org/index.php/ijr/
https://pen2print.org/index.php/ijr/

