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ABSTRACT-- The absence of labeled data presents 

a typical test in numerous computer vision and 

machine learning tasks. Semisupervised learning 

and transfer learning methods have been created to 

handle this test by using auxiliary samples from the 

same area or from an alternate space, respectively. 

Self-taught learning, which is a special kind of 

transfer learning, has less restrictions on the 

decision of auxiliary data. It has shown promising 

execution in visual learning. Be that as it may, 

existing self-taught learning methods usually 

overlook the structure information in data. In this 

paper, we focus on building a self-taught coding 

framework, which can viably use the rich low-level 

pattern information abstracted from the auxiliary 

space, so as to describe the high-level structural 

information in the target area. By utilizing a high-

quality dictionary learned across auxiliary and 

target domains, the proposed methodology learns 

expressive codings for the samples in the target 

space. Since numerous types of visual data have been 

demonstrated to contain subspace structures, a low-

rank constraint is acquainted into the coding 

objective with better portray the structure of the 

given target set. The proposed representation 

learning framework is called self-taught low-rank 

(S-Low) coding, which can be detailed as 

anonconvex rank-minimization and dictionary 

learning problem. We devise an efficient 

majorization– minimization augmented Lagrange 

multiplier algorithm to solve it. Based on the 

proposed S-Low coding mechanism, both 

unsupervised and supervised visual learning 

algorithms are determined. Extensive experiments  

on five benchmark data sets demonstrate the 

effectiveness of our methodology. 

 

 

Index Terms-- Data clustering, image classification, 

low-rank coding, self-taught learning (STL), transfer 

learning. 

I.INTRODUCTION 

Generally, this problem was halfway addressed by 

semi-supervised learning [10] or transfer learning 

methods [11]– [14]. Semisupervised learning makes 

use of some labeled samples and a bigger set of 

unlabeled samples, which are drawn from the same 

space with the same distribution, to prepare a model. 

At the end of the day, semi-supervised learning can 

just solve learning problems in the same space. In 

transfer learning, this restriction is loose to some 

degree. The labeled samples and the auxiliary 

samples in transfer learning are drawn from various 

domains with various distributions. Be that as it may, 

transfer learning requires that two domains should be 

similar to one another. Many transfer learning 

algorithms assume that two domains share a similar 

information structure. In a word, both 

semisupervised learningand transfer learning put 

strong restrictions on auxiliary (source) data, which 

constrained their pertinence. As of late, a rising 

machine learning worldview of self-taught 

learning.(STL) [15]– [21] using unlabeled data with 

less restrictions holds significant promise in terms of 

upgrading the execution of image clustering and 

classification.  

STL and transfer learning are two related concepts 

[11], [15]. The key distinction is that they place 

diverse restrictions on the auxiliary space. 

Specifically, transfer learning just leverages labeled 

data from related homogenous tasks (e.g., space 

adjustment [22]), while STL relaxes such a 

restriction by using subjective images (e.g., 

arbitrarily down-stacked images) to shape the 
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auxiliary area. The instinct behind STL is that 

arbitrarily selected visual data in an auxiliary space 

can still contain the basic visual patterns (such as 

edges, corners, and nuclear shapes), which are 

fundamentally the same as those in the target area. 

The adaptability of STL makes it especially potential 

to the regularly increasing gigantic measure of 

unlabeled visual data. Existing STL methods, be that 

as it may, simply disregard the structure information 

in the target space, which is basic in the visual 

learning tasks, such as image classification.  

In this paper, we propose a novel self-taught low-

rank (S-Low) coding framework for visual learning. 

By utilizing a high-quality dictionary abstracted 

from the abundance of information behind the 

auxiliary area, we expect to learn expressive high-

level representations for the target space. Since 

numerous types of visual data are all around 

described by subspace structure [6], [23], we present  

a low-rank constraint to make use of the worldwide 

structure information in the target space. 

Emphasizing such sort of structure information 

through low-rank constraints could significantly 

profit wide visual learning tasks. Specifically, our 

methodology is entirely suitable for addressing the 

tasks that influence on the misuse of basic data 

structure, such as item acknowledgment, scene 

classification, face acknowledgment, and image 

clustering. Especially when the target data set is 

small, our methodology is still ready to separate 

viable feature representations by temperance of huge 

scale unlabeled data in the auxiliary space. In the 

interim, the low-rank constraint is equipped for 

expelling noise or outliers from data [24]– [26], 

which helps us adapt increasingly robust 

representations in the target area. 

 
Fig. 1. Diagram of the S-Low coding framework. A 
small target data set XT is usually not sufficient to 

extract effective features. By utilizing the auxiliary 
data set XS , the proposed S-Low framework learns a 
shared dictionary D from two domains and enforces 
a low-rank constraint on the coefficient matrix of 
target domain ZT that is considered as new feature 
representations. Finally, the NCut algorithm can be 
utilized for image clustering, and the SVM can be 
trained on ZT for image classification. 

Fig. 1 shows a chart of our methodology. 

Naturally, we extricate useful building blocks from 

the auxiliary space in terms of a decent portrayal of 

hidden structure in the target area. An expressive 

dictionary is found out by displaying both the 

auxiliary space and the target area. In this process, 

the structure information in the target area is upheld 

using low-rank constraints. All the more specifically, 

our methodology can be expressed as a rank-

minimization and dictionary learning problem. We 

design a powerful majorization– minimization 

enhancement algorithm to get familiar with the low-

rank codings and dictionary mutually. At long last, 

the adapted low-rank codings correspond to the 

target space can be straightforwardly used for 

clustering, or can be utilized to prepare a supervised 

model like support vector machines (SVMs) for 

classification. 

Besides, some limitations of existing STL methods 

can be addressed by the proposed methodology. 

First, existing methods either loosely consolidate 

representation learning with the last learning tasks 

[15], or tailor the algorithms to specific applications 

[19]. Our methodology could be easily connected to 

both supervised and unsupervised learning tasks by 

and large. Second, existing STL methods adapt new 

representations autonomously for each sample in the 

target space, where the vital worldwide structural 

information in the given set is simply overlooked. 

Our methodology could viably use the rich low-level 

pattern information abstracted from the auxiliary 

space to describe the high-level structure information 

in the target area. It closely links the coding method 

to the learning tasks.  

This paper is an extension of our previous work 

[27]. In summary, the real contributions of this paper 

incorporate the following.  

https://journals.pen2print.org/index.php/ijr/
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1)  With the assistance of rich information from the 

auxiliary area, we learn viable feature 

representations, S-Low codings, by fusing low-rank 

constraints in the target space.  

2)  The proposed STL approach is a general 

framework that is suitable for various visual learning 

scenarios. In this paper, we present point by point 

algorithms for unsupervised learning and supervised 

learning.  

3)  Instead of using the biased estimators like l1 

standard and the atomic standard in much low-rank 

representation (LRR) algorithms, we supplant the l0 

standard and the rank capacity in our model by the 

minimax concave punishment (MCP) standard and 

the network γ - the standard that is considered as 

unbiased estimators. A compelling majorization– 

minimization enhancement algorithm is created to 

solve our model. We also exactly illustrate the 

assembly property of the improvement algorithm.  

4)  Extensive trial results on five benchmark data 

sets show that our methodology consistently out-

performs several representative low-rank learning 

and STL methods. 

II. RELATED WORK 

Please In this section, we discuss two related 

topics, including STL and low-rank learning.  

 

A. Self-Taught Learning  

In some certifiable visual learning tasks, the 

assumption of sufficient preparing data may not 

always hold. Thus, including extra data resources to 

conquer the shortage of preparing data becomes a 

vital problem. Most representative solutions 

incorporate semisupervised learning [10] and 

transfer learning [11]. The previous solution 

addresses this problem by using a lot of unlabeled 

data from the same space with the same distribution 

to fabricate better classifiers, while the last one tries 

to use labeled data from related homogenous tasks. 

In any case, neither unlabeled data with the same 

distribution nor labeled data from homogenous tasks 

are easy to get.  

As of late, there has been a surge of interest in the 

theme of STL, by including unlabeled data without 

the above restrictions [15]– [19]. Raina et al. first 

proposed the idea of STL by applying the sparse 

coding mechanism to construct a higher level 

representation from the unlabeled data [15], [18]. 

Lee et al. [16] broadened Raina's work by presenting 

a speculation of sparse coding module, which could 

be suited to show other data types drawn from an 

exponential family distribution. From the application 

perspective, Dai et al. [17] proposed a clustering 

algorithm in the spirit of STL by allowing the feature 

representation from the auxiliary data to impact the 

target data through a typical set of features. Kuen et 

al. [21] utilized the center thought of STL, and 

transferred stacked autoencoders for visual 

following. In any case, existing STL methods don't 

exploit any worldwide structure information in the 

target set, as they encode each information signal 

autonomously. Besides, a generalizable schema of 

STL for both supervised and unsupervised learning 

tasks has not been all around studied yet.  

The most applicable technique in the writing is 

robust and discriminative STL (RDSTL) [19]. 

RDSTL is a classification algorithm with self-taught 

nature by using supervision information in the target 

space to discover the ideal dictionary basis vectors. 

There are significant differences among RDSTL and 

our methodology. First, RDSTL does not consider 

the worldwide structure information in the target 

area, which is cautiously displayed by means of low-

rank constraints in our methodology. Second, 

RDSTL is designed for classification. We present 

both clustering and classification algorithms using 

our framework.  

B. Low-Rank Learning  

 

Low-rank learning is a functioning research theme 

lately [28], with numerous successful applications in 

various domains [29]– [34]. Robust PCA [24] is 

ready to decompose  

a corrupted sample set X ∈ Rd×N into a low-rank 

(clean) segment XL ∈ Rd×N and a sparse (noise) 

segment E ∈ Rd×N, where d is the dimension of 

sample and N is the sample size. Specifically, X = 

https://journals.pen2print.org/index.php/ijr/
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XL + E. RPCA assumes that data are drawn from a 

single subspace. Besides, LRR aims to recoup clean 

data from noisy observations that are drawn from 

different subspaces [6].  

 

The objective capacity of the LRR is as follows:  

 
where rank() denotes the rank capacity, Z ∈ RN 

×N is the low-rank coding grid for X, E ∈ Rd× N is 

the reconstruction mistake lattice, E 0 denotes the l0 

standard of network E, and λ1 is a tradeoff parameter. 

The above problem is hard to solve because of the 

nonconvexity of rank capacity and l0 standard. 

Usually, they can be changed over into follow 

standard (i.e., atomic standard) and l1 standard, 

respectively, and after that, numerous advancement 

algorithms can be connected to solve the problem. 

Numerous algorithms have been proposed to 

improve the execution of LRR. For instance, 

pursuing powerful bases for LRR is an essential 

problem [35]. As of late, a bound together multiscale 

LRR approach is designed for image segmentation 

[36]. The low-rank constraint can also be utilized to 

learn robust sub-space [37], to learn compelling on 

the web metrics [38], to construct solid graphs [39], 

to help ensemble clustering [40], or to distinguish 

outliers in multiview settings [41].  

There are significant differences between our S-

Low coding methodology and the previously 

mentioned low-rank learning methods:  

1)  they just focus on a single space, while our 

methodology seeks assistance from the auxiliary area 

and 2) existing work like [30] and [42] learns a 

dictionary just from the target area, and all other 

existing low-rank methods don't learn dictionaries. 

Nonetheless, our methodology learns a dictionary 

from both auxiliary and target domains in the STL 

set.Some ongoing works brought low-rank 

constraints into transfer learning problems [12], [13], 

[43]. Low-rank transfer subspace learning technique 

imposes a low-rank constraint on a low-dimensional 

subspace shared by source and target domains [12], 

and low-rank space adjustment strategy aims to 

diminish the area distribution disparity using LRRs 

[13]. An inert low-rank transfer learning approach is 

proposed to handle the missing methodology 

acknowledgment problem [44]. Our methodology 

differs from them in three aspects. First, these 

methods have restrictions in terms of using related 

homogenous tasks in source and target domains, 

while our methodology relaxes such restrictions. 

Second, they can't learn dictionaries because of their 

problem settings. Third, the learning across various 

domains is transferred through a shared subspace, 

while our methodology transfers information by 

means of a dictionary. 

 

III. PROPOSAL METHODOLOGY  

SELF-TAUGHT LOW-RANK CODING 

This In this section, we figure the proposed self-

taught low-rank coding framework and build up our 

methodology systematically. At that point, we 

present a viable enhancement algorithm to solve the 

model.  

 

A. Inspiration  

We will probably take advantages of the rich 

unlabeled data, so as to improve the coding execution 

for various visual learning tasks. To accomplish this 

objective, we propose a S-Low coding framework, 

by utilizing a high-quality dictionary abstracted from 

the abundance of information behind the auxiliary 

area. Our instinct is that numerous types of visual 

data are very much portrayed by subspace structure, 

and in this way, it is possible to use on such 

information from both auxiliary and target domains, 

lastly learn expressive high-level representations for 

the target space. Specifically, we present a low-rank 

constraint in our framework to exploit worldwide 

structure information in the target space. 

Emphasizing such sort of structure information 

through low-rank  

 

constraints could enormously profit wide visual 

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://journals.pen2print.org/index.php/ijr/  
  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 06 Issue 03 

March 2019 

 

Available online: https://journals.pen2print.org/index.php/ijr/  P a g e  | 1017   

learning tasks especially clustering and 

classification, in which perceiving the hidden 

structure of a given sample set is our definitive 

objective. The low-rank constraint is also equipped 

for expelling noise and outliers from data [24], [25], 

which leads to robust data representations.  

 

B. Problem Formulation  

Considering the STL problem, we are given a set 

of plenteous, unlabeled samples, XS = {x S1, . . . , 

xSm } ∈ Rd×m, in the auxiliary area (or source 

space), and we also have constrained samples in the 

target area, XT = {xT 1, . . . , x T n } ∈ Rd ×n. Our 

methodology aims to learn expressive codings, in 

which the subspace structural information is 

encoded, for the samples in the target space. Like 

other STL methods, we don't assume that the data 

from auxiliary and target domains share the same (or 

similar) distributions. Moreover, we don't necessitate 

that the samples are labeled in the target area. In this 

way, our methodology can be performed in either 

unsupervised or supervised fashions, which differs 

from the problem settings in [15] and [19]. We will 

show that our methodology could manage clustering 

problem if labels are inaccessible in the target space, 

or classification problem with labeled samples. 

Customarily, the sparse coding [2], [3], dictionary 

learning [4], [5], or low-rank learning [6], [7] 

methods around represent the samples in a single 

space (i.e., the target area) 

 

XT ≈ DT ZT (2)  

 

where ZT ∈ Rr×n is the representation coefficient 

grid and DT ∈ Rd×r is a dictionary. r is the size of a 

dictionary. Here, 

Z T is usually expected to be sparse or low-rank, 

as per the application scenario. Note that the 

dictionary DT is frequently set as the sample set in 

some sparse representation and low-rank learning 

methods [3], [6], [7] (i.e., DT = XT ), which may 

suffer the insufficient sampling problem. 

With the assistance of the auxiliary space, we can 

get familiar with an increasingly educational 

dictionary, and furthermore handle the insufficient 

data sampling problem. 

First, we can take in the dictionary from all the 

accessible samples in two domains. The entire 

sample set is X =[ X SXT ]. We plan to represent all 

samples in X using a dictionary D ∈ Rd×r. In this 

way, we present the constraint [ XS XT ] =D[ ZS

 ZT ] + [ ES ET ], where Z S ∈ Rr×m and ZT ∈ 

Rr×n are the coefficient matrices corresponding to 

the auxiliary area and target space, respectively. ES 

∈ Rd×m and ET ∈ Rd×n are the sparse noise matrices 

that display the reconstruction errors in auxiliary and 

target domains. The noise matrices ES and ET are 

regularly constrained using the surrogate of l0 

norms, such as l1 or l2,1 norms. In all actuality, target 

samples may contain various types of noise. 

Considering the sparse noise matrices in the model 

enables us to become familiar with a robust 

dictionary.  

Second, for some vision problems like clustering 

or classification, samples in the target area usually lie 

in several basic subspaces. Numerous ongoing 

research efforts [6], [7], [45] have shown that 

upholding low-rank constraint is a powerful method 

to discover the hidden subspace structure. Utilizing 

such structure information can incredibly profit 

visual learning tasks. In light of this observation, we 

impose a low-rank constraint on the coefficient grid 

ZT in the target space, where the learning tasks are 

performed. At that point, our objective capacity is 

planned as follows: 

 
 

where rank(•) denotes the rank capacity, • 0 is the 

l0 standard, and λ1 and λ2 are two tradeoff 

parameters. 

 

The first term in (3) characterizes the low rankness 

of ZT in the target area, and the last two terms display 

the reconstruction errors. By supplanting the rank 

capacity and l0 standard with lattice 

https://journals.pen2print.org/index.php/ijr/
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Third, the dictionary is mutually gained from both 

auxiliary and target domains, so as to transfer useful 

learning from the auxiliary area. 

 

C. Advancement  

In this section, we design a majorization-

minimization augmented Lagrange multiplier (MM-

ALM) algorithm to solve (7). We first present the 

summed up shrinkage administrator Dγ, W and the 

summed up singular esteem shrinkage administrator 

Sτ, [46] The MM-ALM algorithm contains an 

internal circle and an external circle. In every 

emphasis, the external circle utilizes the locally 

direct estimate (LLA) of the first nonconvex problem 

and forms a weighted curved problem for 

advancement. In the inward circle, we receive the 

vague augmented Lagrangian multiplier (ALM) 

algorithm. 

In the internal circle, the inaccurate ALM 

algorithm is utilized to solve (11). Given an instated 

dictionary D, we refresh different variables J, Z S, 

ZT, ES, and ET . 

where • F is the Frobenius standard, Y ∈ Rd×m, Q 

∈ Rd×n, and R ∈ Rr×n are Lagrange multipliers, and 

μ is a positive punishment parameter. 

 

       IV. LEARNING WITH S-LOW CODING 

 

In this section, we present two learning algorithms 

based on our S-Low coding methodology, including 

clustering and classification. 

 

A. S-Low Clustering 

Given an unlabeled sample set X = [ X S XT ] in 

the STL scenario, the objective of our S-Low 

clustering algorithm is to accurately recoup the 

fundamental subspaces in the target area.  

The low-rank codings ZT for the target space are 

used to characterize a partiality grid of an undirected 

diagram G. As indicated by the low-rank subspace 

recuperation hypothesis, every segment in 

coefficient lattice Z could serve as another 

representation for a sample, and afterward, the 

connection coefficient of each pair of samples would 

be a decent decision for weighting the corresponding 

edge in the undirected diagram [29]. 

B. S-Low Classification 

At the point when mark information is accessible 

in the target space, we design a classification 

algorithm based on our S-Low coding way to deal 

with train a classifier. At that point, with the 

assistance of the educated dictionary D, our 

algorithm could classify new test samples. As 

discussed in Section III-A, low-rank codings ZT can 

be considered as new representations of the target 

sample set XT 

 
Fig. 2. Sample images in the auxiliary domain 

(top) and the target domain (bottom).  

 

 

Algorithm 2 S-Low Clustering Algorithm  
Input: data matrix X = [ XS XT], nearest 

neighbors K , number of clusters C  
1: Obtain the low-rank representation matrix 

ZT using Algorithm 1; 

https://journals.pen2print.org/index.php/ijr/
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2: Build an undirected graph G based on ZT 
(using (19)), where the edges are weighted 
using correlation coefficients of each pair of 
samples;  

3: Prune graph G by removing some edges 

with small weights (keep K nearest 

neighbors for each node);  
4: Use NCut to generate C clusters.  

Output: clustering index vector L  

 

Algorithm 3 S-Low Classification Algorithm 
Input: data matrix X = [ XS XT], class labels 

of XT, test sample y  
1: Obtain the low-rank representation ZT and 

dictionary D using Algorithm 1; 
2: Train an SVM classifier using ZT; 
3: Calculate sparse representation of y using (20);  
4: Predict class label of y. 
Output: predicted class label city  

 

Without the loss of consensus, we can prepare any 

classifier using ZT. In this paper, we embrace the 

normally used classifier, SVM [49], to anticipate the 

class mark of y. Algorithm 3 summarizes every one 

of the procedures in our S-Low classification 

algorithm. 

                               V. CONCLUSION 

In this paper, we proposed a novel self-taught low-

rank coding approach for visual learning. Our 

methodology mutually took in a dictionary by 

prudence of rich information from the auxiliary area, 

and robust LRRs for the target space. We inferred 

both unsupervised and supervised learning 

algorithms for subspace clustering and image 

classification, respectively. Trial results on five 

benchmark data sets demonstrated the effectiveness 

of our algorithms contrasted and the state-of-the-

craftsmanship STL methods. There stay several 

interesting directions for our future work: 1) given 

preparing set in the target space, we may 

consequently choose samples from the auxiliary area 

and 2) we would give fast solutions to our 

framework by using the partition and-vanquish 

strategy..  
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